
CSC236 Winter 2020

Assignment #2: recurrences & correctness

Solutions

1. In lecture, we used the following recurrence to represent the steps taken

by an implementation of mergesort on a list of size n:

T0(n) =

(
1 if n = 1

n+ 2T0(n=2) if n > 1

(This recurrence assumes n is a power of 2, hence the absence of
oor and

ceiling. You may maintain this assumption throughout this question.)

In reality, some implementations of divide-and-conquer algorithms stop

the recursion before the input size becomes trivial. For example, a pro-

grammer may �nd that their mergesort implementation ends up running

a bit faster if they stop recursing when the list size is less than 10, sorting

these small lists using selection sort.

Consider the following recurrence, which models this scenario:

T (n) =

(
c if n � k

n+ 2T (n=2) if n > k

k; c 2 N+ are �xed constants, where k represents the largest problem size

which is solved non-recursively, and c represents the cost of solving these

small problems.

(a) Use unwinding1 to �nd a closed form for T (n) when n � k. (You do

not need to prove that your closed form is correct, but it should be

clear how you arrived at it.)

Solution:

I will assume that n is a power of 2 and n � k.

1 Logistical note: If you wish to use tree diagrams for the unwinding portions of this ques-
tion (parts (a) and (c)), you are welcome to include scanned hand-drawn images, or diagrams
generated using other software. See this chapter of the LATEXWikibook for information on in-
cluding images in LATEXdocuments. You may also describe the solution tree without explicitly
drawing it (a table may be helpful).

1

https://en.wikibooks.org/wiki/LaTeX/Importing_Graphics

Let a = blog kc, and k0 = 2a. In other words, k0 is the largest power

of 2 which is � k.

T (n) = n+ 2T (n=2)

= n+ 2(n=2 + 2T (n=4))

= n+ 2(n=2 + 2(n=4 + 2T (n=8)

= n+ n+ n+ 8T (n=8)

= n+ n+ n+ : : : (n=k0)T (
n

n=k0
)

We repeatedly divide the input size n by 2 until the recursion bot-

toms out when we reach a number� k. By construction, that number

will be k0. Thus the �nal term in this sum (i.e. the leaf layer of the

solution tree) should involve T (k0). Based on the pattern that calls of

the form T (n=q) are multiplied by q, and since T (k0) can be rewritten

as T (n
n=k0

), I hypothesize that the �nal term will be (n=k0)T (k0).

The number of `n' terms in this sum will correspond to the number

of times I must divide n by 2 before I reach k0. By de�nition, this is

log(n=k0). This yields the summation:

T (n) = (

log(n=k0)�1X
i=0

n) + (n=k0)T (k0)

= n log(n=k0) + (n=k0)T (k0)

= n log(n=k0) + (n=k0)c # By de�nition, T (k0) = c

= n(logn� log k0) + (n=k0)c # Log identity

Remark: While not necessary to include as part of your solution, as

usual, it's a salutary practice to verify our closed form on some small

values of n to ensure we don't have any errors (particularly o�-by-

one errors). As a sanity check, consider the case where k = 9 and

n = 32. The recursive de�nition of T (n) gives:

T (32) = 32 + 2T (16)

= 32 + 2(16 + 2T (8))

= 32 + 32 + 4c

= 64 + 4c

For our closed form, we get a = blog 9c = 3, k0 = 2a = 8. Thus we

2

have

T (32) = 32(log 32� log 8) + (32=8)c

= 32(5� 3) + 4c

= 64 + 4c

So our recursive de�nition and closed form are in agreement in this

case.

(b) What is the big-� complexity of T (n)? Does it depend on k? Brie
y

justify your answer (no proof required). You may not assume n � k

for this part. Do not use the master theorem.

Solution:

According to the de�nition of big-�, it su�ces to show that the

asymptotic behaviour of T (n) has the desired form beyond some

starting point n0 of my choosing. By choosing n0 � k, it's clear that

the closed form I found in part (a) will have the same big-� as T (n).

