CSC236 winter 2020, week 2: complete induction

See section 1.3 of course notes

Colin Morris colin@cs.toronto.edu

http://www.tesh.cs.toronto.edu/~colin/236/W20/

January 13, 2020

Complete induction

Another flavour needed

Every natural number greater than 1 has a prime factorization.

Try some examples

How does the factorization of 8 help with the factorization of 9?

$$74 = 2 \times 2$$
 $f(r) = f(n+1)$
 $5 = 5$
 $6 = 2 \times 3$
 $7 = 7$
 $9 = 2 \times 2 \times 2$

P(0) => P(1) More dominoes P(0) 1 P(1) => P(2) Propaga APropaga ONTINO
ONTINO
ONTINO
ONTINO
ONTINO
ONTINO
ONTINO
ONTINO what we need to prove $(\forall n \in \mathbb{N}, [\forall k \in \mathbb{N}, k < n \implies P(k)] \Rightarrow P(n)) \Rightarrow \forall n \in \mathbb{N}, P(n)$

If all the previous cases always imply the current case then all cases are true
$$P(O) \wedge \forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$$

Induction hypothesis

What about the base case?

Suppose we've proven.

$$\forall n \in \mathbb{N}, [\forall k \in \mathbb{N}, k < n \implies P(k)] \implies P(n)$$

Outline of a complete induction proof

- 1. Define a predicate P(n)
- 2. Induction step
 - 2.1 Let $n \in \mathbb{N}$
 - 2.2 IH: Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$
 - 2.3 Use IH to show P(n)

Lots of acceptable ways to write I.H.

- 1. Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$ 2. Assume P(k)
- 2. Assume P(k) holds for all k < n
- 3. Assume $P(0) \wedge P(1) \wedge \dots P(n-1)$
- 4. Assume $\bigwedge_{k=0}^{k=n-1} P(k)$
- 5. Assume our predicate holds for all natural numbers less than n.

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

2	\$ · \$	5 k's	
8	l		
9	3	C	
10	0	2	
(1	2	\ \	
12	4	0	
13	1	2	
14	3	1	

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

14+5 n-3=3++8f

Assume 4 KGIN, N=8 Assume 4 KGIN, 8 CK CN => P(K)

$$8 = 5 + 3$$
, $9 = 3$, $10 = 5 \times 2$, so P(n) for all such n
Case; $n \ge 11$
 $n - 3 = 8$, so $8 \le n - 3 < n$, so $P(n - 3)$ by I.H.

n=3(+1)+5f, so P(n),

Plus

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

Gase casein = 0

IS Let nell, n.
Assume V Kell, KCN => P(K) # P(O) ... P(N-1)

P(D) # carrot use JH - It says nothing

Show that any postage amount greater than 7 cents can be formed by combining 3 Lest as a though and 5 cent stamps. P(n): to fell, n=3++5f experiment, Is this a

valid proof of PCM, N27 IS Let nell, n=8 Assume YKGIN_ KCN => P(K) # P(O) 1 P(I) 1... P(n-1) Case 1: 11511

8=5+3, 9= 3, 10=5×2, so P(n) for all such n Case: $n \ge 11$ $n-3 \ge 8$ so $8 \le n-3 \le n$, so P(n-3) by I.H. 19+7 U-3=3++Et n=3(+1)+5f, so P(n).

Postage - separate base case

Another way to structure the same proof. Not necessarily better or worse.

$$P(n): \exists t, f \in \mathbb{N}, n = 3t + 5f$$
Base case:

• $P(8)$ $(t = 1, f = 1)$

• $P(9)$ $(t = 3, f = 0)$

• $P(10)$ $(t = 0, f = 2)$

Inductive step: Let $n \in \mathbb{N}$, and assume $n > 10$

Assume $\forall k \in \mathbb{N}, 8 \le k < n \Longrightarrow P(k)$
 $P(n-3)$ (by IH). Let $t, f \in \mathbb{N}$, such that $n-3 = 3t + 5f$

Then $n = 3(t+1) + 5f$, so $P(n)$

So $\forall n \in \mathbb{N}, n > 7 \Longrightarrow P(n)$

Prime factorization

then P(n): n Il cases.

Show that every natural number greater than 1 has a prime factorization. P(n): n is the product of prime numbers

IS_ Let
$$n \in \mathbb{N}$$
, $n \ge 2$

Assume YILEIN 2 = KCN => P(K) Case 1: n is prime

Case o: n: composite let a be N then P(n)

P= qx b

P(a) 1 P(b) # 2 < a < 1 a = P, x P2 x ... P; N = P, x P2 b = P', x P'... P', p(n) x P';

What happens when we subtly tweak the structure? Conventional

Are these still valid proofs?

1. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah... Thus, P(n)Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

2. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah... Thus, P(n+1) Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

Basis: P(0)

O. Let ne IN

Assume V KeIN, Ken => PCK)

Black Glack Glack

thus PCh)

So, V ne IN, PCh)

3. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k < n \Rightarrow P(k)$ Blah blah blah... Thus, P(n+1)Thus, by complete induction,

 $\forall n \in \mathbb{N}, P(n)$

+ Basis; P(0), Valid?

P(0) 1 P(1) 1 P(2) => P(3)

P(0) 1 P(1) 1P(2) => P(4)

A mystery recurrence

$$f(n) = \begin{cases} 1 & n \le 1 \\ [f(n/2)]^2 + 2f(n/2) & n > 1 \end{cases}$$

Note: In homage to Python, we'll use the notation a//b to denote integer division:

$$a // b = g \iff \exists r \in \mathbb{N}, a = gb + r \land r < b$$

It can also be defined in terms of the floor function as $a /\!/ b = \lfloor a/b \rfloor$.

Conjecture:
$$f(n)$$
 is a multiple of 3, for $n > 1$

$$b = [a/b].$$

$$0$$

$$1$$

$$2$$

$$3$$

$$3$$

For all n > 1, f(n) is a multiple of 3? $f(n) = \begin{cases} f(n) = 1 \\ f(n) = 2 \end{cases}$ Use the complete induction outline P(M): 3k0 N, 5(M) = 3k Let no IN, n>1 Assume P(2) AP(3) A... P(n-1) (ase 1: 0 > 4 f()= f(v1/2)2 + 2f(v1/2) はらりはっているくり $=(31c)^2+2\times(3k)$ = 3(3K + 2K) So P(n) Case 2. n < 4 f(2) = f(3) = 3 so P(n)

(2 P(n) holds in all cases.

Zero pair free binary strings

Denote by Z(n) the number of binary strings of length n that contain no pairs of adjacent zeros. What is Z(n) for the first few natural numbers n?

What is Z(n)?

Use the complete induction outline

What is Z(n)?

Use the complete induction outline

Does binary exist?

Prove that every natural number can be written as the sum of distinct powers of 2.

P(n): There exists a set of exponents $E \subset \mathbb{N}$ such that

$$n = \sum_{e \in E} 2^e$$