Recipe: DFA correctness

A recipe for proving that $\mathcal{L}(M) = L$ for some DFA M and language L

- 1. Define **state invariants** for each of *M*'s states
 - ▶ i.e. any given string x reaches state q if and only if x has property _____
- 2. Define predicate P(x) which asserts that string x agrees with your invariants
- 3. Use structural induction to prove $\forall x \in \Sigma^*, P(x)$
 - 3.1 Basis: $P(\varepsilon)$
 - 3.2 Inductive step. Assume P(x) for some x, and show P(xa) holds, for arbitrary $a \in \Sigma$.
 - Proof will generally be by cases. Need to consider a case for each symbol a ∈ Σ, and for each possible condition on x (i.e. each possible state reached by x)
 - Equivalent to showing that each transition in M respects the invariants
- 4. Observe that state invariants for accepting states ($F \subseteq Q$) match the definition of L