Starting from the closed form from (a) and doing some rewriting, we

get

T (n) = n(logn� log k0) + (n=k0)c

= n logn� n log k0 +
c

k0
n

= n logn+ (
c

k0
� log k0)n

Since k is a �xed constant, k0 = 2blog kc is also constant. Since c is

also a �xed constant, (c
k0
� log k0) is a constant, call it q0. So

T (n) = n logn+ qn

The growth of n logn dominates n (i.e. n logn 2
(n) ^ n logn =2

O(n)), so regardless of whether the constant q is positive, negative, or

zero, qn is a lower-order term, which can be dropped. Thus T (n) 2

�(n logn).

(c) Rather than assigning a �xed cost to the n � k case, it may be more

realistic to use a function of n, since there are a range of input sizes

which are handled non-recursively. Since selection sort is a �(n2)

algorithm, we'll de�ne our new recurrence T 0(n) to be

T 0(n) =

(
n2 if n � k

n+ 2T 0(n=2) if n > k

3

Find a closed form for T 0(n) for n � k, and show how you got there.

Rather than unwinding from scratch, you may �nd it simpler to build

on your work from part (a).

Solution:

My unwinding in part (a) assumed that n was a power of 2 no less

than k. For such n, the expansion of T (n) will never involve terms of

the form T (q) where q < k0 (the largest power of 2 � k). Informally,

starting from some power of 2 greater than k0 and repeatedly dividing

by 2, we must eventually reach k0 - it's impossible to `skip over' it.

This means that I can modify my closed form for T (n) to make a

closed form for T 0(n) by replacing all instances of c with k02, giving

T 0(n) = n logn+ (
k02

k0
� log k0)n

= n logn+ (k0 � log k0)n

Remark: Many answers to this question fell into the pitfall of treating

the amount of work at the leaf layer as n2, where n was the original

size of the input. This is not correct. For example, if k = 4, then

T 0(8) = 8 + 2T 0(4) = 8 + 2� 16, rather than 8 + 2� 64.

(d) Is T 0(n) 2 �(T (n))? Why or why not? Brie
y justify your answer.

As in part (b), you may not assume n � k. Do not use the master

theorem.

Solution:

Yes. T 0(n) is also of the form

T 0(n) = n logn+ qn

Where q is a �xed constant (in this case, k � log k). So by the same

reasoning as before, T 0(n) 2 �(n logn) = �(T (n)). (Also, the same

reasoning holds for why I'm justi�ed in extrapolating from a closed

form which required n to be no smaller than k.)

2. Our boss has tasked us with writing a program to �nd the unique maxi-

mum of a non-empty list of positive integers. If there is no unique maxi-

mum, our program should signal this by returning a negative number. For

example, on input [5, 2, 1, 2], our algorithm should return 5. Given

[2, 1, 2], we may return -1, -2, -236, or any other negative number.

Below is our �rst attempt to solve this problem.2

2 You can download the code for this question from http://www.cs.toronto.edu/~colin/

236/W20/assignments/umax.py

4

http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py
http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1

9 elif head > tmax:

10 return head

11 else:

12 return tmax

(a) Based on the informal speci�cation above, write precise pre- and

post-conditions for umax. Your postcondition should use symbolic

notation rather than restating the English description above (\�nd

the unique maximum..."). The following postcondition was used in

lecture for the function max, which found the (not necessarily unique)

maximum of a list. It may be a useful starting point:

max(A) = x where (9j 2 N; A[j] = x)^(8i 2 N; i < len(A) =) A[i] � x)

You may �nd it helpful to formally de�ne `helper' functions or pred-

icates, as is done in question 3.

Solution:

Pre(A): A is a non-empty list of positive natural numbers.

