CSC236 winter 2020, week 3: structural induction, well-ordering
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Principle of well-ordering

2 3
Every non-empty subset of N has a smallest element.
—_——— e

Surprisingly, turns out to be equivalent to principle of mathematical induction /
complete induction. (Theorem 1.1 in Vassos course notes)



Every n > 1 has a prime factorization

For sake of contradiction, assume this is false. i.e.

S={neN|n>1Anis not the product of primes}

is non-empty. By PWO, S has a smallest element, call it j.
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Every n > 1 has a prime factorization

For sake of contradiction, assume this is false. i.e.

S={neN|n>1Anis not the product of primes}

is non-empty. By PWO, S has a smallest element, call it j.

Case 1: j is prime. Contradiction!

Case 2: j is composite. Let a,b € Nsuchthat j=axbAl<a<jAl<b<j(by
definition of composite).

a,b ¢S, since j was chosen to be the smallest element. So a and b each have a prime
factorization. We can concatenate them to form a prime factorization of j.
Contradiction!

In each case, we derived a contradiction, so our premise is false. S must be empty.

Vn € N —{0,1}, n has a prime factorization.



» Kim beats Monica
» Monica beats Serena

» Serena beats Naomi

Round-robin tournament cycles > N
I 3
Round-robin tournament = every player faces every other player once.
Consider “cycles” of matchups such as...
. . V v
> Naomi beats Kim
5 M i

Claim: Any round-robin tournament having at least one cycle has a 3-cycle.
-

v ’



Proof: if a RR tournament has a cycle, it has a 3-cycle [
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Recursively defined sets

Sets defined in terms of one or more ‘simple’ examples, plus rules for generating
elements from other elements.

Example:
> A single node is a complete binary tree

» If t; and t» are complete binary trees, then a new node joined to t; and t» as its
children form a complete binary tree

We can use structural induction to prove properties of such sets.



Structural induction proof outline

For some recursively defined set S... «PH)
1. Define predicate with domain S M
2. Basis: verify P(x) for ‘basic’ element(s) x € S ‘P[ )
3. Inductive step: show that each rule that generates other elements of S preserves
P-ness. i.e. for each rule...
3.1 Choose arbitrary elements of S
3.2 Assume predicate holds for those elements

3.3 Use assumption to show that P(z) holds, where z is an element generated from our
previously chosen elements.



Prove: all complete binary trees have an odd number of no
1. Predicate
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Prove: aIIQmpJet/e binary trees have an odd number of nodes 6

2. Basis
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Prove: all compltete binary trees have an odd number of nodes

3. Inductive step
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Compare with simple induction

Define N as the smallest! set such that:
1.0eN

2.neN = n+1eN Jﬁ(guwcésw ‘QV«\éiaa\

"Why is this necessary?



Strings with matching parentheses
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Define B as the smallest set such that...
l.eeB # where ¢ denotes the empty string '/ |engtl (e) <0
2. If be B, then (b) € B
3. If by, by € B, then byb, € B # closed under concatenation

Examples of elements?
. (e) = ()
() (0
(C) » O
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» R(s) = # of occurrences of ) in's
Claim: Vs € B, if s’ is a prefix of s, then L(s") > R(s').
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Prove: prefixes of strings of balanced parens are left-heavy
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Prove: prefixes of strings of balanced parens are left-heavy
Inductive step
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