Outline

Well-ordering
- Principle of well-ordering
- Example: prime factorizations, revisited
- Example: round-robin tournament cycles

Structural induction
- Introduction
- Example: complete binary trees
- Comparison with simple induction
- Example: strings of matching parentheses
Principle of well-ordering

Every non-empty subset of \(\mathbb{N} \) has a smallest element.

Surprisingly, turns out to be equivalent to principle of mathematical induction / complete induction. (Theorem 1.1 in Vassos course notes)
Every \(n > 1 \) has a prime factorization

For sake of contradiction, assume this is false. i.e.

\[
S = \{ n \in \mathbb{N} \mid n > 1 \land n \text{ is not the product of primes} \}
\]

is non-empty. By PWO, \(S \) has a smallest element, call it \(j \).
Every \(n > 1 \) has a prime factorization

For sake of contradiction, assume this is false. i.e.

\[
S = \{ n \in \mathbb{N} \mid n > 1 \land n \text{ is not the product of primes} \}
\]

is non-empty. By PWO, \(S \) has a smallest element, call it \(j \).

Case 1: \(j \) is prime. **Contradiction!**

Case 2: \(j \) is composite. Let \(a, b \in \mathbb{N} \) such that \(j = a \times b \land 1 < a < j \land 1 < b < j \) (by definition of composite).

\(a, b \notin S \), since \(j \) was chosen to be the smallest element. So \(a \) and \(b \) each have a prime factorization. We can concatenate them to form a prime factorization of \(j \). **Contradiction!**

In each case, we derived a contradiction, so our premise is false. \(S \) must be empty.

\(\forall n \in \mathbb{N} - \{0, 1\}, \) \(n \) has a prime factorization.
Round-robin tournament cycles

Round-robin tournament ≡ every player faces every other player once. Consider “cycles” of matchups such as...

- Naomi beats Kim
- Kim beats Monica
- Monica beats Serena
- Serena beats Naomi

Claim: Any round-robin tournament having at least one cycle has a 3-cycle.
Proof: if a RR tournament has a cycle, it has a 3-cycle
Recursively defined sets

Sets defined in terms of one or more ‘simple’ examples, plus rules for generating elements from other elements.

Example:
- A single node is a complete binary tree
- If t_1 and t_2 are complete binary trees, then a new node joined to t_1 and t_2 as its children form a complete binary tree

We can use structural induction to prove properties of such sets.
Structural induction proof outline

For some recursively defined set S...

1. Define predicate with domain S

2. **Basis**: verify $P(x)$ for ‘basic’ element(s) $x \in S$

3. **Inductive step**: show that each rule that generates other elements of S preserves P-ness. i.e. for each rule...

 3.1 Choose arbitrary elements of S

 3.2 Assume predicate holds for those elements

 3.3 Use assumption to show that $P(z)$ holds, where z is an element generated from our previously chosen elements.
Prove: all complete binary trees have an odd number of nodes

1. Predicate
Prove: all complete binary trees have an odd number of nodes

2. Basis
Prove: all complete binary trees have an odd number of nodes

3. Inductive step
Compare with simple induction

Define \(\mathbb{N} \) as the smallest\(^1 \) set such that:

1. \(0 \in \mathbb{N} \)
2. \(n \in \mathbb{N} \implies n + 1 \in \mathbb{N} \)

\(^1\)Why is this necessary?
Define \mathcal{B} as the smallest set such that...

1. $\epsilon \in \mathcal{B}$
 # where ϵ denotes the empty string

2. If $b \in \mathcal{B}$, then $(b) \in \mathcal{B}$

3. If $b_1, b_2 \in \mathcal{B}$, then $b_1 b_2 \in \mathcal{B}$
 # closed under concatenation

Examples of elements?
A claim about \mathcal{B}

Define...

- $L(s) = \#$ of occurrences of (in s
- $R(s) = \#$ of occurrences of) in s

Claim: $\forall s \in \mathcal{B}$, if s' is a prefix of s, then $L(s') \geq R(s')$.
Prove: prefixes of strings of balanced parens are left-heavy

\[P(s) : \]

Basis:
Prove: prefixes of strings of balanced parens are left-heavy

Inductive step