For convenience, we will de�ne the predicate U(A; x), which infor-

mally corresponds to the statement \x is the unique maximum of list

A":

U(A; x) : 9j 2 N; A[j] = x ^ 8i 2 N; (i < len(A) ^ i 6= j) =) A[i] <

A[j]

And also the predicate HU(A), which can be understood as \A has

a unique maximum":

HU(A) : 9z 2 N; U(A; z)

With these helpers de�ned, we will now de�ne our postcondition (as

a predicate over lists):

Post(A): umax(A) terminates and returns a number x, such that

(HU(A) =) U(A; x)) ^ (:HU(A) =) x < 0)

Remark: The following formulation is equivalent and shorter (though

perhaps less intuitive): U(A; x) _ x < 0

(b) The given Python code above has a bug. Demonstrate the bug by

�nding a value of A which meets the precondition, where umax mis-

behaves. For the value of A that you �nd, you should state the

5

expected behaviour (according to your postcondition) and how it

di�ers from the function's actual behaviour on that input.

Solution:

Consider A = [1; 2; 2]. According to the postcondition, umax should

return a negative number for this input, since it has no unique

maximum. In reality, umax returns 1, because the recursive call

umax([2; 2]) returns -1, then the check on line 7 fails, and we reach

line 10, returning the head of the original list, which is 1.

(c) Consider our second draft of the function umax below:

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1 * head

9 elif head > abs(tmax):

10 return head

11 else:

12 return tmax

Prove that this function is correct with respect to the speci�cations

you devised in part (a).

Solution:

De�ne

M(A; x) : 9j 2 N; A[j] = x ^ 8i 2 N; i < len(A) =) A[i] � j

C(A): umax(A) terminates and returns a number x, such that (HU(A) =) U(A; x))^

(:HU(A) =) M(A;�x))

P (n): For any list A of length n, Pre(A) =) C(A)

I will use induction to prove 8n 2 N+; P (n). Note that this implies

the correctness of umax with respect to the earlier pre and postcon-

ditions, because C(A) is stronger than Post(A). To see why, note

that A may only contain positive integers, so M(A;�x) =) x < 0.

Base Case:Let A = [x] be a single-element list, with x 2 N+. Then

x is the unique max of A, and by lines 2-3, umax(A) returns x. So

C(A) is satis�ed. Thus P (1).

Inductive Step:Let n 2 N+ and assume P (n). Let A be a list of length

n+ 1 such that Pre(A) is satis�ed.

By the IH, C(tail) holds, since tail is of length n and satis�es the

precondition.

6

Case 1: HU(tail). Then tmax is the unique maximum of tail. If

head = tmax, then A has no unique maximum, and head is the non-

unique maximum. So we should return -head, which we do by lines

7-8. If head is greater than the maximum of the tail, then head is

the unique max, and we should return it, which we do by line 9-10.

Otherwise, tmax is the unique max of A, and we should return it,

which we do by lines 11-12.

Case 2: :HU(tail). Then by C(tail), M(tail;�tmax), i.e. tmax is

the negation of the non-unique max of the tail. Since head is positive,

we cannot reach line 8. If head is greater than the absolute value of

tmax, then it is the unique max of A, and we should return it, which

we do by lines 9-10. Otherwise, we have :HU(A) ^M(A;�tmax),

so we should return tmax, which we do by lines 11-12.

In every case C(A) holds. Thus P (n+ 1).

3. The function maj takes as input a list of natural numbers and, if the

list has a majority element (one that appears more often than all other

elements combined), it returns that element.3 For example maj([1, 3,

3, 2, 3]) returns 3.4

1 def R(A):

2 B = []

3 i = 0

4 while i < len(A):

5 a = A[i]

6 b = A[(i+1) % len(A)]

7 if a == b:

8 B.append(a)

9 i += 1

10 return B

11

12 def maj(A):

13 prev = A

14 curr = R(A)

15 while len(curr) != len(prev):

16 prev = curr

17 curr = R(curr)

18 return curr [0]

Prove that maj is correct.

