CSC236 winter 2020
theory of computation

Colin Morris
colin@cs.toronto.edu
http://www.teach.cs.toronto.edu/~colin/236/W20/

help yourselves to course info sheet

January 6, 2020
Outline

Course overview

Simple induction
 Multiple base cases
 Bases other than zero
 Strengthening the induction hypothesis
What is this course?

P(n): Every bipartite graph on n vertices has no more than \(n^2/4 \) edges if n is even, or \((n^2 - 1)/4\) edges if n is odd.

Base case: An empty bipartite graph has 0 vertices and 0 edges, and 0 \(\leq n^2/4\), which verifies P(0).

Inductive step: Let n be an arbitrary, fixed, natural number. Assume P(m), that every bipartite graph on m vertices has no more than \(m^2/4 \) edges if m is even, or \((m^2 - 1)/4\) edges if m is even.

I will show that P(n + 1) follows, that every bipartite graph on n + 1 vertices has no more than \((n + 1)^2/4\) edges if n + 1 is even, or \([(n + 1)^2 - 1]/4\) edges if n + 1 is odd.

Let G be an arbitrary bipartite graph on n + 1 vertices. Remove a vertex, together with its edges, from G's larger partition to produce a new bipartite graph \(G' \). There are two possibilities, depending on whether n + 1 is even or odd:

Case n + 1 is odd: \(G \)'s smaller partition has, at most, \(n/2 \) vertices, so we removed at most \(n/2 \) edges to produce \(G' \). n + 1 odd means n is even, so by assumption P(n), \(G' \) has at most \(n^2/4 \) edges, so accounting for the edges removed \(G \) had, at most:

\[
\frac{n^2}{4} + \frac{n}{2} = \frac{n^2 + 2n}{4} \leq \frac{(n + 1)^2 - 1}{4}
\]

So P(n + 1) follows in this case.

Case n + 1 is even: \(G \)'s smaller partition has, at most, \((n + 1)/2 \) vertices, so we removed at most \((n + 1)/2 \) edges to produce \(G' \). n + 1 even means n is odd, so by assumption P(n), \(G' \) has at most \((n - 1)/4 \) edges, so accounting for the edges removed \(G \) had, at most:

\[
\frac{n^2}{4} + \frac{n + 1}{2} = \frac{n^2 + 2n + 1}{4} \leq \frac{(n + 1)^2}{4}
\]

So P(n + 1) follows in this case.

P(n + 1) follows in both possible cases. □

More like this... ...than this
Who are you?
Course information sheet

- Info is a subset of what’s on the course website
- Let’s take a tour now
 - (Sorry, this part is boring.)
About these slides

- Adapted from Danny Heap
- Plain slides posted online in advance
- Annotated slides uploaded after lecture
 - You may want to annotate your own copy during lecture
We behave as though you already know...

- CSC165 material, especially proofs and big-Oh material
 - But you can relax the structure a little
- Chapter 0 material from *Introduction to Theory of Computation*
- recursion, efficiency material from CSC148
By end of course you’ll know...

1. Several flavours of proof by induction
2. Reasoning about recurrences
3. Proving the correctness of programs
4. Formal languages
Simple induction
Domino fates foretold

If the initial case works, and each case that works implies its successor works, then all cases work.
Simple induction outline

1. Define predicate, $P(n)$
2. Inductive step
 2.1 Let $n \in \mathbb{N}$
 2.2 Assume $P(n)$ (inductive hypothesis)
 2.3 use it to show that $P(n+1)$ holds
3. Verify base case(s) (AKA basis)

4. (optional) Conclusion
Example: triangular numbers

Show that for any \(n \), \(\sum_{k=0}^{n} k = \frac{n(n+1)}{2} \).

