
CSC236 Winter 2020

Assignment #2: recurrences & correctness

due March 12th, 3 p.m.

Assignments are to be completed individually and typeset in LATEX. The

.tex source �le and rendered pdf should both be uploaded to MarkUs. For

further details, see the course website: http://www.cs.toronto.edu/~colin/

236/W20/assignments/.

1. In lecture, we used the following recurrence to represent the steps taken

by an implementation of mergesort on a list of size n:

T0(n) =

(
1 if n = 1

n+ 2T0(n=2) if n > 1

(This recurrence assumes n is a power of 2, hence the absence of oor and

ceiling. You may maintain this assumption throughout this question.)

In reality, some implementations of divide-and-conquer algorithms stop

the recursion before the input size becomes trivial. For example, a pro-

grammer may �nd that their mergesort implementation ends up running

a bit faster if they stop recursing when the list size is less than 10, sorting

these small lists using selection sort.

Consider the following recurrence, which models this scenario:

T (n) =

(
c if n � k

n+ 2T (n=2) if n > k

k; c 2 N+ are �xed constants, where k represents the largest problem size

which is solved non-recursively, and c represents the cost of solving these

small problems.

(a) Use unwinding1 to �nd a closed form for T (n) when n � k. (You do

1Logistical note: If you wish to use tree diagrams for the unwinding portions of this question
(parts (a) and (c)), you are welcome to include scanned hand-drawn images, or diagrams
generated using other software. See this chapter of the LATEXWikibook for information on in-
cluding images in LATEXdocuments. You may also describe the solution tree without explicitly
drawing it (a table may be helpful).

1

https://markus.teach.cs.toronto.edu/csc236-2020-01/
http://www.cs.toronto.edu/~colin/236/W20/assignments/
http://www.cs.toronto.edu/~colin/236/W20/assignments/
https://en.wikibooks.org/wiki/LaTeX/Importing_Graphics

not need to prove that your closed form is correct, but it should be

clear how you arrived at it.)

(b) What is the big-� complexity of T (n)? Does it depend on k? Briey

justify your answer (no proof required). You may not assume n � k

for this part. Do not use the master theorem.

(c) Rather than assigning a �xed cost to the n � k case, it may be more

realistic to use a function of n, since there are a range of input sizes

which are handled non-recursively. Since selection sort is a �(n2)

algorithm, we'll de�ne our new recurrence T 0(n) to be

T 0(n) =

(
n2 if n � k

n+ 2T 0(n=2) if n > k

Find a closed form for T 0(n) for n � k, and show how you got there.

Rather than unwinding from scratch, you may �nd it simpler to build

on your work from part (a).

(d) Is T 0(n) 2 �(T (n))? Why or why not? Briey justify your answer.

As in part (b), you may not assume n � k. Do not use the master

theorem.

2. Our boss has tasked us with writing a program to �nd the unique maxi-

mum of a non-empty list of positive integers. If there is no unique maxi-

mum, our program should signal this by returning a negative number. For

example, on input [5, 2, 1, 2], our algorithm should return 5. Given

[2, 1, 2], we may return -1, -2, -236, or any other negative number.

Below is our �rst attempt to solve this problem.2

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1

9 elif head > tmax:

10 return head

11 else:

12 return tmax

(a) Based on the informal speci�cation above, write precise pre- and

post-conditions for umax. Your postcondition should use symbolic

2You can download the code for this question from http://www.cs.toronto.edu/~colin/

236/W20/assignments/umax.py

2

http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py
http://www.cs.toronto.edu/~colin/236/W20/assignments/umax.py

notation rather than restating the English description above (\�nd

the unique maximum..."). The following postcondition was used in

lecture for the function max, which found the (not necessarily unique)

maximum of a list. It may be a useful starting point:

max(A) = x where (9j 2 N; A[j] = x)^(8i 2 N; i < len(A) =) A[i] � x)

You may �nd it helpful to formally de�ne `helper' functions or pred-

icates, as is done in question 3.

(b) The given Python code above has a bug. Demonstrate the bug by

�nding a value of A which meets the precondition, where umax mis-

behaves. For the value of A that you �nd, you should state the

expected behaviour (according to your postcondition) and how it

di�ers from the function's actual behaviour on that input.

