
CSC236 tutorial exercises, Week #4

sample solutions

1. Consider the following code implementing binary search (you should be familiar with this algorithm

from CSC148):

1 def binsearch(A, x):

2 """ Return i such that A[i] = x.

3 PRECONDITION: A is a non -empty sorted list , and x is an element of A.

4 """

5 if len(A) == 1:

6 return 0

7 mid = len(A) // 2

8 if A[mid] > x:

9 return binsearch(A[:mid], x)

10 else:

11 return binsearch(A[mid:], x) + mid

(a) Devise a recurrence T (n) that describes the worst-case number of steps taken by binsearch on

input of size n (i.e. having len(A) = n). As usual, you may assume that n is a `nice' size so

that you can avoid 
oors and ceilings when dividing the input up into sublists (i.e., in this case,

n = 2k for some k 2 N).

Solution:

T (n) =

(
1 if n = 1

1 + T (n=2) if n > 1

Remark: For simplicity, I've chosen to count any constant amount of work as `1'. If I wanted to

be more fastidious, I might have written the n > 1 case as something like 7 + T (n=2) to try to

account for each individual operation (i.e. each comparison, arithmetic operation, slice, etc.) but

this isn't necessary. I could also have simply used a variable such as c to represent the constant.

Any of these choices are �ne - they will have some e�ect on the closed form you �nd in part (b),

though the big-� complexity will be the same regardless.

(b) Use the technique of unwinding (aka repeated substitution) to �nd a closed form for T (n). You

are welcome to use either of the techniques shown in lecture - either repeatedly expanding an

algebraic expression, or drawing out a tree of recursive calls, and reasoning about the total height,

and number of steps taken at each level. Verify your closed form by testing it on a small value of

n. (You don't need to prove it.)

1



Solution:

T (n) = 1 + T (n=2)

= 1 + (1 + T (n=4))

= 1 + (1 + (1 + T (n=8)))

: : :

= 1 + (1 + (1 + : : : T (n=n)))

I observe that the inputs to T follow the progression n; n=2; n=4; n=8:::n=n, and that every time

we expand the call to T , we add a 1 to the sum. Based on this pattern, I claim that the �nal

sum will have logn+ 1 terms, making T (n) = 1 � (logn+ 1) = logn+ 1. This closed form gives

T (2) = 1 + 1 = 2, which agrees with the recursive de�nition of T (2) = 1 + T (1) = 1 + 1.

Alternative: If you instead drew a call tree for binsearch, it should have looked like the one we

drew in lecture for fact - i.e. just a straight line with a single node at each level. Each node

would have a value of 1, since the non-recursive work is constant. Observing that the nodes follow

a progression of dealing with input sizes n; n=2; n=4 : : : n=n, I surmise its height is logn, meaning

it has logn+ 1 levels. Giving me a closed form of T (n) = logn+ 1.

2. Consider the following recurrence de�ned over N+ (the positive naturals):

T (n) =

(
1 if n = 1

n+ 4T (n=4) if n > 1

Use induction to prove the closed form T (n) = n log4 n+ n holds for all powers of 4.

(I suggest using complete induction with the predicate P (n) : n is a power of 4 =) T (n) = n log4 n+

n, but it can also be done using simple induction, if you do the induction on a di�erent variable.)

Solution:

Complete induction proof using the predicate P (n) de�ned above.

Let n 2 N+. Assume 8k 2 N; k < n =) P (k)

Case 0: n is not a power of 4 Then P (n) is vacuously true.

Case 1: n = 1 Then, by de�nition, T (n) = 1 = 0 + 1 = log4 1 + 1. So P (n) holds.

Case 2: n is a power of 4 and n > 1 Then n=4 is also a power of 4 and is less than n, so by P (n=4) we

can write:

T (n) = n+ 4T (n=4)

= n+ 4(
n

4
log4

n

4
+

n

4
)

= n+ n log4
n

4
+ n

= n+ n(log4 n� 1) + n # By log identity

= n log4 n+ n

As required. Thus P (n).

Alternative: Using a change of variable, this could also be proven using simple induction with the

predicate P (j) : T (4j) = 4j � j + 4j

2


