
CSC236 Winter 2020

Assignment #1: induction

Solutions

1. De�ne function f recursively as follows:

f(n) =

(
1 if n � 1

n � f(n� 2) if n > 1

Use induction to prove that for all even n 2 N, f(n) = 2n=2(n=2)!.

Solution:

De�ne P (i) : f(2i) = 2ii!. I will use simple induction to prove 8i 2

N; P (i), which is equivalent to the claim that f(n) = 2n=2(n=2)! for all

even n.1

Inductive Step: Let i 2 N and assume P (i).

I will show that P (i+ 1) follows, i.e. that f(2(i+ 1)) = 2i+1(i+ 1)!.

f(2(i+ 1)) = f(2i+ 2)

= (2i+ 2) � f(2i) # By de�nition of f(n), since 2i+ 2 > 1

= (2i+ 2) � 2ii! # By I.H.

= 2(i+ 1) � 2ii!

= (i+ 1) � 2i+1i!

= 2i+1(i+ 1)! # By de�nition of factorial

Thus, P (i+ 1).

Base Case: f(2 � 0) = f(0) = 1 = 200!, thus P (0).

Therefore, by the principle of induction, 8i 2 N; P (i), as required. �

Comment: A change of variable simpli�ed this proof. I could also have

done induction on the argument to f itself, but then I would have needed

to establish in the I.S. that P (n) =) P (n+ 2).

1I chose i (rather than n) as the name of the variable for my predicate and in the induction
step just to avoid confusion with the use of n in the statement of the question. However, I
could just as easily have used n - it would not have changed the validity of my proof.
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2. What happens when the fall of the nth domino implies the fall of the

previous one? Suppose we have proven the following facts with respect

to some predicate P (n):2

P (1) (1)

8n 2 N+; P (n) =) P (n� 1) (2)

8n 2 N; P (n) =) P (2n) (3)

In this question, you will show that, taken together, these three statements

comprise a valid proof that P holds for all natural numbers.

(a) Use complete induction to prove that 8n 2 N; P (n).

Solution Let n 2 N, and assume P (k) holds for all k < n.

Case 1: n = 0. P (n) follows from applying (2) to (1).

Case 2: n = 1. P (n) is given by (1).

Case 3: n > 1 and n is even. Then n=2 is a natural number less than

n, so P (n=2) by the I.H.

P (n) follows from applying (2) to P (n=2).

Case 4: n > 1 and n is odd.

1 < n

n+ 1 < 2n

n+ 1

2
< n

Furthermore, n+1
2

is a natural number, since n is odd. Therefore,

P (n+1
2

) follows from the I.H. Applying (3), we can derive P (n+

1). Finally, applying (2) to this result, we get P (n).

P (n) holds in all cases. �

Comment: Another approach would be to use (1) and (3) to show

that P holds for all powers of 2. From there, we can claim that

we can show P (n) for any n because P holds for the next-highest

power of 2 above n, and we can eventually descend to n from there

by repeatedly applying rule (2). This is a reasonable argument, but

the \we can eventually get down to n" portion would need to be

formalized as a separate induction proof.

(b) If we failed to prove (3), but kept the other two statements, what

values would we be able to conclude that P holds for? Repeat for

(2) and (1).

2Where N+ denotes the positive natural numbers, i.e. N� f0g.
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Solution Without (3) we can only conclude P (0) ^ P (1).

Without (2), we can conclude that P (n) holds for all powers of 2.

Without (1), we cannot conclude that P (n) holds for any n.

3. Let S be the smallest set of strings de�ned by:

(a) u 2 S

(b) if s 2 S then ys 2 S

(c) if s 2 S then sh 2 S

(d) if s1; s2 2 S then s1s2 2 S

Use structural induction to prove that no strings in S contain the substring

yh. Hint: It may help to strengthen your induction hypothesis.

Solution (Note: For convenience, this proof uses the Python-like notation

s[i] to denote the ith character of string s, with s[�1] denoting the last

character.)

De�ne P (s) : s does not contain the substring yh, s[0] 6= h, and s[�1] 6= y,

and s is non-empty.3

I will use structural induction to prove 8s 2 S; P (s).

