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Reminders

I A3 due Thursday @ 15:00
I It’s short!
I Extra office hours available by request

I One last tutorial + quiz this Friday
I Also, final Q&A session Wednesday 12:00-14:00

I These are really worth attending!

I Marking scheme changes
I Course website will be updated when vote officially closes on Monday

I Exam-like final assessment (worth 20%) to be written April 7-9

https://piazza.com/class/k4xo4w48g2u35e?cid=313


Regular languages

A language L is regular iff

I L is denoted by a regular expression

I L is accepted by a deterministic FSA

I L is accepted by a non-deterministic FSA

(We now know that all of these criteria are equivalent.)



Proving regularity

A few options to prove that L is regular:

1. Construct an RE, or a DFSA, or an NFSA that matches L.

2. Use closure properties of regular languages. Show that L can be formed by
application of union/intersection/complement/Kleene star to some languages that
are known to be regular.

3. Use the fact that all finite languages are regular



Example: proving regularity

L1 = strings over {0, 1} of length 236. Prove L1 is regular.

L2 = strings over {0, 1} where length is a multiple of 236. Prove L2 is regular.
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Are all languages regular?
Big if true



Detour: probing the limits of FSAs

Suppose M is a DFSA such that L(M) = {an | ∃k ∈ N, n = 3k}.
What is the minimum number of states M can have?



Proving lower bounds on states
Recall, L(M) = {an | ∃k ∈ N, n = 3k}.

Consider

I δ∗(s, a) = q1
I δ∗(s, aa) = q2
I δ∗(s, aaa) = q3

Claim: q1, q2, and q3 are distinct.
Proof: Show that each of the following possibilities leads to a contradiction

I q3 = q1
I q3 = q2
I q2 = q1



Pigeonhole principle

Figure: 10 pigeons > 9 pigeonholes =⇒ pigeon cohabitation



Recipe: proving lower bound on DFSA states

To prove that any DFSA M that accepts L must have at least n states

1. Prove that n is sufficient, by demonstrating an accepting n-state DFSA
I (May or may not be necessary, depending on how question is worded)

2. Find n distinct prefixes x1, x2, . . . xn, and matching suffixes1 y1, y2, . . . yn, such
that

I xjyk ∈ L ⇐⇒ j = k
I i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a

string in L

3. Prove minimum of n states by contradiction

3.1 Assume, for sake of contradiction, that |Q| < n.
3.2 By the pigeonhole principle, there must be two different prefixes, xj and xk that go

to the same state, q
3.3 So δ∗(q, yj) must be accepting and non-accepting. ⇒⇐

1It’s actually sufficient to find just n− 1 suffixes, i.e. we can get away with having one prefix x that
doesn’t have a matching suffix. See steps 3.2 and 3.3 for the reason why.



Another (worked out) lower bound example
Find the minimum number of states for a
DFSA that accepts
L = {w ∈ {0, 1}∗ | w ends with ‘011’}.
Below, we give a 4-state DFSA for L.

q0 q1 q2 q3
0

1

1

0

1

0

0

1

So 4 is sufficient. Is it necessary?

Consider

I x0 = ε

I x1 = 0, y1 = 11

I x2 = 01, y2 = 1

I x3 = 011, y3 = ε

By inspection, each suffix yj has exactly
one prefix xj such that xjyj ∈ L.
Suppose FSOC a DFSA with < 4 states
accepts L. By the pigeonhole principle,
there must be a distinct pair, xj , xk , such
that δ∗(s, xj) = δ∗(s, xk) = q for some
state q.
WLOG, suppose j 6= 0. Then δ∗(q, yj)
must be accepting. But that would mean
we also accept, xkyj /∈ L. ⇒⇐
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An infinite flock of pigeons

Prove that L = {0n1n | n ∈ N} is non-regular.



Recipe: proving non-regularity via pigeonhole principle
Very similar to recipe for proving lower bound on number of states

To prove that L is non-regular

1. Find a infinite family of distinct prefixes x1, x2, . . ., and corresponding suffixes
y1, y2, . . ., such that

I xjyk ∈ L ⇐⇒ j = k
I i.e. for each prefix, exactly one of the suffixes can be concatenated to it to form a

string in L

2. Prove non-existence of DFSA for L by contradiction

2.1 Assume, for sake of contradiction, that there is a DFSA M such that L(M) = L. Let
n be its number of states.

2.2 By the pigeonhole principle, there must be two different prefixes, xj and xk that go
to the same state, q

2.3 So δ∗(q, yj) must be accepting and non-accepting. ⇒⇐



Another approach: the Pumping Lemma
Use whichever approach you prefer. We’ll ask you to prove non-regularity, but won’t force you to use one
approach or the other.

Let L be a regular language. Then there exists n ∈ N, such that for every x ∈ L where
|x | ≥ n, x satisfies the following property:

I ∃y , v ,w ∈ Σ∗, x = uvw ∧ v 6= ε ∧ |uv | ≤ n, and uvkw ∈ L for all k ∈ N

i.e.

If L is regular, then every sufficiently long string in L contains a (non-empty) part that
can be repeated (“pumped”) any number of times, to keep getting more strings in L.
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Pumping Lemma proof sketch
The pigeonhole principle returns



Using Pumping Lemma to prove non-regularity: example

WTS: PAL = {x ∈ {0, 1}∗ | x is a palindrome} is non-regular.
Assume, for sake of contradiction, that PAL is regular. Then the Pumping Lemma
applies for some value n ∈ N.