3Note that the function's behaviour is unde�ned if the input list does not have a majority
element. i.e. the presence of a majority element is a precondition of maj.

4 You can download the code for this question from http://www.cs.toronto.edu/~colin/

236/W20/assignments/maj.py

7

http://www.cs.toronto.edu/~colin/236/W20/assignments/maj.py
http://www.cs.toronto.edu/~colin/236/W20/assignments/maj.py

Solution:

Prelude: This sample proof is more detailed and pedantic than what we

will expect when marking this question. Some of the results (particularly

in section 3) are `obvious' enough that they could be safely stated without

proof, or given just a brief justi�cation of a sentence or two.

1 Overview

Our proof of the correctness of maj follows from three major results:

� We prove that R's output is never larger than its input. This entails

maj's termination.

� We prove that R stops shrinking its input only if that input is uni-

form. This means that when maj's loop exits, the list curr is uniform.

� We prove that R conserves `advantage' (see de�nition below). A

consequence of this is that if m is a majority element of A, it will

also be majority element of R(A), R(R(A)), etc. Therefore, when

the loop exits, curr contains only the majority element.

The �rst two results are proven in section 3. The last is proven in section

4. In all three cases, our proofs are really in terms of the functions COUNT

and PAIRS, and we use the following theorem which was given as part of

the question to tie the results back to the function R:

Theorem 1.1 (R \correctness"). Given any A 2 N�, R(A) terminates and

returns a list of natural numbers B such that 8x 2 N;COUNT(B; x) =

PAIRS(A; x)

Finally, in section 5, we present a correctness proof for maj using these

results.

2 Definitions

We will use N� to denote the set of lists of natural numbers. Each of the

functions below takes as its �rst argument a list A 2 N�.

COUNT(A; x): jfi 2 N j A[i] = xgj

i.e. the number of occurrences of x in list A

SUCC(A; i) :

(
0 if i = len(A)� 1

i+ 1 if i < len(A)� 1

8

i.e. the `next' index in list A after index i, treating A as

a circular list (with the last index `wrapping around' back to

index 0). Not de�ned if i � len(A).

PAIRS(A; x): jfi 2 N j A[i] = A[SUCC(A; i)] = xgj

i.e. the number of [x; x] pairs in list A, again treating A as

circular

ADVANTAGE(A; x): COUNT(A; x)� len(A)=2

MAJORITY(A; x): ADVANTAGE(A; x) > 0

i.e. x is the majority element of A

3 Pair counts

In this section, we present a number of results relating PAIRS(A; x) to

COUNT(A; x). In particular, we will show that PAIRS(A; x) � COUNT(A; x),

and that the inequality is strict except in the speci�c case where A is uni-

form. This will have immediate applications to function R, via 1.1.

Lemma 3.1. COUNT(A; x)�PAIRS(A; x) = jfi 2 N j A[i] = x^A[SUCC(A; i)] 6=

xgj for all A; x.

Proof. Let A be an arbitrary list, and let x 2 N De�ne

Ic = fi 2 N j A[i] = xg

Ip = fi 2 N j A[i] = A[SUCC(A; i)] = xg

Note that, by de�nition, COUNT(A; x) = jIcj, and PAIRS(A; x) = jIpj.

So

COUNT(A; x)� PAIRS(A; x) = jIcj � jIpj

It is clear by inspection that Ip � Ic, since the conditions for inclusion in

the former set are stronger than the latter. Thus

COUNT(A; x)� PAIRS(A; x) = jIc � Ipj

= jfi 2 N j A[i] = x ^ A[SUCC(A; i)] 6= xgj

Corollary 3.1.1. PAIRS(A; x) � COUNT(A; x) for all A; x.

