
CSC236 winter 2020, week 10: Finite automata
Recommended reading: Chapter 7 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

March 16, 2020

http://www.cs.toronto.edu/~colin/236/W20/


Important reading

http://www.cs.toronto.edu/~colin/236/W20/last3weeks/

http://www.cs.toronto.edu/~colin/236/W20/last3weeks/


Supplemental reading/viewing

I Vassos course notes, Chapter 7

I David Liu course notes (final chapter, starts pg. 63)

I David Liu also has some excellent YouTube videos on 236 topics

https://www.cs.toronto.edu/~david/courses/csc236_w14/resources/notes.pdf
https://www.youtube.com/channel/UCdJyNBZHz2EtrGUZGKXMBBg/videos


A “purely mechanical process”

It was stated above that ’a function is effectively calculable if its values can
be found by some purely mechanical process’. We may take this statement
literally, understanding by a purely mechanical process one which could be
carried out by a machine. It is possible to give a mathematical description, in
a certain normal form, of the structures of these machines.

(Alan Turing, 1939)



We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions q1, q2, . . . qR
which will be called “m-configurations”. The machine is supplied with a
“tape” (the analogue of paper) running through it, and divided into sections
(called “squares”) each capable of bearing a “symbol”. At any moment there
is just one square, say the r-th, bearing the symbol G(r) which is “in the
machine”. We may call this square the “scanned square ”. The symbol on
the scanned square may be called the “scanned symbol”. The “scanned
symbol” is the only one of which the machine is, so to speak, “directly
aware”. However, by altering its m-configuration the machine can effectively
remember some of the symbols which it has “seen” (scanned) previously.
The possible behaviour of the machine at any moment is determined by the
m-configuration qn and the scanned symbol G(r). This pair qn, G(r) will be
called the ” configuration”: thus the configuration determines the possible
behaviour of the machine.



In some of the configurations in which the scanned square is blank (i.e. bears
no symbol) the machine writes down a new symbol on the scanned square: in
other configurations it erases the scanned symbol. The machine may also
change the square which is being scanned, but only by shifting it one place to
right or left. In addition to any of these operations the m-configuration may
be changed. Some of the symbols written down will form the sequence of
figures which is the decimal of the real number which is being computed.
The others are just rough notes to “assist the memory”.

Finite state automata — like Turing machines, but without the “rough notes”



Finite state automata
aka finite state machines, aka deterministic finite state automata, aka DFSAs, DFAs...

Example: A machine accepting ODDA = {s ∈ {a, b}∗ | s has an odd number of a’s}

b b

a

a



Finite state automata
aka finite state machines, aka deterministic finite state automata, aka DFSAs, DFAs...

Example: A machine accepting ODDA = {s ∈ {a, b}∗ | s has an odd number of a’s}

b b

a

a



Anatomy of a state machine



Another example: BIN

Recall from last lecture, BIN, the language of binary numbers (with no redundant
leading zeros)



Convention: implicit dead states

When drawing state diagrams, if we don’t draw a transition for symbol a from state q,
it’s assumed to go to a dead state (a non-accepting state from which there is no
escape).



Your turn: UNIFORM

UNIFORM = {s ∈ {a, b}∗ | s consists of non-zero repetitions of a single symbol}.



Formal definition

A DFSA M is a quintuple, M = (Q,Σ, δ, s,F )

Q finite set of states

Σ finite alphabet

δ : Q × Σ→ Q the transition function

s ∈ Q start state

F ⊆ Q set of accepting states



The transition function, δ

δ : Q × Σ→ Q
δ(qn, a) answers the question “where do we go if we’re in state qn and we see the
symbol a?”



The extended transition function, δ∗

δ∗ : Q × Σ∗ → Q.
δ∗(qn, x) answers the question “where do we end up if we start from state qn and
process all the symbols in string x?”
A string x ∈ Σ∗ is accepted by FSA M iff δ∗(s, x) ∈ F .
L(D) is the language containing the strings accepted by FSA M.



Proving correctness of automata
cf. 7.3.3 in Vassos notes

WTS: L(D) = UNIFORM
In other words, WTS the following predicate holds ∀x ∈ {a, b}∗:
P(x) : D accepts x ⇐⇒ x is of the form ak or bk for some k > 0.



Strengthening our predicate

P(x) : δ∗(s, x) =


q0 if x = ε

qa if x = ak , for some k > 0

qb if x = bk , for some k > 0

qr otherwise (i.e. x contains a’s and b’s)



Non-determinism – motivation

Design a DFA that accepts strings in {a, b}∗ where the second-last symbol is a



The non-deterministic way



From DFA to NFA

Two new features:

1. A state q can have multiple transitions when it sees symbol a
I Instead of mapping to a specific state, δ (and δ∗) map to sets of states

2. ε transitions — we can have arrows between states labelled with the empty
string, ε. These can happen ‘spontaneously’

One change to formal definition:

I (previously) δ : Q × Σ→ Q
I (NFA) δ : Q × (Σ ∪ {ε})→ P(Q)

I Where P(Q) denotes the powerset of Q — the set of all subsets. Also written 2Q .



A use for ε transitions

Let M1 and M2 be arbitrary automata. Construct an NFA that accepts
L(M1) ∪ L(M2).



A use for ε transitions

Let M1 and M2 be arbitrary automata. Construct an NFA that accepts
L(M1) ∪ L(M2).



Life in a non-deterministic world

An NFA accepts a string x if F ∩ δ∗(s, x) 6= ∅.
Take your choice of intuition:

I The NFA tries all possible paths at once

I The NFA ‘magically’ knows the right path to take (if one exists)

(Don’t confuse non-determinism with stochasticity. The machine isn’t rolling dice.)


