CSC236 Winter 2020
Assignment #1: induction
Solutions

1. Define function f recursively as follows:

1 ifn<1
f(n)_{n-f(n—2) ifn>1

Use induction to prove that for all even n € N, f(n) = 2*/?(n/2)!.

Solution:

Define P(z) : f(2¢) = 2%!. I will use simple induction to prove Vi €
N, P(3), which is equivalent to the claim that f(n) = 27/2(n/2)! for all
even n

Inductive Step: Let < € N and assume P(z).

I will show that P(i + 1) follows, i.e. that f(2(z + 1)) = 2t1(s + 1)\

£+ 1) = £(2i +2)
= (2t +2) - f(22) # By definition of f(n), since 21 +2 > 1
=(20+2)-2%! # BylLH.
=2(1+1)-2%!
= (1 +1) 274!
=21 (G 1) # By definition of factorial

Thus, P(z + 1).

Base Case: f(2-0) = f(0) = 1 = 2°0!, thus P(0).

Therefore, by the principle of induction, Vi € N, P(7), as required. N
Comment: A change of variable simplified this proof. I could also have

done induction on the argument to f itself, but then I would have needed
to establish in the I.S. that P(n) — P(n +2).

I chose 7 (rather than n) as the name of the variable for my predicate and in the induction
step just to avoid confusion with the use of n in the statement of the question. However, I
could just as easily have used n - it would not have changed the validity of my proof.



2. What happens when the fall of the nth domino implies the fall of the
previous one? Suppose we have proven the following facts with respect
to some predicate P(n)ﬂ

P(1) (1)
Vn € NT,P(n) = P(n-—1) (2)
Vn € N,P(n) = P(2n) (3)

In this question, you will show that, taken together, these three statements
comprise a valid proof that P holds for all natural numbers.

(a) Use complete induction to prove that Vn € N, P(n).

Solution Let n € N, and assume P(k) holds for all k£ < n.

Case 1: n = 0. P(n) follows from applying to .

Case 2: n = 1. P(n) is given by ().

Case 3: n > 1 and n is even. Then n/2 is a natural number less than
n, so P(n/2) by the [.H.
P(n) follows from applying to P(n/2).

Case 4: n > 1 and n is odd.

1<n

n+1<2n
n+1
2

<n

Furthermore, "T'H is a natural number, since n is odd. Therefore,
P("T‘H) follows from the [.LH. Applying , we can derive P(n +

1). Finally, applying to this result, we get P(n).
P(n) holds in all cases. MW

Comment: Another approach would be to use (1) and (3) to show
that P holds for all powers of 2. From there, we can claim that
we can show P(n) for any n because P holds for the next-highest
power of 2 above n, and we can eventually descend to n from there
by repeatedly applying rule (2). This is a reasonable argument, but
the “we can eventually get down to n” portion would need to be
formalized as a separate induction proof.

(b) If we failed to prove , but kept the other two statements, what
values would we be able to conclude that P holds for? Repeat for

and .

2Where N1 denotes the positive natural numbers, i.e. N — {0}.



Solution Without we can only conclude P(0) A P(1).
Without (2, we can conclude that P(n) holds for all powers of 2.
Without (1), we cannot conclude that P(n) holds for any n.

3. Let S be the smallest set of strings defined by:

(a) ue S

(b) if s€ Sthenyse S

(c) if s€e Sthenshe S

(d) if 51,52 € S then sys5 € S

Use structural induction to prove that no strings in S contain the substring
yh. Hint: It may help to strengthen your induction hypothesis.

Solution (Note: For convenience, this proof uses the Python-like notation
s[¢] to denote the ith character of string s, with s[—1] denoting the last
character.)

Define P(s) : s does not contain the substring yh, s[0] # h, and s[—1] # y,
and s is non—emptyE]

I will use structural induction to prove Vs € S, P(s).

Base Case: P(u) is clearly true by inspection.

