
CSC236 tutorial exercises, Week #7

sample solutions

1. For a given string s, we'll say that s0 is a top-level parenthesized substring (`tlps') of s i� the following

conditions are met:

i. s0 is a substring of s

ii. s0 is of the form (q), where q is a (possibly empty) string with balanced parentheses

iii. there does not exist any longer string, s00, such that s0 is contained within s00 and s00 satis�es the

above 2 conditions

For example, the string s = `((hello))hi((a)(b)(c))' has two tlps's: `((hello))' and `((a)(b)(c))'.

On the other hand

� `(a)' is not a tlps, because it is contained within the tlps `((a)(b)(c))'

� `((hello))hi' is not a tlps, because it is not enclosed in parentheses

� s itself is not a tlps because the parentheses in `(hello))hi((a)(b)(c)' are not balanced

1 def extract_tlps(s):

2 """ Pre: s is a string , and its parentheses are balanced.

3 Post: Return a list of all the tlps’s in s

4

5 >>> extract_tlps(’sorry (not sorry) ’)

6 [’(not sorry) ’]

7 >>> extract_tlps (’((hello))hi((a)(b)(c))’)

8 [’((hello))’, ’((a)(b)(c))’]

9 """

10 R = []

11 l = 0

12 par = ’’

13 i = 0

14 while i < len(s):

15 c = s[i]

16 if c == ’(’:

17 l += 1

18 if l > 0:

19 par += c

20 if c == ’)’:

21 l -= 1

22 if l == 0:

23 R.append(par)

24 par = ’’

25 i += 1

26 return R

1

(a) Devise a loop invariant for this function which is su�cient to prove partial correctness. Do not

attempt to prove the invariant.1

Solution:

At the end of each iteration j, Rj contains every tlps of s which is contained within s[: ij].

Remark: If we were being very careful, we might also add the invariant \ij is an integer", since

the slice expression s[: ij] is not well-de�ned otherwise.

(b) Assume the invariant you wrote in part (a) is true, and use it to prove the partial correctness of

extract tlps (i.e. if extract tlps(s) terminates, then the postcondition is satis�ed).

Solution:

Let s be an arbitrary string satisfying the precondition, and assume that the while loop exits

after some iteration, call it j.

By our invariant, Rj contains every tlps in s[: ij]. By the loop condition, we know that ij � len(s),

which means that s[: ij] = s. So our return value Rj contains every tlps in s, as required by the

postcondition. �

(c) In the above parts, you may have found that a simple invariant was su�cient to prove partial

correctness. However, proving that invariant directly by induction may prove very di�cult. In

this case, we need to strengthen the induction, by adding additional invariants which help us

prove the main one. Here are two useful examples:

i. lj is the `left surplus' of parj , i.e. the count of left parentheses in parj minus the count of

right parentheses in parj

ii. lj is the left surplus of s[: ij].

Use induction to prove these invariants.

Hint: You may use assume that any pre�x of a string with balanced parentheses has at least

as many left parentheses as right parentheses. (We proved essentially this fact in lecture when

talking about structural induction.)

Solution:

l0 = 0, and par0 and s[: i0] are both empty strings, so our invariant trivially holds before the �rst

iteration.

Assume the invariant holds at the end of some iteration j.

First, observe that lj � 0, by 1(c)ii, since the precondition says that s has balanced parentheses,

and any pre�x of a string with balanced parentheses must have a non-negative left surplus.

I will prove the invariant holds at the end of the j + 1th iteration (assuming it occurs), by cases

according to the value of cj+1 = s[ij], i.e. the character inspected in this iteration.

Case 1: cj+1 = (. By line 17, lj+1 = lj + 1. This is matched by a corresponding increase in the

left parenthesis count of the two strings we're interested in:

� ij+1 = ij + 1, so the pre�x of s referred to in 1(c)ii is grown by one character, which is cj+1,

a left paren.

� parj+1 = parj +(, by line 19. The if is satis�ed, since lj � 0, meaning that lj+1 = lj +1 > 0.

1Even though you don't need to prove it, your invariant should be true. For example, \Rj contains all tlps's in s" or

\ij = ij + 1" are not appropriate invariants, even though either would technically be su�cient for proving partial correctness.

2

Case 2: cj+1 =). This implies lj > 0. If lj were allowed to be zero, it would mean that s[: ij+1]

has more right parens than left, contradicting the precondition. Since lj > 0, we add the right

paren to par by line 19. Then we enter the `if' body after line 20. And set lj+1 = lj�1, satisfying

1(c)ii. From here we must consider two subcases:

Subcase 2a: lj = 1. Then lj+1 = 0 and parj+1 is the empty string, satisfying 1(c)i.

Subcase 2b: lj > 1. Then parj+1 is parj+) (by line 19), which agrees with the decrease in l,

satisfying 1(c)i.

Case 3: cj+1 is a non-parenthesis character. Then lj+1 = lj , and the left-surplus of both strings

under consideration (parj+1 and s[: ij+1] is unchanged from the jth iteration, satisfying the

invariants.

(d) Is the invariant from part (c) enough to prove your original invariant from part (a)? Brainstorm

additional invariants which could be used to complete the proof. You do not need to prove your

�nal set of invariants (the full proof would be fairly long), but you should have some idea of what

the overall structure of the proof would look like.

