
CSC236 tutorial exercises, Week #3

sample solutions

1. In this question, you will prove that every natural number has a unique remainder mod 10.

(a) Use the principle of well-ordering to prove

8n 2 N; 9q; r 2 N; n = 10q + r ^ r < 10

Suggestion: Start by considering the set fr 2 N j 9q 2 N; n = 10q + rg.

Solution:

Let n be an arbitrary natural number. Consider the set

R = fr 2 N j 9q 2 N; n = 10q + rg

R is a subset of N and is non-empty, since it must contain n, since n = 10 � 0 + n. So, by the

principle of well-ordering, R has a minimum element, call it r0. And let q0 2 N be such that

n = 10q0 + r0

For the sake of deriving a contradiction, assume that r0 � 10. Thus we can write r0 as 10 + k for

some k 2 N. Thus we have

n = 10q0 + r0

= 10q0 + (10 + k)

= 10(q0 + 1) + k

We have produced a number k < r0 which belongs to R, contradicting our choice of r0 as the

minimum element. So, by contradiction, we know r0 < 10, as required.

(b) [Optional] Now that you've shown that q and r exist, prove that they are unique. i.e. for any

given n 2 N, there is only one pair of values q; r satisfying n = 10q + r ^ 0 � r < 10.

Solution:

Let n 2 N, and let q1; r1 2 N, such that

n = 10q1 + r1 ^ r1 < 10

For the sake of contradiction, let q2; r2 2 N, such that (q2; r2) 6= (q1; r1) and

n = 10q2 + r2 ^ r2 < 10
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Case 1: q1 = q2: Then, rearranging, we have

n� 10q1 = r1

n� 10q1 = r2

With r1 6= r2, a contradiction.

Case 2: q1 6= q2: Without loss of generality, assume q1 < q2. Let k 2 N
+; q2 = q1 + k. Then:

n = 10(q1 + k) + r2

n = 10q1 + 10k + r2

n� 10q1 = 10k + r2

r1 = 10k + r2

Since k > 0, we have r1 � 10, a contradiction.

In both cases, our assumption of multiple satisfying (q; r) pairs led to a contradiction. Therefore,

(q; r) are uniquely de�ned for any given n.

2. De�ne the set of expressions E as the smallest set such that:

(a) x; y; z 2 E .

(b) If e1; e2 2 E , then so are (e1 + e2) and (e1 � e2).

De�ne s1(e) : Number of symbols from f(; );+;�g in e, counting duplicates.

De�ne s2(e) : Number of symbols from fx; y; zg in e, counting duplicates.

Use structural induction to prove that for all e 2 E , s1(e) = 3(s2(e)� 1).

Solution:

Proof by structural induction. De�ne P (e) : s1(e) = 3(s2(e)� 1).

Base Case:Let e 2 fx; y; zg. Then e has zero symbols from the set f(; );+;�g and one symbol (itself)

from fx; y; zg. So s1(e) = 0 = 3(0) = 3(1� 1) = 3(s2(e)� 1), so P (e) holds.

Inductive Step:Let e1; e2 2 E . Assume P (e1) and P (e2). Let @ 2 f+;�g. I will show that P ((e1@e2))

follows.

s1((e1@e2)) = 3 + s1(e1) + s1(e2) # added two parentheses and @

= 3 + 3(s2(e1)� 1) + 3(s2(e2)� 1) # by P (e1) and P (e2)

= 3((s2(e1) + s2(e2)� 1) = 3(s2((e1@e2))� 1)

# ((e1@e2)) has same basis symbols as e1 and e2 combined

So P ((e1@e2)) follows �

3. De�ne the set of non-empty full binary trees, T , as the smallest set such that:

(a) Any single node is an element of T .

(b) If t1; t2 2 T , n is a node that belongs to neither t1 nor t2, and t1; t2 have no nodes in common,

then n together with edges to the root nodes t1 and t2 is also an element of T .
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Use structural induction to prove that any non-empty full binary tree has exactly one more leaf than

internal nodes.

Solution:

Proof by structural induction. De�ne P (t) : t has exactly one more leaf than internal nodes.

Base Case:Let t 2 T be a single node. Then t is itself a leaf, and has no internal nodes, and 1 is exactly

one more than 0. So P (t) holds.

Inductive Step:Let t1; t2 2 T . Assume P (t1) and P (t2), and that t1 and t2 have no nodes in common.

Let n be an arbitrary node that belongs to neither t1 nor t2, and t be the tree formed by n with edges

to the roots of t1 and t2. I will show that P (t) follows, i.e. that t has exactly one more leaf than

internal nodes.

Denote the number of internal nodes and leaf nodes of t1 by i1 and l1, respectively. Similarly, denote

the number of internal nodes and leaf nodes of t2 by i2 and l2, respectively. Notice that adding edges

from n to the root nodes of these two trees does not change the status of any internal or leaf nodes,

it simply adds one new internal node. Denote the number of internal and leaf nodes of t by it and lt

respectively, and we have:

it = 1 + i1 + i2 = 1 + l1 � 1 + l2 � 1 # by P (t1) and P (t2)

= (l1 + l2)� 1 = lt � 1 # t's leaves are exactly those of t1 and t2 combined

So P (t) follows �
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