1. Define function f recursively as follows:

$$f(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
n \cdot f(n - 2) & \text{if } n > 1
\end{cases}$$

Use induction to prove that for all even $n \in \mathbb{N}$, $f(n) = 2^{n/2}(n/2)!$.

Solution:
Define $P(i) : f(2i) = 2^i i!$. I will use simple induction to prove $\forall i \in \mathbb{N}, P(i)$, which is equivalent to the claim that $f(n) = 2^{n/2}(n/2)!$ for all even n.

Inductive Step: Let $i \in \mathbb{N}$ and assume $P(i)$.
I will show that $P(i + 1)$ follows, i.e. that $f(2(i + 1)) = 2^{i+1}(i + 1)!$.

$$f(2(i + 1)) = f(2i + 2)$$
$$= (2i + 2) \cdot f(2i) \quad \# \text{ By definition of } f(n), \text{ since } 2i + 2 > 1$$
$$= (2i + 2) \cdot 2^i i! \quad \# \text{ By I.H.}$$
$$= 2(i + 1) \cdot 2^i i!$$
$$= (i + 1) \cdot 2^{i+1} i!$$
$$= 2^{i+1}(i + 1)! \quad \# \text{ By definition of factorial}$$

Thus, $P(i + 1)$.

Base Case: $f(2 \cdot 0) = f(0) = 1 = 2^0 0!$, thus $P(0)$.

Therefore, by the principle of induction, $\forall i \in \mathbb{N}, P(i)$, as required.

Comment: A change of variable simplified this proof. I could also have done induction on the argument to f itself, but then I would have needed to establish in the I.S. that $P(n) \implies P(n + 2)$.

\(^1\)I chose i (rather than n) as the name of the variable for my predicate and in the induction step just to avoid confusion with the use of n in the statement of the question. However, I could just as easily have used n - it would not have changed the validity of my proof.
2. What happens when the fall of the nth domino implies the fall of the previous one? Suppose we have proven the following facts with respect to some predicate $P(n)\,$:

\[
\begin{align*}
P(1) & \quad (1) \\
\forall n \in \mathbb{N}^+, P(n) & \implies P(n-1) \quad (2) \\
\forall n \in \mathbb{N}, P(n) & \implies P(2n) \quad (3)
\end{align*}
\]

In this question, you will show that, taken together, these three statements comprise a valid proof that P holds for all natural numbers.

(a) Use complete induction to prove that $\forall n \in \mathbb{N}, P(n)$.

Solution Let $n \in \mathbb{N}$, and assume $P(k)$ holds for all $k < n$.

Case 1: $n = 0$. $P(n)$ follows from applying (2) to (1).

Case 2: $n = 1$. $P(n)$ is given by (1).

Case 3: $n > 1$ and n is even. Then $n/2$ is a natural number less than n, so $P(n/2)$ by the I.H.

Case 4: $n > 1$ and n is odd.

\[
\begin{align*}
1 & < n \\
n + 1 & < 2n \\
\frac{n + 1}{2} & < n
\end{align*}
\]

Furthermore, $\frac{n + 1}{2}$ is a natural number, since n is odd. Therefore, $P(\frac{n + 1}{2})$ follows from the I.H. Applying (3), we can derive $P(n + 1)$. Finally, applying (2) to this result, we get $P(n)$.

$P(n)$ holds in all cases. ■

Comment: Another approach would be to use (1) and (3) to show that P holds for all powers of 2. From there, we can claim that we can show $P(n)$ for any n because P holds for the next-highest power of 2 above n, and we can eventually descend to n from there by repeatedly applying rule (2). This is a reasonable argument, but the “we can eventually get down to n” portion would need to be formalized as a separate induction proof.

(b) If we failed to prove (3), but kept the other two statements, what values would we be able to conclude that P holds for? Repeat for (2) and (1).

\[\text{Where } \mathbb{N}^+ \text{ denotes the positive natural numbers, i.e. } \mathbb{N} - \{0\}.\]
Without (3) we can only conclude $P(0) \land P(1)$.
Without (2), we can conclude that $P(n)$ holds for all powers of 2.
Without (1), we cannot conclude that $P(n)$ holds for any n.

3. Let S be the smallest set of strings defined by:

(a) $u \in S$
(b) if $s \in S$ then $ys \in S$
(c) if $s \in S$ then $sh \in S$
(d) if $s_1, s_2 \in S$ then $s_1s_2 \in S$

Use structural induction to prove that no strings in S contain the substring yh. Hint: It may help to strengthen your induction hypothesis.

