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Outline

Course overview

Simple induction
Multiple base cases
Bases other than zero
Strengthening the induction hypothesis



What is this course?

More like this... ...than this



Who am I?

myfavouritethings.jpg



Who are you?



Course information sheet

I Info is a subset of what’s on the course website
I Let’s take a tour now

I (Sorry, this part is boring.)

http://www.cs.toronto.edu/~colin/236/W20/


About these slides

I Adapted from Danny Heap

I Plain slides posted online in advance
I Annotated slides uploaded after lecture

I You may want to annotate your own copy during lecture



We behave as though you already know...

I CSC165 material, especially proofs and big-Oh material
I But you can relax the structure a little

I Chapter 0 material from Introduction to Theory of Computation

I recursion, efficiency material from CSC148

http://www.teach.cs.toronto.edu/~heap/Old/165/F17/Notes/notes.pdf
http://www.cs.toronto.edu/~vassos/b36-notes/


By end of course you’ll know...

1. Several flavours of proof by induction

2. Reasoning about recurrences

3. Proving the correctness of programs

4. Formal languages



Simple induction



Domino fates foretold
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[P(0) ∧ ( ∀n ∈ N,P(n)⇒ P(n + 1) ) ] =⇒ ∀n ∈ N,P(n)

If the initial case works,
and each case that works implies its successor works,
then all cases work



Simple induction outline

1. Define predicate, P(n)

2. Inductive step

2.1 Let n ∈ N
2.2 Assume P(n) (inductive hypothesis)
2.3 use it to show that P(n + 1) holds

3. Verify base case(s) (aka basis)



Example: triangular numbers

Show that for any n,
∑n

k=0 k = n(n+1)
2 .

1. Define predicate

2. Inductive step

3. Base case



Sometimes we need more than one base case

Show that ∀n ∈ N, 3n ≥ n3



Sometimes we need more than one base case

Show that ∀n ∈ N, 3n ≥ n3



Bases other than zero

Prove that n! ≥ n2 for n >???



Bases other than zero

Prove that n! ≥ n2 for n >???



The units digit of any power of 7 is one of 1, 3, 7, or 9
Scratch work



The units digit of any power of 7 is one of 1, 3, 7, or 9
Use the simple induction outline



The units digit of any power of 7 is one of 1, 3, 7, or 9
Use the simple induction outline



The units digit of any power of 7 is one of 1, 3, 7, or 9
Use the simple induction outline



The units digit of any power of 7 is one of 1, 2, 3, 7, or 9

Is the claim still true? What happens if you add this other case to the inductive step?



Trominoes
See https://en.wikipedia.org/wiki/Tromino

Can a 2n × 2n square grid, with one subsquare removed, be tiled (covered without
overlapping) by “chair” trominoes?

https://en.wikipedia.org/wiki/Tromino


Trominoes

P(n): a 2n × 2n square grid with a subsquare removed can be tiled with chair
trominoes.



Trominoes

P(n): a 2n × 2n square grid with a subsquare removed can be tiled with chair
trominoes.

Note: we didn't finish this problem in lecture, though we found a good general approach
for the inductive step (divide the 2^{n+1}x2^{n+1} grid into 4 subgrids, so we can apply
the induction hypothesis.

We noted that the predicate as originally written was ambiguous, with a potential "weak"
interpretation (the grid can be tiled with some square missing) vs. a "strong" one (the grid
can be tiled with any *arbitrary* square missing). I claimed that it's possible to prove
either version directly via induction. It's important that we don't exploit this ambiguity 
by assuming the strong version in our IH and then only proving the weak version for n+1!

Open question: once we fill in the inductive step, will it allow us to go from P(0) to P(1)?
If not, that probably means we've made some implicit assumption about the n in our IH
(which we should make explicit)


