
CSC236 tutorial exercises, Week #12

sample solutions

1. Consider the language EVENEVEN = fx 2 f0; 1g� j x contains an even number of 0's and 1'sg. Below

is a 4-state DFSA that accepts EVENEVEN:

q0

q1

q2

q3

0

1

1

0

0

1

1

0

Prove that it is impossible to construct a DFSA for this language with fewer states than this.

Solution:

Consider the four pre�xes x1 = ", x2 = 1, x3 = 0, and x4 = 01. We also de�ne an identical sequence

of su�xes, y1 = x1; y2 = x2, etc.

By inspection, we can see that the concatenation xjyk is in EVENEVEN if and only if j = k.

Suppose for sake of contradiction thatM is a DFSA with less than 4 states which accepts EVENEVEN.

Then by the pigeonhole principle, there exists a state q such that ��(s; xj) = ��(s; xk) = q, where j 6= k.

Because xjyj 2 EVENEVEN, ��(q; yj) must be accepting. But this means we also accept xkyj which

is known not to be in the language, a contradiction. So it is impossible for M to have fewer than 4

states.

2. Consider the language SPLIT consisting of strings of the form x#y where x; y 2 f0; 1g� and jxj = jyj.

Prove that SPLIT is not regular. You may use the pumping lemma, or directly apply the pigeonhole

principle.

Solution:

Suppose M is a DFSA that accepts SPLIT. By the pigeonhole principle, there exist distinct n;m 2 N

such that ��(s; 0n) = ��(s; 0m) = q for some state q. Since 0n#0n 2 SPLIT, � �(q;#0n) is an accepting

1



state. But this means we also accept 0m#0n which is not in the language, a contradiction. So SPLIT

is not accepted by any DFSA, and is therefore non-regular.

Pumping lemma alternative: Assume SPLIT is regular, and let n be the pumping length. Consider the

string x = 0n#0n. The pumping lemma says that there is some segment of the �rst n characters (which

must be of the form 0k for some 0 < k � n) which we can repeat any number of times. However,

0n+k#0n is not in SPLIT, for k > 0, a contradiction.

3. Which of the following languages are regular? (You don't need to provide proofs, though you should

think about how you would prove each answer if you had to.)

(a) DOUBLEZEROS: strings in f0; 1g� having twice as many zeros as ones

Solution:

Non-regular. 1n needs to go to a di�erent state for every value of n, because each such string has

a di�erent su�x (namely 02n) that puts it in the language.

(b) PHONES: the language of 7-digit telephone numbers, e.g. `555-5555'.

Solution:

Regular. We could show this by explicitly constructing a DFSA or RE that matches this language.

Here's an RE that does the job: ddd� dddd, where d expands to the expression (0 + 1 + 2 + 3 +

4 + 5 + 6 + 7 + 8 + 9). (We might need to tweak this slightly to match the nuances of North

American phone numbers. For example, 0 and 1 aren't allowed as the �rst digit.)

We could also observe that PHONES is clearly �nite (it's a subset of the �nite language f0; 1; 2;

3; 4; 5; 6; 7; 8; 9;�g8), and use the fact that all �nite languages are regular.

(c) PAN: the language of `pangrams', i.e. strings that contain at least one of every letter from a-z.

e.g. `the quick brown fox jumps over the lazy dog'.

Solution:

Regular. Constructing a full RE or FSA for this language would be tedious, but it's easy to do

for a small alphabet like fa; bg, and it's clear the same technique could be extended to arbitrarily

large alphabets.

(d) PYTHON: the language of valid Python programs. e.g. `print(1+1)' is in the language, but

`print(1+)' is not, because it raises a SyntaxError.

Solution:

Non-regular. This may seem intuitively reasonable given the complexity of the syntax of Python,

but proving non-regularity is di�cult for the same reason. A helpful trick here is to focus on

a narrow subset of Python expressions. For example, ((())) is a valid Python expression, but if

we remove any one parenthesis, it becomes invalid. We can use a pumping lemma/pigeonhole

principle argument to show that no FSA can handle this class of expressions.

(e) SMALLPRIMES: strings of the form 1n where n is a prime number less than 1000.

Solution:

Regular. Without the size restriction, this would not be a regular language, but because of the

limit of 1000, this language is �nite and therefore regular. We can represent this language by an

RE like (11+111+11111+1111111+ : : :) (and it's unlikely we can get much more compact than

this).

2


