CSC236 Winter 2020 Assignment #3: formal languages Solutions

 grep and many other software implementations of regular expressions include the question mark, '?', as a special symbol which marks the preceding expression as optional. For example, the regular expression dog(gy)? matches the strings 'dog' and 'doggy'.

Let \mathcal{REQ} be an extension of our familiar language of regular expressions with the question mark operator added. We will formally define the set \mathcal{REQ} by extending the definition of \mathcal{RE} (definition 7.6 in the Vassos course notes) to add the following induction step: If $R \in \mathcal{REQ}$, then $(R)? \in \mathcal{REQ}$.

(a) Definition 7.7 in the Vassos course notes is a recursive definition of the language denoted by a regular expression $R \in \mathcal{RE}$. Give an extended version of this definition for \mathcal{REQ} .

Solution:

We extend definition 7.7 by adding the following to the induction step: $\mathcal{L}((S)?) = \{\varepsilon\} \cup \mathcal{L}(S)$.

(b) Show that \mathcal{REQ} has no more expressive power than \mathcal{RE} , by proving the following statement: $\forall R_1 \in \mathcal{REQ}, \exists R_2 \in \mathcal{RE}, \mathcal{L}(R_2) = \mathcal{L}(R_1)$. Your proof should use structural induction.

Solution:

Define P(R): $\exists R_2 \in \mathcal{RE}, \mathcal{L}(R) = \mathcal{L}(R_2).$

I will prove $\forall R \in \mathcal{REQ}, P(R)$ by structural induction.

The base cases of \emptyset , ε , and $a \in \Sigma$ are trivially true, since these expressions denote the same languages in \mathcal{RE} as they do in \mathcal{REQ} . (i.e. the equivalent expression is identical.)

Let $S, T \in \mathcal{REQ}$, and assume $P(S) \wedge P(T)$. Therefore, there exist REs in \mathcal{RE} , call them R_1, R_2 , such that $\mathcal{L}(R_1) = \mathcal{L}(S)$ and $\mathcal{L}(R_2) = \mathcal{L}(T)$. Therefore $(R_1 + R_2) \in \mathcal{RE}$ is equivalent to $(S + T) \in \mathcal{REQ}$. So P((S + T)) holds. Similar arguments hold for concatenation and Kleene star. Lastly, consider the RE (S)?. We know from part (a) that $\mathcal{L}((S)?) = \{\varepsilon\} \cup \mathcal{L}(S)$.

The RE $(R_1 + \varepsilon) \in RE$ denotes the same language, by the definition of +. So P((S)?) holds, concluding the induction.

2. Given a DFSA $M = (Q, \Sigma, \delta, s, F)$, we will say that M is frumious if the following is true:

 $orall a \in \Sigma, \exists q_1 \in Q, orall q_2 \in Q, \delta(q_2,a) = q_1$

(a) Give a short English description of what it means for a DFSA to be frumious.

Solution:

A DFSA is frumious if and only if its current state is determined entirely by the last character it saw (assuming it has seen a non-zero number of characters).

(b) If M is frumious, what can we say about the language accepted by M, L(M)?

Solution:

Let $S_a = \{x \in \Sigma^* \mid \exists y \in \Sigma^*, x = ya\}$ for arbitrary $a \in \Sigma$. Then for every $a \in \Sigma$, either $S_a \subseteq \mathcal{L}(M)$, or $S_a \cap \mathcal{L}(M) = \emptyset$.

In other words, for every symbol a, M either accepts all strings ending in a, or none of them.

(c) How many distinct languages over the alphabet {0, 1} can be recognized by frumious DFSAs? Briefly explain your answer.

Solution:

Eight languages. We can recognize each of the following four languages:

- The empty language
- Strings ending with 0
- Strings ending with 1
- Strings ending with 0 or 1

And for each of these four, we can also recognize the union of that language with $\{\varepsilon\}$.

3. Suppose L is an infinite regular language. Does it follow that there exists a finite language S such that $L = SS^*$? If yes, prove it. If no, find a counterexample language L and prove that it cannot be formed this way.

Solution:

A counterexample is the language $L = \{a\}\{b\}^*$. Suppose for sake of contradiction that S is a finite language such that $SS^* = L$.

ab is a string in L, so it must be in SS^* . Let $x \in S, y \in S^*$ such that $x \circ y = ab$.

Case 1: $x = \epsilon$. Then $\epsilon \in S$, and therefore $\epsilon \in SS^*$. But the empty string is not in L. $\Rightarrow \Leftarrow$

Case 2: x = a, y = b. It follows that $\{a, b\} \subseteq S$. But then $ba \in SS^*$, but ba is not a string in L. $\Rightarrow \Leftarrow$

Case 3: $x = ab, y = \varepsilon$. Then $ab \in S$. It follows that $abab \in SS^*$, but abab is not in L. $\Rightarrow \Leftarrow$

These are the only concatenations that can form ab, and in each case, we are led to a contradiction, so no such S exists.