See section 1.3 of course notes

Colin Morris colin@cs.toronto.edu

http://www.temh.cs.toronto.edu/~colin/236/W20/

January 13, 2020

Complete induction

Another flavour needed

Every natural number greater than 1 has a prime factorization.

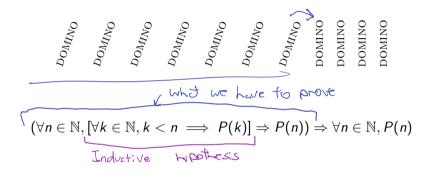
Try some examples

How does the factorization of 8 help with the factorization of 9?

$$-4=2\times2$$
 $-5=5$
 $-5=7$
 $-7=7$
 $-18=2\times2\times2$

here.

More dominoes



If all the previous cases always imply the current case then all cases are true

Cf. simple industran P(0) 1 train, P(n)=) P(n+1)

What about the base case? Suppose we have proved, ... (i.e. assume we have a complete induction proof) $\forall n \in \mathbb{N}, [\forall k \in \mathbb{N}, k < n \implies P(k)] \implies P(n)$

Let of be O Clain: H kelly k(D=) P(k)

then P(0)

This is why CI doesn't need an explicit base case.

Outline of a complete induction proof

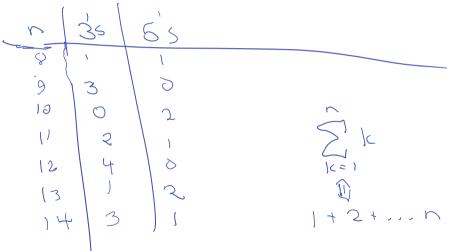
- 1. Define a predicate P(n)
- 2. Induction step
 - 2.1 Let $n \in \mathbb{N}$
 - 2.2 IH: Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$
 - 2.3 Use IH to show P(n)

Lots of acceptable ways to write I.H.

- 1. Assume $\forall k \in \mathbb{N}, k < n \implies P(k)$
- 2. Assume P(k) holds for all k < n
- 3. Assume $P(0) \wedge P(1) \wedge \dots P(n-1)$
- 4. Assume $\bigwedge_{k=0}^{k=n-1} P(k)$
- 5. Assume our predicate holds for all natural numbers less than n.

Example: postage

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.



Example: postage

(ase of P>11

n-3 = 34 + 54

Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps.

Let nell, n28

Case 1: n<11

ASSUME AIROIN 87K (U => b(K)

then PCN-3), let +, f & IN, such that...

P(8) A P(3) A. ... P(N-1)

8= 5+3, 9= 3×3, 10= 5×2. So in each case, P(n) holds. n = 3(+1) + Ss. Then setting t'= +1, 5'= 5, Pan) holds

[Context; we talked about how this proof lets us derive PCN] Example: postage for some specific values of n Show that any postage amount greater than 7 cents can be formed by combining 3 and 5 cent stamps. r(n), Its & IN, n = 3++ Sf Let nell, n ≥ 8 14 (K) # \$18) \ P(19) \ ... \ P(n-1)

Case 1: n < 1 11 12 13 8 = 5+34 9 = 3×3, 10 = 5×2. So in each case P(n) holds. then PCn-3), let +, feIN, such that... n-3 = 34 + 54 n = 3 (+1) + Sf. Then setting += ++1, 5'=f, Pan) holds

 $3 \times 4 + 5 \times 2 = 22$ Example: postage Show that any postage amount greater than 7 cents can be formed by combining $\frac{3 \times 5}{3} = 25$ and 5 cent stamps. [Context: ???] P(n), It f & M, n = 3t. Sf Let nell, n28 **りょう**5 Assume VI OLK (N => P(K) Case 1: 0 < 11 8=5- 9=3×3, 10=5×2. So in each case, P(n) holds. (ase 21 (> 1) then PCN-3) \$1(22) n-3 = 34 + 6f n= 3(+1) + 5f , so P(n)

Postage - separate base case

Another way to structure the same proof. Not necessarily better or worse.

```
P(n): \exists t, f \in \mathbb{N}, n = 3t + 5f
  Base case:
    P(8) (t = 1, f = 1)
P(9) (t = 3, f = 0)
P(10) (t = 0, f = 2)
  Inductive step: Let n \in \mathbb{N}, and assume n > 10
  Assume \forall k \in \mathbb{N}, 8 \le k < n \implies P(k)
  P(n-3) (by IH). Let t, f \in \mathbb{N}, such that n-3=3t+5f
  Then n = 3(t+1) + 5f, so P(n)
 So \forall n \in \mathbb{N}, n > 7 \implies P(n)
```

Prime factorization

Show that every natural number greater than 1 has a prime factorization.