Theorem 3.2 (R outputs are no larger than inputs). 8A 2 N�; len(R(A)) �

len(A)

9

Proof. This follows from 1.1 (which says that R(A) contains an x for

every pair of x's in A), combined with 3.1.1 (which says that the number

of pairs of x's in a list is no more than the number of x's in that list), plus

the observation that the length of a list is equal to the sum of the counts

of all elements of the list.

Lemma 3.3. For k > 0, COUNT(A; x) = PAIRS(A; x) = k i� A is uni-

form and consists of k = len(A) repetitions of element x.

Proof. Consider the case when COUNT(A; x) = PAIRS(A; x) = k, k > 0,

for some A; x. By 3.1, this occurs i�

S = fi 2 N j A[i] = x ^ A[SUCC(A; i)] 6= xg = ;

In other words, 8i 2 N; A[i] = x =) A[SUCC(A; i)] = x.

Since we know there is at least one index i such that A[i] = x, this sets

up an induction-like domino e�ect that implies 8i 2 N; A[i] = x.

The opposite direction also works. If A is non-empty and uniformly con-

sists of element x, it clearly follows that the set S above is empty, since

there is no index j such that A[j] 6= x.

Theorem 3.4 (R �xed points). For any A 2 N
�, if len(R(A)) = len(A),

then A is uniform (i.e. all elements are equal).

Proof. By 1.1, each element x appears in R(A) PAIRS(A; x) times. If

len(R(A)) = len(A), it follows that COUNT(A; x) = PAIRS(A; x) for

every element. By 3.3, this can only happen when A is uniform.

4 R conserves advantage

In this section, we prove a result which will form our key loop invariant for

maj. (Note: for the sake of correctness, we only need to show that R pre-

serves majority elements, i.e. MAJORITY(A; x) () MAJORITY(R(A); x).

But I found it more straightforward to prove this stronger result.)

Theorem 4.1 (R conserves advantage). For any A 2 N�;m 2 N,

ADVANTAGE(A;m) � ADVANTAGE(R(A);m)

Proof. By de�nition of ADVANTAGE, the claimed inequality is equiva-

lent to

COUNT(A; x)� len(A)=2 � COUNT(R(A); x)� len(R(A))=2 (1)

10

Which, by 1.1, is equivalent to

COUNT(A; x)� len(A)=2 � PAIRS(A; x)� len(R(A))=2 (2)

I will prove this by induction on the number of non-x elements. De�ne

P (k): for any A; x, where len(A) � COUNT(A; x) = k, inequality (2)

holds.

It su�ces to show that 8k 2 N; P (k). I will do so by simple induction.

Base Case:Suppose k = 0, and consider some corresponding A and x. Then

A uniformly consists of element x. If A is empty, then by inspection, both

sides of the inequality are 0. If A is non-empty, then by 3.3, PAIRS(A; x) =

COUNT(A; x) = len(A) = len(R(A)). In either case, LHS = RHS. This

veri�es P (0).

Inductive Step:Assume P (k) for arbitrary k 2 N.

Let A; x be a list and element such that len(A)� COUNT(A; x) = k + 1.

Consider the list A0 formed by removing an arbitrary non-x element (call

it y) from A. By the IH, we know:

COUNT(A0; x)� len(A0)=2 � PAIRS(A0; x)� len(R(A0))=2 (3)

Now consider how each side of this inequality is a�ected when we reinsert

the deleted element at its original position. (i.e. as we replace A0 with A

in the LHS and RHS of the inequality).

The count of x is the same in both cases, and len(A) = len(A0)+1, so the

LHS has a net decrease of :5.

The RHS may change in one of three ways, depending on the neighbours

of the reinserted element y:

� If y is inserted between two x's, then PAIRS(A; x) and len(R(A)) are

each 1 less than their A0 counterpart, resulting in a net decrease of .5

for the RHS. (Note: in all other cases, PAIRS(A0; x) = PAIRS(A; x).)

� If y is inserted to the left or right of another y, a new pair is created,

and len(R(A)) = len(R(A0)) + 1, resulting in a net decrease of .5 for

the RHS.

