
CSC236 Winter 2020

Assignment #2: recurrences & correctness

PREVIEW (posted 02/18)

WARNING: This document contains only the �rst 2 questions of assignment 2.

The full assignment will have one additional question. It will be posted at a

later date (during reading week), along with starter .tex source.

1. In lecture, we used the following recurrence to represent the steps taken

by an implementation of mergesort on a list of size n:

T0(n) =

(
1 if n = 1

n+ 2T0(n=2) if n > 1

(This recurrence assumes n is a power of 2, hence the absence of oor and

ceiling. You may maintain this assumption throughout this question.)

In reality, some implementations of divide-and-conquer algorithms stop

the recursion before the input size becomes trivial. For example, a pro-

grammer may �nd that their mergesort implementation ends up running

a bit faster if they stop recursing when the list size is less than 10, sorting

these small lists using selection sort.

Consider the following recurrence, which models this scenario:

T (n) =

(
c if n � k

n+ 2T (n=2) if n > k

k; c 2 N+ are �xed constants, where k represents the largest problem size

which is solved non-recursively, and c represents the cost of solving these

small problems.

(a) Use unwinding1 to �nd a closed form for T (n) when n � k. (You do

not need to prove that your closed form is correct, but it should be

clear how you arrived at it.)

1Logistical note: If you wish to use tree diagrams for the unwinding portions of this question
(parts (a) and (c)), you are welcome to include scanned hand-drawn images, or diagrams
generated using other software. See this chapter of the LATEXWikibook for information on in-
cluding images in LATEXdocuments. You may also describe the solution tree without explicitly
drawing it (a table may be helpful).

1

https://en.wikibooks.org/wiki/LaTeX/Importing_Graphics


(b) What is the big-� complexity of T (n)? Does it depend on k? Briey

justify your answer (no proof required). You may not assume n � k

for this part.

(c) Rather than assigning a �xed cost to the n � k case, it may be more

realistic to use a function of n, since there are a range of input sizes

which are handled non-recursively. Since selection sort is a �(n2)

algorithm, we'll de�ne our new recurrence T 0(n) to be

T 0(n) =

(
n2 if n � k

n+ 2T 0(n=2) if n > k

Find a closed form for T 0(n) for n � k, and show how you got there.

Rather than unwinding from scratch, you may �nd it simpler to build

on your work from part (a).

(d) Is T 0(n) 2 �(T (n))? Why or why not? Briey justify your answer.

As in part (b), you may not assume n � k.

2. Our boss has tasked us with writing a program to �nd the unique maxi-

mum of a non-empty list of positive integers. If there is no unique maxi-

mum, our program should signal this by returning a negative number. For

example, on input [5, 2, 1, 2], our algorithm should return 5. Given

[2, 1, 2], we may return -1, -2, -236, or any other negative number.

Below is our �rst attempt to solve this problem.2

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1

9 elif head > tmax:

10 return head

11 else:

12 return tmax

(a) Based on the informal speci�cation above, write precise pre- and

post-conditions for umax. Your postcondition should use symbolic

notation rather than restating the English description above (\�nd

the unique maximum..."). The following postcondition was used in

2You can download the code for this question from http://www.cs.toronto.edu/~colin/

236/W20/assignments/umax.py

2

http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py
http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py


lecture for the function max, which found the (not necessarily unique)

maximum of a list. It may be a useful starting point:

max(A) = x where (9j 2 N; A[j] = x)^(8i 2 N; i < len(A) =) A[i] � x)

You may �nd it helpful to formally de�ne `helper' functions or pred-

icates, as is done in question 3.3

(b) The given Python code above has a bug. Demonstrate the bug by

�nding a value of A which meets the precondition, where umax mis-

behaves. For the value of A that you �nd, you should state the

expected behaviour (according to your postcondition) and how it

di�ers from the function's actual behaviour on that input.

(c) Consider our second draft of the function umax below:

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1 * head

9 elif head > abs(tmax):

10 return head

11 else:

12 return tmax

Prove that this function is correct with respect to the speci�cations

you devised in part (a).

3To be posted soon!

3