Solution:

In addition to our invariant from part (a) and the one we proved in part (c), we add the following

invariant:

� if there exists a tlps s0 = s[a : b] such that a < ij and Rj does not contain s0, then parj =

s0[a : i]. Otherwise, parj is empty.

– Less formally, this says that if we're currently somewhere in the middle of a tlps, then

parj contains the pre�x of that tlps that we've seen so far.

Note: The explanation that follows is not a required part of the solution for part (d), but it's

presented for the interest of the reader.

This should be enough to prove our main invariant from (a). To do so, we basically need to show

that we append to R i� we're at the end of a tlps. Here's a brief proof sketch:

By the code, we can show that the append is reached in the j + 1th iteration i� lj = 1, and

s[ij] = `)`. By 1(c)i, this means parj is non-empty and has 1 more left paren than right. By our

new invariant, parj is a pre�x of a tlps. Thus, by �nding a right paren in the j + 1th iteration,

we complete the tlps, and append it to Rj .

What about proving the new invariant? There are a few cases to consider. Here's one natural

breakdown:

� If s[ij] is the start of a tlps, then by de�nition it must be a left paren. So by the code,

we append it to parj (which must be empty by the IH, since by de�nition, tlps's are non-

overlapping), as required.

� If s[ij] is the last character of a tlps, then we can argue that line 24 is reached and parj+1
is the empty string (which is correct, since there is now no tlps with a starting point < ij+1
which is not in Rj+1).

� If s[ij] is somewhere in the middle of a tlps, then we append it to parj , since lj > 0, by part

ii. of the de�nition of tlps.

� If s[ij] is not part of a tlps, we need to show that parj+1 = parj = the empty string. This

follows from the `main' (part (a)) invariant in our inductive hypothesis, plus the fact that all

tlps's have length at least 2 (by part ii. of their de�nition).

Note: Your invariant should bear some resemblance to the one given above, though it's possible

to present the same idea in di�erent terms. For example, here's a more whimsical formulation:

parj is the longest string which is

3

� a su�x of s[: ij]

� a pre�x of a tlps

2. Consider the function bitcount de�ned below:

1 def bitcount(n):

2 """ Pre: n is a positive int.

3 Post: return the number of digits in the binary representation of n

4 """

5 i = 1

6 while n > 1:

7 n = n//2

8 i += 1

9 return i

Prove that bitcount is partially correct with respect to the speci�cation in the docstring. You will

need to prove an appropriate loop invariant, then show that it implies the postcondition given that

the loop exits.

You may assume that for n 2 N+, n has k bits i� 2k�1 is the largest power of 2 which is less than or

equal to n. Or, equivalently, k = blognc+ 1.

Solution:

Before proving this function correct, we should try to convince ourselves that it's correct, and develop

some intuition for how it works. The gist of it seems to be that we repeatedly divide n by 2 (rounding

down), until we get to 1. Then we return the number of divisions we did plus one. This sounds closely

related to the base-2 logarithm of n, which makes sense.

Looking at the binary representation of n as the program executes, I see a pattern. For example, let

n = 13 = 11012. The sequence of values taken on by n, starting from n0 is: 11012; 1102; 112; 12. Each

iteration of the loop truncates the rightmost digit in n's binary representation. (If you're familiar with

a C-like programming language, you may recognize this as a `right shift'.) I will prove a somewhat

weaker version of this in my invariant.

For convenience, let b(n) denote the number of bits in the binary representation of n.

Lemma 0.1. For all n > 1, b(n // 2) = b(n)� 1

Proof. Let n 2 N be greater than 1 with some number of bits k. By the fact given in the question,

2k�1 is the largest power of 2 � n. Thus we can write n as 2k�1 + r, where r < 2k�1.

Thus

n // 2 = (2k�1 + r) // 2

= 2k�2 + r // 2 # k � 1 > 0, since n > 1

Note that r // 2 � r=2 < 2k�2. Thus, 2k�2 is the largest power of 2 less than or equal to n // 2, meaning

n // 2 has k � 1 bits.

We are now ready to prove the following loop invariant.

Lemma 0.2 (Loop invariant). At the end of each iteration j,

(a) b(nj) = b(n0)� ij + 1

4

(b) nj 2 N
+

Proof. i0 = 1, so b(n0) = b(n0) � i0 + 1. Also, n0 2 N
+ by the precondition. So the invariant is

satis�ed before the �rst iteration.

Assume the invariant holds after the jth iteration, and assume it runs for a j + 1th.

nj+1 = nj // 2, which, by lemma 0.1, has one less bit than nj , since nj > 1 by the loop condition.

ij+1 = ij + 1. So 2a is preserved, since we subtract 1 from each side of the equation.

Furthermore, since nj > 1 by the loop condition, nj+1 = nj // 2 2 N
+, as required by 2b.

Corollary 0.2.1 (Partial correctness). Given a valid input, if bitcount terminates, it satis�es the

postcondition.

Proof. Assume the while loop exits after some iteration j. By the loop condition, nj � 1, and by 2b

nj 2 N
+, thus nj = 1.

From 2a, it follows that

b(nj) = b(n0)� ij + 1

b(1) = b(n0)� ij + 1

1 = b(n0)� ij + 1

b(n0) = ij

So returning ij satis�es the postcondition.

5