Solution (Note: For convenience, this proof uses the Python-like notation $s[i]$ to denote the ith character of string s, with $s[-1]$ denoting the last character.) Define $P(s) : s$ does not contain the substring yh, $s[0] \neq h$, and $s[-1] \neq y$, and s is non-empty.

I will use structural induction to prove $\forall s \in S, P(s)$.

Base Case: $P(u)$ is clearly true by inspection.

Inductive Step:

Part 1 (rule b): Let $s_1 \in S$ and assume $P(s_1)$. Consider $s = ys_1$. Then we have

- $s[0] = y \neq h$, by construction
- $s[-1] \neq y$ by our inductive hypothesis, since s has s_1 as a (non-empty) suffix
- s does not contain yh. Since s_1 does not contain yh, s cannot contain the substring unless it begins at index 0. However, this is impossible, since $s[1] = s_1[0] \neq h$.
- s is non-empty

Thus, $P(s)$.

Part 2 (rule c): Let $s \in S$ and assume $P(s_1)$. Consider $s = s_1h$. Then we have

- $s[0] = s_1[0] \neq h$, by I.H.
- $s[-1] \neq y$, since the last character is h, by construction.
- s is non-empty

This last condition is not essential, but it avoids the awkwardness of talking about $s[0]$ for a string s which is potentially empty.
• s does not contain yh. Since s_1 does not contain the substring, the only way s can contain it is if it occurs as the last two characters. However, $s[-2] = s_1[-1] \neq y$ (by I.H.), so this is not possible.

Thus, $P(s)$.

Part 3 (rule d): Let $s_1, s_2 \in S$ and assume $P(s_1) \land P(s_2)$. Consider $s = s_1 s_2$. Then we have

• $s[0] = s_1[0] \neq h$, by I.H.
• $s[-1] = s_2[-1] \neq y$, by I.H.
• s is non-empty, since s_1 and s_2 are both non-empty by I.H.
• s does not contain yh. Since the substring occurs neither in s_1 nor s_2, the only way it can occur in s is at the point where s_1 and s_2 meet, but this would require $s_1[-1] = y$ and $s_2[0] = h$, neither of which is allowed by the I.H.

Thus, $P(s)$.

Our predicate applies to the simplest element of S, and is preserved by all the rules for making more complicated elements, so $\forall s \in S, P(s)$.

4. Define $A(n)$ as the smallest natural number containing exactly n substrings in its decimal representation which are prime numbers.

For example, $A(2) = 13$, because the string '13' contains the prime numbers 3 and 13 itself (and is smaller than any other number with this property, such as 31). $A(6) = 373$, corresponding to the prime numbers 3 (which appears twice), 7, 37, 73, and 373.

Prove that $A(n)$ is defined for each $n \in \mathbb{N}$, i.e. for each $n \in \mathbb{N}$, there exists a smallest natural number containing exactly n prime substrings.

Solution Let $S(n)$ denote the set of natural numbers containing exactly n prime substrings. Observe that, for a given n, if $S(n)$ is non-empty, then $A(n)$ is equal to its minimum element.

Let $n \in \mathbb{N}$ be an arbitrary natural number. I will show that $A(n)$ exists.

Case 1: $n = 0$ Then $A(n) = 0$. 0 contains no prime substrings, and is the smallest natural number.

Case 2: $n > 0$ I can construct the decimal representation of a number q with exactly n prime substrings by concatenating n '2's. Or, more formally, $q = \sum_{i=0}^{n-1} 2 \cdot 10^i$.

q has at least n prime substrings, because 2 is a prime number, and it occurs exactly n times in q's decimal representation.

Furthermore, q has no more than n prime substrings, because any other
non-empty substring of q's decimal representation will correspond to a multi-digit number such as 22, 222, 2222, etc. These are all numbers ending in 2, and greater than 2. We know they cannot be prime, because 2 is the only even prime number.

So while q is not necessarily equal to $A(n)$, it is an element of $S(n)$. Therefore $S(n)$ is non-empty. By the principle of well-ordering, this means that $S(n)$ has a smallest element, namely $A(n)$. So $A(n)$ exists in this case.

Starting from an arbitrary n, I was able to show that $A(n)$ exists. Therefore, $A(n)$ exists for all natural numbers.

Comment: While not necessary, it is possible to prove this result via simple induction. Informally, the argument would go as follows. If we assume that $A(n)$ is defined for some n, then we can show (via similar reasoning as used above) that $q = 10A(n) + 2$ (i.e. the number resulting from appending a '2' to the decimal representation of $A(n)$) has exactly $n + 1$ prime substrings. Therefore, $S(n + 1)$ is non-empty, and so by PWO, $A(n + 1)$ exists.