1. Define predicate

\[P(n) : \sum_{k=0}^{n} k = \frac{n(n+1)}{2} \]

2. Inductive step

Let \(n \in \mathbb{N} \), assume \(P(n) \)

\[
\sum_{k=0}^{n+1} k = \left(\sum_{k=0}^{n} k\right) + (n+1)
\]

\[
= \frac{n(n+1)}{2} + (n+1) \quad \text{by Ind.}
\]

\[
= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+2)(n+1)}{2}, \quad \text{thus } P(n+1)
\]

3. Base case

\[
\sum_{k=0}^{0} k = 0 = \frac{0(0+1)}{2} \quad \text{so } P(0)
\]

\[\forall n \in \mathbb{N}, \ P(n) \]
Example: triangular numbers

Show that for any n, $\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$.

1. Define predicate
 \[p(n) : \text{ } \sum_{k=0}^{n} k = \frac{n(n+1)}{2} \]

2. Inductive step
 Let $n \in \mathbb{N}$, assume $p(n)$
 \[\sum_{k=0}^{n+1} k = \left(\sum_{k=0}^{n} k \right) + (n+1) \]
 \[= \frac{n(n+1)}{2} + (n+1) \text{ } \# \text{ by } p(n) \]
 \[= \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+2)(n+1)}{2} \]
 thus \(p(n+1) \)

3. Base case
 \[\sum_{k=0}^{0} k = 0 = \frac{0(0+1)}{2} \text{ } \# \text{ } p(0) \]
 \[\forall n \in \mathbb{N}, \text{ } p(n) \]
Sometimes we need more than one base case. Show that $\forall n \in \mathbb{N}, 3^n \geq n^3$

P(n): $3^n \geq n^3$

I.S. Let $n \in \mathbb{N}$, assume $P(n)$, and $n \geq 3$

$3^{n+1} = 3 \cdot 3^n = 2 \cdot 3^n + n^3 = n^3 + n \cdot n \cdot n = n^3 + n \cdot n^n + n \cdot n^2 \geq n^3 + 3n^2 + n \cdot 9 \geq n^3 + 3n^2 + 6n \cdot 9 = (n+1)^3$, so $P(n+1)$
Sometimes we need more than one base case.

Show that $\forall n \in \mathbb{N}, 3^n \geq n^3$

Welcome back to CSC 236

Reminders

- Tutorial rooms posted to course website
- Please attempt exercises before Friday
- Office hours today, 14:10–16:00 @ BA 2283
- Extra course info sheets at the front.
Bases other than zero

Prove that $n! \geq n^2$ for $n > ???$

<table>
<thead>
<tr>
<th>n</th>
<th>$n!$</th>
<th>n^2</th>
<th>$n! \geq n^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>✔</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>16</td>
<td>✔</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>25</td>
<td>✔</td>
</tr>
</tbody>
</table>
Bases other than zero

Prove that $n! \geq n^2$ for $n \geq 4$

\[P(n): \quad n! \geq n^2 \]

IS: let $n \in \mathbb{N}$, assume $P(n)$ and assume $n \leq 4$

\[(n+1)! = n! \times (n+1) \]
\[\geq n^2 \times (n+1) \]
\[\geq (n+1)^2 \quad \# \text{ by Lemma 1} \]

Basis

\[4! = 24 \geq 16 = 4^2 \] so $P(4)$

Lemma 1: $n^2 \geq n+1$ for $n \geq 4$

\[n^2 = n \times n \]
\[\geq 2n \quad \# n \geq 2 \]
\[= n + n \]
\[\geq n + 1 \quad \# n \geq 1 \] \[\square \]
The units digit of any power of 7 is one of 1, 3, 7, or 9

Scratch work

<table>
<thead>
<tr>
<th>(n)</th>
<th>Units((n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>49</td>
<td>9</td>
</tr>
<tr>
<td>343</td>
<td>3</td>
</tr>
<tr>
<td>?? ?</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
343 \\
\times 7 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
2 \\
\hline
3 \\
\end{array}
\]
The units digit of any power of 7 is one of 1, 3, 7, or 9

Use the simple induction outline

Let $U = \{1, 3, 7, 9\}$

$p(n)$: For $k \in N$, $n = 7^k$ \land $7^k \mod 10 \in U$ \iff not true of all n in N