(c) Consider our second draft of the function umax below:

1 def umax(A):

2 if len(A) == 1:

3 return A[0]

4 head = A[0]

5 tail = A[1:]

6 tmax = umax(tail)

7 if head == tmax:

8 return -1 * head

9 elif head > abs(tmax):

10 return head

11 else:

12 return tmax

Prove that this function is correct with respect to the speci�cations

you devised in part (a).

3. The function maj takes as input a list of natural numbers and, if the

list has a majority element (one that appears more often than all other

elements combined), it returns that element.3 For example maj([1, 3,

3, 2, 3]) returns 3.4

1 def R(A):

2 B = []

3 i = 0

4 while i < len(A):

5 a = A[i]

6 b = A[(i+1) % len(A)]

3Note that the function's behaviour is unde�ned if the input list does not have a majority
element. i.e. the presence of a majority element is a precondition of maj.

4You can download the code for this question from http://www.cs.toronto.edu/~colin/

236/W20/assignments/maj.py

3

http://www.cs.toronto.edu/~colin/236/W20/assignments/maj.py
http://www.cs.toronto.edu/~colin/236/W20/assignments/maj.py

7 if a == b:

8 B.append(a)

9 i += 1

10 return B

11

12 def maj(A):

13 prev = A

14 curr = R(A)

15 while len(curr) != len(prev):

16 prev = curr

17 curr = R(curr)

18 return curr [0]

Prove that maj is correct.

To aid you on your quest, the appendix below contains some de�nitions

that you may �nd useful in your proof, as well as a proof of Theorem 1.1,

which, roughly speaking, says that every element x in R(A) corresponds

to an [x; x] pair in A (with the twist that pairs can \wrap around" from

the end of the list to the front).

The A2 starter .tex source also includes the same de�nitions and a re-

statement of Theorem 1.1, which you may use in your proof. For brevity,

the proofs of 1.1 and the associated helper lemmas are omitted. (You're

unlikely to need to reuse these lemmas - they're provided here only as

optional reading.)

You can download the .tex source for the appendix, if you'd like to em-

ulate the commands used to generate numbered theorems/lemmas, and

refer back to them.

Warning: This proof is both conceptually challenging and long (and the al-

location of marks will reect this). Count on it taking signi�cantly longer

than the other two questions. I recommend initially focusing on break-

ing the problem down into smaller pieces. We will allocate a signi�cant

number of marks for identifying an appropriate set of facts (invariants,

postconditions, etc.) which link together to form a proof of the correct-

ness of maj. If you can't prove a particular fact in the chain, simply state

it, and assume it in the remainder of your proof.5

5The number of marks you will earn in this scenario will depend on the magnitude of the
assumption. For example, if you simply assume the partial correctness of maj, your proof
will earn few marks. On the other hand, if you have a nearly complete proof of the partial
correctness of maj which uses one very speci�c unproven assumption, you may earn most of
the marks.

4

http://www.cs.toronto.edu/~colin/236/W20/assignments/a2_starter.tex
http://www.cs.toronto.edu/~colin/236/W20/assignments/a2q3.tex

1 Appendix: Q3 starting point

1.1 Definitions

We will begin by introducing some formally de�ned functions, predicates,

and other notation (along with informal English descriptions) which cap-

ture some useful concepts. (You are welcome to introduce additional such

de�nitions in your own proof.)

We will use N� to denote the set of lists of natural numbers. Each of the

functions below takes as its �rst argument a list A 2 N�.

COUNT(A; x): jfi 2 N j A[i] = xgj

i.e. the number of occurrences of x in list A

SUCC(A; i) :

(
0 if i = len(A)� 1

i+ 1 if i < len(A)� 1

i.e. the `next' index in list A after index i, treating A as

a circular list (with the last index `wrapping around' back to

index 0). Not de�ned if i � len(A).

PAIRS(A; x): jfi 2 N j A[i] = A[SUCC(A; i)] = xgj

i.e. the number of [x; x] pairs in list A, again treating A as

circular

ADVANTAGE(A; x): COUNT(A; x)� len(A)=2

MAJORITY(A; x): ADVANTAGE(A; x) > 0

i.e. x is the majority element of A

1.2 R counts are pair counts

This section proves a theorem about a postcondition of the function R.