� If y is inserted between two identical elements (which are neither x

nor y), a pair is destroyed, and len(R(A)) = len(R(A0)) � 1. The

RHS is increased by .5.

� Otherwise, if y is inserted between a pair of elements (a; b) such that

a 6= b, and neither is equal to y, then the total number of pairs stays

the same. The RHS is unchanged.

11

In every case, the RHS is decreased by no more than .5, so the inequality

is preserved, i.e.

COUNT(A; x)� len(A)=2 � PAIRS(A; x)� len(R(A))=2 (4)

Therefore, by simple induction, 8k 2 N; P (k).

5 maj correctness

Lemma 5.1 (maj loop invariant). For an input array A 2 N
� having a

majority element m, the following invariant holds at the end of each

iteration j of maj's while loop:

(a) prevj = currj�1 if j > 0

(b) currj = R(prevj)

(c) ADVANTAGE(A;m) � ADVANTAGE(currj ;m)

(d) currj 2 N
�

Proof. Before the �rst iteration (i.e. when j = 0), we have:

(a) Vacuously true, since j = 0

(b) curr0 = R(A) = R(prev0) (by lines 13-14)

(c) by 4.1, ADVANTAGE(A;m) � ADVANTAGE(R(A);m) = ADVANTAGE(curr0;m)

(d) curr0 = R(A) 2 N�, by 1.1

Assume the invariant holds at the end of some jth iteration, and that a

j + 1th iteration occurs. Then

(a) By line 16, prevj+1 = currj .

(b) By line 17, currj+1 = R(currj). By the above line, R(currj) =

R(prevj+1).

(c) By the IH, ADVANTAGE(A;m) � ADVANTAGE(currj ;m). ADVANTAGE(currj+1;m) =

ADVANTAGE(R(currj);m). By 4.1 R conserves advantage, so ADVANTAGE(R(currj);m) �

ADVANTAGE(currj ;m) � ADVANTAGE(A;m).

(d) currj+1 = R(currj) 2 N
�, by 1.1

Lemma 5.2 (maj termination). For any input A satisfying the precondi-

tion, maj terminates.

12

Proof. We only call subroutine R on lists of natural numbers (A 2 N� by

the precondition, and currj 2 N
� for all j by 5.1), therefore these calls

to R terminate (see Lemma 1.4 in the A2 appendix). Thus it su�ces to

show that the while loop beginning on line 15 does not loop in�nitely.

Consider the quantity len(prevj). By the de�nition of the len function,

this must be a natural number. Furthermore, by 5.1, prevj+1 = currj =

R(prevj).

By 3.2 len(R(A)) � len(A) for any list A. But in order for a j + 1th

iteration to occur, we must have len(currj) 6= len(prevj), by the loop

condition on line 15. Thus len(prevj+1 = currj = R(prevj) is strictly less

than len(prevj).

Therefore, hlen(prev0); len(prev1); len(prev2); : : :i is a decreasing sequence

of natural numbers, and must be �nite, so the loop terminates.

Theorem 5.3 (maj correctness). For any input A satisfying its precondi-

tion, maj terminates and returns the majority element.

Proof. Let A 2 N� be a list having a majority element m, and consider

the execution of maj(A). By 5.2, we will exit the while loop after some

number of iterations (call it j) and reach line 18 and return curr[0].

ADVANTAGE(A;m) > 0, so by invariant 5.1, ADVANTAGE(currj ;m) >

0.

By the while loop condition, when we exit the loop, len(prevj) = len(currj) =

len(R(prevj)) (by 5.1). By 3.4, it follows that curr is uniform. Since

ADVANTAGE(currj ;m) > 0, curr consists entirely of some non-zero num-

ber of repetitions of majority element m. Therefore curr[0], our return

value, is the majority element, as required.

13

	Overview
	Definitions
	Pair counts
	R conserves advantage
	maj correctness