Inductive Step:

Part 1 (rule b): Let s; € S and assume P(s;). Consider s = ys;. Then
we have

e s[0] =y # h, by construction

e s[—1] # y by our inductive hypothesis, since s has s; as a (non-
empty) suffix

e s does not contain yh. Since s; does not contain yh, s cannot contain
the substring unless it begins at index 0. However, this is impossible,
since s[1] = s1[0] # h.

e s is non-empty

Thus, P(s).
Part 2 (rule c): Let s € S and assume P(s;). Consider s = s;h. Then we
have

e 5[0] = 51[0] #h, by L.H.
e s[—1] #y, since the last character is h, by construction.

e s is non-empty

8This last condition is not essential, but it avoids the awkwardness of talking about s[0]
for a string s which is potentially empty.



e s does not contain yh. Since s; does not contain the substring, the
only way s can contain it is if it occurs as the last two characters.
However, s[—2] = s;[—1] # y (by I.H.), so this is not possible.

Thus, P(s).

Part 3 (rule d): Let s;,s2, € S and assume P(s1) A P(s2). Consider s =
5189 Then we have

e 5[0] = 51[0] #h, by L.H.
o s[-1] = s3[-1] #y, by LH.
e s is non-empty, since s; and s, are both non-empty by I.H.

e s does not contain yh. Since the substring occurs neither in s; nor
So, the only way it can occur in s is at the point where s; and s,
meet, but this would require s;[—1] = y and s3[0] = h, neither of
which is allowed by the [.H.

Thus, P(s).

Our predicate applies to the simplest element of S, and is preserved by
all the rules for making more complicated elements, so Vs € S, P(s).

. Define A(n) as the smallest natural number containing exactly n sub-
strings in its decimal representation which are prime numbers.

For example, A(2) = 13, because the string ‘13’ contains the prime num-
bers 3 and 13 itself (and is smaller than any other number with this
property, such as 31). A(6) = 373, corresponding to the prime numbers 3
(which appears twice), 7, 37, 73, and 373.

Prove that A(n) is defined for each n € N. ie. for each n € N, there
exists a smallest natural number containing exactly n prime substrings.

Solution Let S(n) denote the set of natural numbers containing exactly
n prime substrings. Observe that, for a given n, if S(n) is non-empty,
then A(n) is equal to its minimum element.

Let n € N be an arbitrary natural number. I will show that A(n) exists.

Case 1: n =0 Then A(n) = 0. 0 contains no prime substrings, and is the
smallest natural number.

Case 2: n >0 I can construct the decimal representation of a number
g with exactly n prime substrings by concatenating n ‘2’s. Or, more
formally, ¢ = 337+ 2 - 10°.

q has at least n prime substrings, because 2 is a prime number, and it
occurs exactly n times in ¢’s decimal representation.

Furthermore, ¢ has no more than n prime substrings, because any other



non-empty substring of ¢’s decimal representation will correspond to a
multi-digit number such as 22, 222, 2222, etc. These are all numbers
ending in 2, and greater than 2. We know they cannot be prime, because
2 is the only even prime number.

So while g is not necessarily equal to A(n), it is an element of S(n).
Therefore S(n) is non-empty. By the principle of well-ordering, this means
that S(n) has a smallest element, namely A(n). So A(n) exists in this
case.

Starting from an arbitrary n, I was able to show that A(n) exists. There-
fore, A(n) exists for all natural numbers. MW

Comment: While not necessary, it is possible to prove this result via simple
induction. Informally, the argument would go as follows. If we assume
that A(n) is defined for some n, then we can show (via similar reasoning
as used above) that ¢ = 10A(n) + 2 (i.e. the number resulting from
appending a ‘2’ to the decimal representation of A(n)) has exactly n + 1
prime substrings. Therefore, S(n + 1) is non-empty, and so by PWO,
A(n + 1) exists.



