
CSC236 tutorial exercises, Week #6

sample solutions

1. Recall the function subset sum which we saw in lecture on week 4:

1 def subset_sum(A, target):

2 if len(A) == 0:

3 return target == 0

4 return subset_sum(A[1:], target) or subset_sum(A[1:], target -A[0])

Informally, subset sum is supposed to return a boolean corresponding to whether or not there exists a

subset of A, a list of integers, which adds up to the given integer target. For example, subset sum([4,

2, -1], 3) should return True, and subset sum([4, 2, -1], 0) should return False.*

*Note: As several people noticed, subset sum([4, 2, -1], 0) actually returns True! This

example was an oversight on my part. It is intended behaviour that we return True whenever

target is 0, because we consider the empty sum to be equal to zero. The answers below are

written with this interpretation in mind.

If we (not unreasonably) used an interpretation where the expected return value of

subset sum([4, 2, -1], 0) is indeed False, we would need to make the following modi�-

cations to the answers below:

� Our postcondition would be almost identical, but would require the stipulation that the

set I must be non-empty.

� The same precondition would work. Adding the constraint that A be non-empty would

be acceptable in this case, but not necessary.

� For part (d), we might just throw up our hands and say that no proof is possible, since

the given code doesn't meet our speci�cations. Alternatively, we could consider a `�xed'

version of the code, where our recursion bottoms out at length 1, and line 3 returns

target == A[0]. The correctness proof for this function would be almost identical to

the sample solution, just with a di�erent base case.

(a) Devise a precondition for subset sum. (It should be no more restrictive than necessary.)

Solution:

Precondition: A is a list containing only integers. target is an integer.

Note that we are not requiring A to be non-empty. We are saying that if it does contain any

elements, they should all be ints.
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(b) Consider the following proposed postcondition for subset sum:

Postcondition: subset sum(A, target) returns True if there exists a set of indices, I, such that
P

i2I

A[i] = target.

Explain why this postcondition does not adequately describe the intended behaviour of subset sum.

Hint: think about other algorithms that would also satisfy this postcondition.

Solution:

The postcondition above doesn't say anything about our algorithm's behaviour if there isn't such

a set I. Technically, we could easily write a function that satis�es this postcondition, by just

always returning True.

(c) Devise a better postcondition for subset sum. Your postcondition should be precise and unam-

biguous. (The failed postcondition from part b may be useful as a starting point.)

Solution:

Postcondition: subset sum(A, target) returns True if there exists a set of indices, I, such that
P

i2I

A[i] = target, and returns False otherwise.

There are other ways this idea could be phrased, for example by replacing the \if" with \if and

only if". (This leaves it implicit that, if the function doesn't return True, it returns False.)

(d) Use simple induction to prove that subset sum is correct with respect to the precondition and

postcondition you de�ned above.

Solution:

De�ne P (n): \for any list A having length n and satisfying the precondition, and for any target

2 Z, subset sum(A, target) terminates and satis�es the postcondition."

Base Case:Let A be a list of length 0 which satis�es the precondition, and let target be an

arbitrary integer. A contains only one subset of elements, the empty set, which sums to 0. So

the postcondition says that we should return True if and only if target is equal to 0, which is

what our function does. So P (0).

Inductive Step:Let n 2 N and assume P (n). Let A be a list of length n+ 1 satisfying the precon-

dition, and let target be some integer.

To begin, note that n + 1 > 0, so our code reaches line 4. Also, A[1:] is a list of length n

satisfying the precondition, so by our IH, the recursive calls on line 4 return `correct' values (i.e.

values satisfying our postcondition).

We'll consider two cases:

Case 1: there exists a set of indices, I, such that
P

i2I

A[i] = target. In this case, the postcondition

requires that we return True.

Case 1a: 0 2 I. Then
P

i2I�f0g

A[i] = target�A[0]. By our IH, this means that subset sum(A[1:],

target-A[0]) will return True, and we thus return True on line 4.

Case 1a: 0 =2 I. Then
P

i2I

A[i] = target. By our IH, this means that subset sum(A[1:], target)

will return True, and we thus return True on line 4.

In either sub-case, we return True, as required by the postcondition.

Case 2: there does not exist a set of indices, I, such that
P

i2I

A[i] = target. In this case, the

postcondition requires that we return False.
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Then by our IH, subset sum(A[1:], target) will return False, since this case implies that there

is also no subset of A[1:] that sums to target. Similarly, subset sum(A[1:], target-A[0])

will return False by the IH, since the existence of a subset of A[1:] summing to that value would

contradict the condition of our case.

So on line 4, we return False, as required.

In both cases, the behaviour of our function on A matches the postcondition. So for all A of

length n+1 which meet the precondition, our algorithm terminates and meets the postcondition.

i.e. P (n+ 1) holds. �

2. Prove that the following function terminates on all valid inputs.

1 def mystery(n):

2 """Pre: n is a positive integer

3 Post: ???

4 """

5 if n == 1:

6 return 1

7 elif n % 2 == 1:

8 return 1 + mystery(n+1)

9 else:

10 return 1 + mystery(n//2)

Solution:

Assume, for the sake of deriving a contradiction, that mystery does not terminate on all inputs.

Consider the set

S = fn 2 N j mystery(n) does not terminateg

By our assumption, S is non-empty, so by the Principle of Well-Ordering, it must have a minimum

element, call it j.

Case 1: j = 1. By lines 5-6, mystery(1) terminates, so this is a contradiction.

Case 2: j > 1 ^ j is even. By lines 9-10, a call to mystery(j) recursively calls mystery(j // 2). Since

j > 1, j // 2 < j. If this recursive call doesn't terminate, then j // 2 should belong to S, but this would

contradict the minimality of j. Contradiction.

Case 2: j > 1 ^ j is odd. By lines 7-8, mystery will call mystery(j+1) in this case. Since j is odd, j+1

must be even, meaning that the recursive call which reach line 10 and call mystery((j+1) // 2). j is at

least 3, meaning that (j+1) // 2 < j. Again, if mystery(j) fails to terminate, then mystery((j+1) // 2)

must not terminate, but this contradicts the minimality of j.

In each case, we are led to a contradiction, so our initial assumption was faulty. The function mystery

must terminate on all inputs.

Remark: As usual with PWO proofs, this could be reframed as a complete induction argument without

too much modi�cation. Which one you �nd more natural is just a matter of taste.
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