Let no IN, n > 1

Assume Y LOIN 1 (K < n =) P(K)

Case I', n is even, and n ≠ 2

N = 2 K

Hen P(K)

P(n)

Case 2: nis odd

n = 2k + 1 ... We got stuck here, and decided to try a new approach

Prime factorization

Show that every natural number greater than 1 has a prime factorization. p(n): n is the product of prime numbers

12+ no M, n > 1 Accome ALLON ICKEN => PCK) Case l'inis prime, P(n) Case oin is composite Jn, 2 N 0=0, ×02 1 < 0, < 0 1 < 02 < 0 thus P(n) A P(n2), so n is the product of their prime fing What happens when we subtly tweak the structure?

Are these still valid proofs?

1. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$

Assume $\forall k \in \mathbb{N}, \underline{k \leq n \Rightarrow P(k)}$ Blah blah blah... Thus, P(n) Thus, by complete induction, not good $\forall n \in \mathbb{N}, P(n)$.

2. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah...

Thus, P(n+1)Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

Basis: P(0)

2 works only : & we add a Separate 600is of Pro) O. Let no IN K
Assume Y kell, k > P(k)
Blah blah blah
thus P(n)
So Y no IN, P(n)

3. Let $n \in \mathbb{N}$ Assume $\forall k \in \mathbb{N}, k \leq n \Rightarrow P(k)$ Blah blah blah... Thus, P(n+1)Thus, by complete induction, $\forall n \in \mathbb{N}, P(n)$.

P(1) follows from this proof
(by vacuous =>)

3. Uso votes WI added basis.

A mystery recurrence

$$f(n) = \begin{cases} 1 & n \leq 1 \\ [f(n//2)]^2 + 2f(n//2) & n > 1 \end{cases}$$

Note: In homage to Python, we'll use the notation a // b to denote integer division:

to Python, we'll use the notation
$$a \mathrel{/\!/} b$$
 to o

$$\frac{1}{2} \frac{1}{b} = a \iff \exists r \in \mathbb{N} \ a = ab + r \land r < b$$

$$a/\!/\,b=q\iff \exists r\in\mathbb{N}, a=qb+r\wedge p$$
 an also be defined in terms of the floor function as $a/\!/\,b$

$$a/\!\!/\,b=q\iff \exists r\in\mathbb{N}, a=qb+r\land r< b$$
 It can also be defined in terms of the floor function as $a/\!\!/\,b=\lfloor a/b\rfloor$. Conjecture: $f(n)$ is a multiple of 3, for $n>1$

It can also be defined in terms of the floor function as
$$a / / b = \lfloor a / b \rfloor$$
.

Conjecture: $f(n)$ is a multiple of 3, for $n > 1$

the floor function as
$$a / / b = \lfloor a/b \rfloor$$
.

3, for $n > 1$

For all n > 1, f(n) is a multiple of 3? $\int_{0}^{\infty} \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2\pi} \int$ Use the complete induction outline PINI: FILE W, FIN = 3K Let n 1, n>1 Assume P(2) 1 P(3) 1 ... P(1-1) Case 1: 0 > 4 f(m)=. f(0112)2 + 2f(0/12) = (31/2) + 2(3K) #IH, 6y (< 01/2 < n = 3 (3k2 + 2k) SO PCM) (95ei 0 < 4 f(x) = f(3) = 3, so P(n)

SO P(P) holds in all cases

Zero pair free binary strings

Denote by Z(n) the number of binary strings of length n that contain no pairs of adjacent zeros. What is Z(n) for the first few natural numbers n?

adjacent zeros. What is $Z(n)$ for the first few natural numbers n ?				
	Strings	Z(n)		11011
\bigcirc	17)		
1		2		
2	01 10 11	3	2(1)-	000
3	. 010	5	$f(n) = \begin{cases} 1 \\ 2 \end{cases}$	n =
				•
			(30-	1)+f(n-2)
			f(n)= Z(n)	n >
			2(11)	

What is Z(n)?

Use the complete induction outline

What is Z(n)?

Use the complete induction outline

Does binary exist?

Prove that every natural number can be written as the sum of distinct powers of 2.

P(n): There exists a set of exponents $E \subset \mathbb{N}$ such that

$$n = \sum_{e \in E} 2^e$$