
CSC236 tutorial exercises, Week #7

best before Friday afternoon

1. For a given string s, we'll say that s0 is a top-level parenthesized substring (`tlps') of s i� the following

conditions are met:

i. s0 is a substring of s

ii. s0 is of the form (q), where q is a (possibly empty) string with balanced parentheses

iii. there does not exist any longer string, s00, such that s0 is contained within s00 and s00 satis�es the

above 2 conditions

For example, the string s = `((hello))hi((a)(b)(c))' has two tlps's: `((hello))' and `((a)(b)(c))'.

On the other hand

� `(a)' is not a tlps, because it is contained within the tlps `((a)(b)(c))'

� `((hello))hi' is not a tlps, because it is not enclosed in parentheses

� s itself is not a tlps because the parentheses in `(hello))hi((a)(b)(c)' are not balanced

1 def extract_tlps(s):

2 """ Pre: s is a string , and its parentheses are balanced.

3 Post: Return a list of all the tlps’s in s

4

5 >>> extract_tlps(’sorry (not sorry) ’)

6 [’(not sorry) ’]

7 >>> extract_tlps (’((hello))hi((a)(b)(c))’)

8 [’(( hello))’, ’((a)(b)(c))’]

9 """

10 R = []

11 l = 0

12 par = ’’

13 i = 0

14 while i < len(s):

15 c = s[i]

16 if c == ’(’:

17 l += 1

18 if l > 0:

19 par += c

20 if c == ’)’:

21 l -= 1

22 if l == 0:

23 R.append(par)

24 par = ’’

25 i += 1

26 return R
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(a) Devise a loop invariant for this function which is su�cient to prove partial correctness. Do not

attempt to prove the invariant.1

(b) Assume the invariant you wrote in part (a) is true, and use it to prove the partial correctness of

extract tlps (i.e. if extract tlps(s) terminates, then the postcondition is satis�ed).

(c) In the above parts, you may have found that a simple invariant was su�cient to prove partial

correctness. However, proving that invariant directly by induction may prove very di�cult. In

this case, we need to strengthen the induction, by adding additional invariants which help us

prove the main one. Here are two useful examples:

i. lj is the `left surplus' of parj , i.e. the count of left parentheses in parj minus the count of

right parentheses in parj

ii. lj is the left surplus of s[: ij ].

Use induction to prove these invariants.

Hint: You may use assume that any pre�x of a string with balanced parentheses has at least

as many left parentheses as right parentheses. (We proved essentially this fact in lecture when

talking about structural induction.)

(d) Is the invariant from part (c) enough to prove your original invariant from part (a)? Brainstorm

additional invariants which could be used to complete the proof. You do not need to prove your

�nal set of invariants (the full proof would be fairly long), but you should have some idea of what

the overall structure of the proof would look like.

2. Consider the function bitcount de�ned below:

1 def bitcount(n):

2 """ Pre: n is a positive int.

3 Post: return the number of digits in the binary representation of n

4 """

5 i = 1

6 while n > 1:

7 n = n//2

8 i += 1

9 return i

Prove that bitcount is partially correct with respect to the speci�cation in the docstring. You will

need to prove an appropriate loop invariant, then show that it implies the postcondition given that

the loop exits.

You may assume that for n 2 N+, n has k bits i� 2k�1 is the largest power of 2 which is less than or

equal to n. Or, equivalently, k = blognc+ 1.

1Even though you don't need to prove it, your invariant should be true. For example, \Rj contains all tlps's in s" or

\ij = ij + 1" are not appropriate invariants, even though either would technically be su�cient for proving partial correctness.
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