
CSC236 tutorial exercises, Week #11

sample solutions

1. Recall that ; is a valid (but seldom used) symbol in our regular expression syntax. Construct an NFSA

M for the regular expression R = ;a, using the procedure described in section 7.6.1 of the course notes.

Does the result make sense with the meaning of R?

Solution:

We begin by constructing separate FSAs for the sub-expressions ; and a. The following FSA M1 =

(Q1;�; �1; s1; F1) is equivalent to ;:

q0

The following FSA M2 = (Q2;�; �2; s2; F2) is equivalent to the RE a:

q1 q2
a

(Both of these are given by �gure 7.20 in the course notes.)

To construct an NFSA that accepts the concatenation of these languages, we use the construction from

�gure 7.18 of the course notes. This entails connecting all the accepting states F1 of M1 with s2, the

start state of M2, via epsilon transitions, and making them non-accepting in the new FSA. However,

in this case F1 = fg, so our new FSA M is just:

q0 q1 q2
a

This may look weird, but no part of our formal de�nition of FSAs forbids the existence of a state

machine like this, where we have an `island' of states not reachable from the starting state.

It is clear by inspection that L(M) = ;, since no string can reach the accepting state q2. And this

agrees with the meaning of the RE ;a. Recall that, in general, when concatenating two regular

expressions S and T , the resulting language is the concatenation of the languages of those REs, i.e.

L(ST ) = L(S)L(T ) = fst 2 �� j s 2 L(S); t 2 L(T )g.

Since L(;) is the empty language, L(;)L(a) is also empty, agreeing with our FSA.

2. Several of the closure results from this week's readings become a bit simpler to prove if we assume

that our FSA has only one accepting state. In this question, you will prove that this is something we

can assume without loss of generality.

1



(a) Show that for any FSA M , there exists an NFSA M 0 having only one accepting state, such that

L(M) = L(M 0). (You may use graphics to illustrate your construction, as in the Vassos notes, or

describe it in words.)

Solution:

Let M = (Q;�; �; s; F ) be an arbitrary DFSA (we can assume determinism without loss of gener-

ality, because we know that any NFSA can be converted to a DFSA using the subset construction).

We construct an equivalent NFSA M 0 with a single accepting state. M 0 will be identical to M

except for the following changes:

� We add a new state qf

� qf is the only accepting state

� For each previously accepting state q 2 F , we add an "-transition from q to qf .

(b) Is it also true that there always exists an equivalent DFSA with only one accepting state? If yes,

give a constructive procedure for creating such a DFSA. If not, �nd a counterexample (and try

to argue why it has no equivalent DFSA with a single accepting state).

Solution:

Consider the following DFSA, equivalent to the RE (b+ a�):

q0

qa

qb

a

b

a

Suppose for contradiction there exists an equivalent DFSA M = (Q;�; �; s; fqfg) with a single

accepting state, qf . It follows that ��(s; a) = ��(s; b) = qf , since the strings a and b must both

be accepted. What is �(qf ; a)? If it is qf , then we inappropriately accept the string ba. If it's a

non-accepting state, then we inappropriately reject the string aa. Either way, M is not equivalent

to our original DFSA.

This argument uses the concept of indistinguishable pre�xes, which will be introduced in more

detail next week.

3. For a language L, de�ne Trim(L) to be the language resulting from truncating the last symbol from

each string in L. Formally Trim(L) = fx 2 �� j 9w 2 L; a 2 �; w = xag. In this question, you will

show that the set of languages recognized by FSAs is closed under `trimming'.

(a) Modify the following DFSA M to form a new FSA M 0 such that L(M 0) = Trim(L(M)). (You

may use non-determinism if you wish.)

2



q0 q1 q2 q3
0

1

1

0

1

0

0

1

Solution:

L(M) is the language of strings ending in 011 (you may recognize this FSA from last week's

quiz), so Trim(L(M)) is the set of strings ending in 01. The only necessary change is ipping the

accepting state from q3 to q2:

q0 q1 q2 q3
0

1

1

0

1

0

0

1

(b) Repeat the procedure above for the following DFSA:

q0

q1 q2 q3

b,c

a

a

b,c

b

c

a

a,b,c

Solution:

This DFSA accepts all strings in fa; b; cg� not containing the substring aab. The result of trimming

this language is not so obvious. In fact, it turns out that Trim(L(M)) = L(M), so we need to

make no modi�cations to the DFSA in this case.

There are two ways to convince ourselves of this. We can think in terms of the mutual inclusion

of the languages. If we start with a string not containing aab and truncate its last symbol, then

the result clearly also doesn't contain aab, so Trim(L(M)) � L(M). But it's also the case that

for any string not containing aab, that string is also an element of the trimmed language, because

we can always append an a to get another string in L(M), so L(M) � Trim(L(M)). Thus

Trim(L(M)) = L(M).

We can also argue this based on the operation of the DFSA. By inspection, a string that reaches

any of the accepting states can also reach an accepting state by following one additional transition.

(c) Describe a general procedure for constructing an FSA that accepts Trim(L(M)) given an arbitrary

DFSA M .

3



Solution:

Our derived FSA M 0 will be identical to M except that a state will be accepting in M 0 if and only

if there is a transition from that state to one ofM 's accepting states. In other words, letting F and

F 0 be the accepting states of M and M 0, respectively, q 2 F 0 () 9a 2 �; qf 2 F; �(q; a) = qf .

4