You may use this theorem in your proof. For the purposes of answering

question 3, you do not need to read or understand the proof of Theorem 1.1

that follows. However, you may �nd it useful as an example to model your

proof on, in terms of content, organization (notice how we take a major

result and break it down into several digestible sub-proofs), and level of

rigour.

Theorem 1.1 (R \correctness"). Given any A 2 N�, R(A) terminates and

returns a list of natural numbers B such that 8x 2 N;COUNT(B; x) =

PAIRS(A; x)

5

We will prove this theorem in pieces, �rst proving a loop invariant for

R, then proving that R terminates, and �nally proving that termination

implies the postcondition above.

For our loop invariant, we introduce the following function, PPAIRS,

which counts the pairs in a pre�x of a list:

PPAIRS(A; x; k): jfi 2 N j i < k ^ A[i] = A[SUCC(A; i)] = xgj

i.e. the number of x pairs in a length k pre�x of A. (Note that

we use A's successor function, rather than one speci�c to the

pre�x A[: k]. This means we are allowed to `peek' ahead to the

k + 1th element of A, if it exists, rather than wrapping around

to the beginning of the pre�x.

Lemma 1.2. PAIRS(A; x) = PPAIRS(A; x; len(A)).

Proof. When k = len(A), the i < k condition in the de�nition of PPAIRS

does not exclude any valid indices of A, so the de�nitions of PAIRS and

PPAIRS become equivalent.

Lemma 1.3 (R loop invariant). The following are all true at the end of

the jth iteration of R's while loop (if it occurs), when A is a list of

natural numbers:

(a) ij � len(A)

(b) 8x 2 N;COUNT(Bj ; x) = PPAIRS(A; x; ij)

(c) Bj contains only natural numbers

Proof. Base Case: Before the �rst iteration, i = 0, so (a) holds. B0 = [],

so (c) trivially holds. (b) holds because, by de�nition, COUNT([]; x) and

PPAIRS(A; x; 0) are 0 for any x and A.

Inductive Step: Assume that the invariant holds at the end of the jth

iteration, and assume that the code runs for a j + 1th iteration.

By the while loop condition (line 4), ij < len(A), so it follows that ij+1 �

len(A) ((a)).

Either Bj+1 = Bj , or line 8 is reached and Bj+1 di�ers from Bj by the

addition of element aj+1 = A[ij] 2 N. In either case, (c) is satis�ed.

It remains to show (b). Let x 2 N, and consider

�c = COUNT(Bj+1; x)� COUNT(Bj ; x)

�p = PPAIRS(A; x; ij+1)� PPAIRS(A; x; ij)

= PPAIRS(A; x; ij + 1)� PPAIRS(A; x; ij)

6

By the code (lines 7-8), we can see �c is 1 if aj+1 = bj+1 = x, and 0

otherwise.

By the de�nition of PPAIRS, we can see that �p is 1 if A[ij] = A[SUCC(A; ij)] =

x, and 0 otherwise. By line 5, aj+1 = A[ij]. By line 6 and the de�nition

of SUCC, bj+1 = A[SUCC(A; ij)]. Therefore �c = �p. Since (b) holds at

the beginning of the iteration, and for arbitrary x, the change in the LHS

and the RHS (relative to the values at the beginning of the iteration) is

identical, it follows that (b) holds at the end of the iteration.

Lemma 1.4 (R termination). R terminates on any A 2 N�

Proof. Let qj = len(A) � ij be a quantity associated with each loop it-

eration j. By Lemma 1.3 (a), qj 2 N. By line 9, qj+1 = qj � 1. Thus

q0; q1; q2; : : : is a decreasing sequence of natural numbers, and therefore

�nite. Therefore, R terminates.

We are now ready to prove the postcondition of R given in Theorem 1.1.

Proof of 1.1. Let A be an arbitrary list. By Lemma 1.4 the loop on line

4 terminates at the end of some iteration, call it j. By the loop condition,

ij � len(A). By Lemma 1.3 (a) ij � len(A). Therefore ij = len(A).

By line 10, we return Bj . By 1.3, we have that 8x 2 N

COUNT(Bj ; x) = PPAIRS(A; x; ij)

= PPAIRS(A; x; len(A))

= PAIRS(A; x) # by Lemma 1.2

Also, by 1.3, we know that Bj contains only natural numbers.

7

	Appendix: Q3 starting point
	Definitions
	R counts are pair counts

