
CSC236 tutorial exercises, Week #8

sample solutions

For each of the algorithms in questions 1-3, prove termination. If proving termination requires a loop

invariant, you may state it without proof. (Though you should be con�dent that your invariant actually

holds, and comfortable with how it could be proved, if necessary.)

1.

1 def ssum(A):

2 """ Pre: A is a list of non -negative ints

3 Post: return the sum of A

4 WARNING: A may be irrerversibly altered!

5 """

6 i = 0

7 s = 0

8 while i < len(A):

9 if A[i] == 0:

10 i += 1

11 else:

12 s += 1

13 A[i] -= 1

14 return s

Solution:

At the end of a given iteration j, let

� �j be the sum of elements in Aj

� mj be �j + (len(Aj)� ij) (this will be my loop measure)

I claim the following as loop invariants for any iteration j:

� �j 2 N.

� ij 2 N

� ij � len(A)

It follows that mj 2 N.

Furthermore, the sequence m0;m1; : : : is decreasing. To see why, observe by the code that based on

the condition checked on line 9, exactly one of the following happens in each iteration:

� i is increased

1



� � is decreased

In either case, m decreases.

2.

1 def binsearch(A, x):

2 """ Pre: A is a sorted list of numbers. x is a number.

3 Post: return i such that A[i] = x, or -1 if x is

4 not an element of A.

5 """

6 lo = 0

7 hi = len(A) -1

8 while lo <= hi:

9 m = lo + (hi - lo) // 2

10 mid = A[m]

11 if mid == x:

12 return m

13 elif mid < x:

14 lo = m + 1

15 else:

16 hi = m - 1

17 return -1

Solution:

In this answer I will assume the invariant hij ; loj 2 N. I will also assume the invariant loj � hij + 1

Lemma 1. For every iteration j > 0, loj�1 � mj � hij�1

Proof. By the loop condition, loj�1 � hij�1.

It follows that (hij�1 � loj�1) // 2 is non-negative, which means that loj�1 � mj .

To see why the other inequality holds, observe that hij�1 = loj�1 + (hij�1 � loj�1). It follows that

loj�1 + (hij�1 � loj�1) // 2 � hij�1, since dividing the second term by 2 makes it no larger.

(Note: It would also have been acceptable to simply treat the above lemma as another assumed loop

invariant, rather than proving it.)

For a given iteration j, de�ne loop measure qj = (hij � loj) + 1. It follows from the previous lemma

that qj decreases with each iteration, since (if the loop doesn't exit early), either hi is decreased, or lo

is increased. Either action decreases qj .

That qj 2 N follows from the invariants I assumed initially.

3.

1 def perambulate(A):

2 """ Pre: A is a non -empty list of non -negative ints

3 """

4 seen = []

5 curr = A[0]

6 i = 0

7 while curr not in seen:

8 i = (i + curr) % len(A)

9 seen.append(curr)

2



10 curr = A[i]

11 return curr

Solution:

For each iteration j, de�ne mj = len(A)� len(seenj). It is clear that this decreases with each iteration,

since we always increase the length of seen on line 9.

For sake of contradiction, assume there is some iteration j such that mj < 0. I will use the invariant

that seenj contains only elements from A. In this scenario, it follows from the pigeonhole principle

that seenj contains at least one duplicate element x. Consider the iteration k+ 1 in which x was last

appended to seen. Then currk = x, and seenk is a list containing at least one instance of x. But in

order for a k+1th iteration to execute, the loop condition required that currk = x was not an element

of seenk, a contradiction. Therefore, by contradiction, mj � 0 for all j.

Thus m0;m1; : : : is a decreasing sequence of natural numbers, and the loop exits.

Note: Once again, we could have replaced some of the argument above with another assumed loop

invariant, such as that seenj contains no duplicate elements. A proof of this invariant would use the

same line of reasoning as the above.

4. Identify the logical aw in the following \proof" of termination of the function mean.

1 def mean(a, b):

2 """ Pre: a and b are ints , a < b

3 Post: return the arithmetic mean of a and b

4 """

5 while a != b:

6 a += 1

7 b -= 1

8 return a

Proof of termination De�ne loop measure mj = bj � aj .

mj 2 N, since a < b, by the precondition.

It remains to show thatm decreases with each iteration. For an arbitrary iteration j > 0,mj = mj�1�2

(since we increase a by 1 and decrease b by 1).

Thus hm0;m1; : : :i is a decreasing sequence of natural numbers, and therefore �nite, so mean terminates.

Solution:

The second line of the proof is not valid. The precondition only applies to a0 and b0, the initial values

of a and b. It ensures that m0 2 N, but when we modify a and b inside the loop, we might reach a

situation where aj > bj . In fact, this happens for any inputs with an odd di�erence. A call such as

mean(2, 3) will loop in�nitely.

3