I3. Let $n \in N$, assume $p(n)$

$p(n+1)$
The units digit of any power of 7 is one of 1, 3, 7, or 9

Use the simple induction outline

\[P(n); 7^n \mod 10 \in \{1, 3, 7, 9\} \]

Basis

\[7^0 = 1, \text{ which is } 1 \mod 10, \text{ so } \boxed{0} \]

Inductive Step

\[7^1 = 10k + 1 \]

\[7^{n+1} = 7(10k + 1) = 70k + 7 \]

Case 1: \(7^n \equiv 1 \mod 10 \)

- Then \(7 \times 7^n \equiv 7 \mod 10 \)
 - By modular arithmetic

Case 2: \(7^n \equiv 3 \mod 10 \)

- Then \(7 \times 7^n \equiv 3 \mod 10 \)

Case 3: \(7^n \equiv 7 \mod 10 \)

- Then \(7 \times 7^n \equiv 9 \mod 10 \)

Case 4: \(7^n \equiv 9 \mod 10 \)

- Then \(7 \times 7^n \equiv 3 \mod 10 \)

Units digit of \(7^{n+1} \equiv U \) in every case, thus \(P(n+1) \)
The units digit of any power of 7 is one of 1, 3, 7, or 9.

Use the simple induction outline:

P(n): $7^n \mod 10 \in U$

Base:

$7^0 = 1$, which is 1 mod 10, so $P(0)$

Induction: Let $n \in \mathbb{N}$, assume $P(n)$

Case 1: $7^n \equiv 1 \mod 10$

then $7 \times 7^n \equiv 7 \mod 10$

Case 2: $7^n \equiv 3 \mod 10$

then $7 \times 7^n \equiv 7 \mod 10$

Case 3: $7^n \equiv 7 \mod 10$

then $7 \times 7^n \equiv 9 \mod 10$

Case 4: $7^n \equiv 9 \mod 10$

then $7 \times 7^n \equiv 3 \mod 10$

Case 5: $7^n \equiv 2 \mod 10$

then $7 \times 7^n \equiv 4 \mod 10$

Thus, $P(n+1)$

Units digit of $7^{n+1} \in U$ in every case, thus $P(n+1)$
The units digit of any power of 7 is one of 1, 2, 3, 7, or 9

Is the claim still true? What happens if you add this other case to the inductive step?

\(Q(n) ; \ 7^n \mod 10 \text{ is in } \{ 1, 2, 3, 7, 9 \} \)

"strengthening the Initial"

define \(P(n) \) as before

prove \(\forall n \in \mathbb{N}, P(n) \)

Observe \(P(n) \implies Q(n) \)

Another example:

\(P(n) ; \sum_{k=1}^{n} \frac{1}{k^2} < 2 \)

\(\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots < 2 \)

\(\text{We can prove this via induction but only if we carefully strengthen } \ P(n). \text{ Left as an exercise.} \)
Can a $2^n \times 2^n$ square grid, with one subsquare removed, be tiled (covered without overlapping) by “chair” trominoes?
Trominoes

$P(n)$: a $2^n \times 2^n$ square grid with a subsquare removed can be tiled with chair trominoes.

Basis

$P(1)$: 2x2 grid

Left as an exercise
Trominoes

\(P(n) \): a \(2^n \times 2^n \) square grid with a subsquare removed can be tiled with chair trominoes.

Note: we didn't finish this problem in lecture, though we found a good general approach for the inductive step (divide the \(2^{n+1} \times 2^{n+1} \) grid into 4 subgrids, so we can apply the induction hypothesis.

We noted that the predicate as originally written was ambiguous, with a potential "weak" interpretation (the grid can be tiled with some square missing) vs. a "strong" one (the grid can be tiled with any *arbitrary* square missing). I claimed that it's possible to prove either version directly via induction. It's important that we don't exploit this ambiguity by assuming the strong version in our IH and then only proving the weak version for \(n+1 \! \).

Open question: once we fill in the inductive step, will it allow us to go from \(P(0) \) to \(P(1) \)? If not, that probably means we've made some implicit assumption about the \(n \) in our IH (which we should make explicit)