Base Case: P (u) is clearly true by inspection.

Inductive Step:

Part 1 (rule b): Let s1 2 S and assume P (s1). Consider s = ys1. Then

we have

� s[0] = y 6= h, by construction

� s[�1] 6= y by our inductive hypothesis, since s has s1 as a (non-

empty) su�x

� s does not contain yh. Since s1 does not contain yh, s cannot contain

the substring unless it begins at index 0. However, this is impossible,

since s[1] = s1[0] 6= h.

� s is non-empty

Thus, P (s).

Part 2 (rule c): Let s 2 S and assume P (s1). Consider s = s1h. Then we

have

� s[0] = s1[0] 6= h, by I.H.

� s[�1] 6= y, since the last character is h, by construction.

� s is non-empty

3This last condition is not essential, but it avoids the awkwardness of talking about s[0]
for a string s which is potentially empty.
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� s does not contain yh. Since s1 does not contain the substring, the

only way s can contain it is if it occurs as the last two characters.

However, s[�2] = s1[�1] 6= y (by I.H.), so this is not possible.

Thus, P (s).

Part 3 (rule d): Let s1; s2 2 S and assume P (s1) ^ P (s2). Consider s =

s1s2 Then we have

� s[0] = s1[0] 6= h, by I.H.

� s[�1] = s2[�1] 6= y, by I.H.

� s is non-empty, since s1 and s2 are both non-empty by I.H.

� s does not contain yh. Since the substring occurs neither in s1 nor

s2, the only way it can occur in s is at the point where s1 and s2
meet, but this would require s1[�1] = y and s2[0] = h, neither of

which is allowed by the I.H.

Thus, P (s).

Our predicate applies to the simplest element of S, and is preserved by

all the rules for making more complicated elements, so 8s 2 S; P (s).

4. De�ne A(n) as the smallest natural number containing exactly n sub-

strings in its decimal representation which are prime numbers.

For example, A(2) = 13, because the string `13' contains the prime num-

bers 3 and 13 itself (and is smaller than any other number with this

property, such as 31). A(6) = 373, corresponding to the prime numbers 3

(which appears twice), 7, 37, 73, and 373.

Prove that A(n) is de�ned for each n 2 N. i.e. for each n 2 N, there

exists a smallest natural number containing exactly n prime substrings.

Solution Let S(n) denote the set of natural numbers containing exactly

n prime substrings. Observe that, for a given n, if S(n) is non-empty,

then A(n) is equal to its minimum element.

Let n 2 N be an arbitrary natural number. I will show that A(n) exists.

Case 1: n = 0 Then A(n) = 0. 0 contains no prime substrings, and is the

smallest natural number.

Case 2: n > 0 I can construct the decimal representation of a number

q with exactly n prime substrings by concatenating n `2's. Or, more

formally, q =
Pn�1

i=0 2 � 10i.

q has at least n prime substrings, because 2 is a prime number, and it

occurs exactly n times in q's decimal representation.

Furthermore, q has no more than n prime substrings, because any other

4



non-empty substring of q's decimal representation will correspond to a

multi-digit number such as 22, 222, 2222, etc. These are all numbers

ending in 2, and greater than 2. We know they cannot be prime, because

2 is the only even prime number.

So while q is not necessarily equal to A(n), it is an element of S(n).

Therefore S(n) is non-empty. By the principle of well-ordering, this means

that S(n) has a smallest element, namely A(n). So A(n) exists in this

case.

Starting from an arbitrary n, I was able to show that A(n) exists. There-

fore, A(n) exists for all natural numbers. �

Comment: While not necessary, it is possible to prove this result via simple

induction. Informally, the argument would go as follows. If we assume

that A(n) is de�ned for some n, then we can show (via similar reasoning

as used above) that q = 10A(n) + 2 (i.e. the number resulting from

appending a `2' to the decimal representation of A(n)) has exactly n+ 1

prime substrings. Therefore, S(n + 1) is non-empty, and so by PWO,

A(n+ 1) exists.
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