CSC236 tutorial exercises, Week #10 best before Friday afternoon

- 1. Let BOOKENDS = $\{x \in \{a, b\}^* \mid |x| > 0 \land x[0] = x[-1]\}$, i.e. the language of non-empty strings where the first symbol matches the last symbol. Design (i.e. draw) a DFA that accepts BOOKENDS.
- 2. Consider the following formal definition of a DFA, $M = (Q, \Sigma, \delta, s, F)$, where
 - $Q = \{q_0, q_1, q_2\}$
 - $\Sigma = \{a, b\}$
 - $s = q_0$
 - $F = \{q_2\}$

And the transition function δ is given by the following table (with states on the left, and symbols on top):

δ	а	b
q_0	q_1	q_0
q_1	q_2	q_1
q_2	q_2	q_2

- (a) Give a short English description of $\mathcal{L}(M)$, the language accepted by M.
- (b) Complete the following predicate definition by defining invariants for each of M's three states. Your invariants should imply the correctness of your description from part (a). (Recall that δ^* is the extended transition function):

$$P(x): \delta^*(s,x) = egin{cases} q_0 & ext{if } @ \ q_1 & ext{if } @ \ q_2 & ext{if } @ \ ext{$$

The conditions on x that you fill in should be exhaustive (so that the "if"s are equivalent to "iff").

- (c) Use induction to prove $\forall x \in \{a, b\}^*, P(x)$.
- 3. Suppose we have a DFA, $M = (Q, \Sigma = \{0, 1\}, \delta, s, F)$, such that for every state $q \in Q$, $\delta(q, 0) = \delta(q, 1)$. What can we conclude about $\mathcal{L}(M)$, the language accepted by M?