A* Sampling

Chris J. Maddison Daniel Tarlow Tom Minka

University of Toronto Microsoft Research Microsoft Research

Goal: Given an unnormalized log density ¢(x), produce
independent samples xi, ..., x, from the Gibbs distribution

p(x) oc exp(¢(x)).

The Gumbel Distribution

G ~ Gumbel(m) is Gumbel distributed with location m,
if its density is

p(g) = exp(—g + m) exp(—exp(—g + m))

m
0

The Gumbel Distribution

The Gumbel distribution is max-stable.
If Gi ~ Gumbel(0) IID, then

max{Gi, G2} ~ Gumbel(log 2)

The Gumbel-Max Trick (well-known, see Yellott 1977)
Suppose we want to sample from a finite distribution

p(i) o< exp(p(i)) for i € {1,2,3,4,5}

The Gumbel-Max Trick (well-known, see Yellott 1977)
Suppose we want to sample from a finite distribution

p(i) o< exp(p(i)) for i € {1,2,3,4,5}

G(i) ~ Gumbel(0) IID

The Gumbel-Max Trick (well-known, see Yellott 1977)
Suppose we want to sample from a finite distribution

p(i) o< exp(p(i)) for i € {1,2,3,4,5}

?(4) + G(4)

$(2) +G(2)

$(3) + G(3)

#(5) + G(5)
1 2 3 4 5

The Gumbel-Max Trick (well-known, see Yellott 1977)
Suppose we want to sample from a finite distribution

p(i) o< exp(p(i)) for i € {1,2,3,4,5}

?(4) + G(4)

$(2) +G(2)

$(3) + G(3)

#(5) + G(5)
1 2 3 4 5

1

exact sample

The Gumbel-Max Trick (well-known, see Yellott 1977)

More formally for any subset B of the indices.
Gli N exp(¢(1)1(i € B)
e S) s ()
max G(i) + ¢(i) ~ Gumbel(log Z exp(¢(1)))

ieB

What about continuous space?

What about continuous space?
1. Is there an analogous process for perturbing infinite spaces?

2. Can we define practical algorithms for optimizing it?

Perturbing Continuous Space

Now we are interested in
p(x) o exp(é(x)) for x € RY

u(B) = | ewo(x) for 5 C B

For this talk just look at R.

A Quick Re-Frame

We produced a sequence of Gumbels and locations

(6(1) +¢(1),1) ... (6(5)+¢(5),5)

such that

max{G (i) + ¢(i)| i € B} ~ Gumbel(log > _ exp(¢(/)))
ieB
exp(¢())1(i € B)
ZieB exp(o(1))

argmax{G(i) + ¢(i)|i € B} ~

Perturbing Continuous Space

By analogy, we want a sequence (G, Xx) for k — oo such that

max{ Gi | Xx € B} ~ Gumbel(log 1(B))
exp(¢(x))1(x € B)

argmax{ i [Xic € B} ~ =7 g xP(¢(x))
e

Perturbing Continuous Space

bottom-up: instantiate noise — find maxes

e Generating infinitely many random variables, then finding
maxes is a non-starter.

Perturbing Continuous Space

bottom-up: instantiate noise — find maxes

e Generating infinitely many random variables, then finding
maxes is a non-starter.

top-down: pick max — generate the rest

o Generate maxes over increasingly refined subsets of space.

Perturbing Continuous Space

bottom-up: instantiate noise — find maxes

e Generating infinitely many random variables, then finding
maxes is a non-starter.

top-down: pick max — generate the rest

o Generate maxes over increasingly refined subsets of space.

With Gumbel noise, these two directions are equivalent.

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00

G, bounds the noise in its subset

AN

X1 ~ exp(p(x))/n(R)

L 2

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00

G, bounds the noise in its subset

Gy

AN

L 2

G1 ~ Gumbel(log u(R))

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00

G, bounds the noise in its subset

Gy

AN

BC

L 2

split space on Xi

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00

G, bounds the noise in its subset

Gy

AN

BC

L 2

Xy ~ exp(¢(x))1(x € B) /u(B)

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00

G, bounds the noise in its subset

—Ox¢

BC

L 2

Gy ~ TruncGumbel(log u(B), G1)

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00
G, bounds the noise in its subset

G .
NS
A Y
A}
A}
G2 ‘\
AY
AY
T X ‘
\
) 3 s
) 7
Xz

Top-Down Construction

A stream (Gy, Xi) for k =1,... 00
G, bounds the noise in its subset

Gy

AN

T Q %
, Xo B X BCJ) g

. G3

recursively subdivide space and generate regional maxes

Perturbing Continuous Space

For BC R

max{ Gi | Xx € B} ~ Gumbel(log 1(B))
exp(¢(x))1(x € B)
(R)

Call {max{Gy | Xk € B} | B C R} a Gumbel Process.

argmax{ Gy | Xx € B} ~

Recap

1. We want to draw independent samples
2. We found a process whose optima are samples

3. But the procedure for generating it assumes we can draw
independent samples

A* Sampling

How to practically optimize a Gumbel process without assuming
you can tractably sample from p(x) and compute u(B).

A* Sampling

Like in rejection sampling, decompose ¢(x) into a tractable and
boundable component

6(x) = i(x) + o(x)

where for region B we can tractably sample and compute volumes
from g(x) o exp(i(x)) and bound o(x) < M5.

We can also decompose the Gumbel Process

A* Sampling

We can take (G, X/7), a stream of values from the Gumbel
process for g(x) and transform it into a realization of a Gumbel
process for p(x) by adding o(x).

GI + o(X{) = Gy

A* Sampling

Take stream (G, X/7) for g(x), then

max{G] + o(X/)| X7 € B} ~ Gumbel(log 1(B))
exp(¢(x))1(x € B)

argmax{GJ + o(X2) | X? € B} ~
g { k (k)‘ k } M(B)

A* Sampling

6/
G;
4 T >
X{ X3

A* Sampling

Na

A* Sampling

A
—0)
L 2

A* Sampling

To draw a sample we want to find
argmax{ G + o(X/)}

This decomposition is useful because we can bound
e contribution from the noise of g Gumbel process

e contribution of o(x) — this community is good at bounding
these functions

max{G, + o(X]) | X! € B} < max{G/ | X/ € B} + Mg

Core Idea: Use A search to find the optimum.

A* Sampling — Ingredients

e The stream of values (G, X))
e G/ bounds the noise in its subset.

e Upper bounds on a subset B, G/ + Mg
e Lower bounds on a subset B, G + o(X/)

Generally, the two expensive operations are computing Mg and
q
o(Xy)

A* Sampling

o F = = E 9DaAe

A* Sampling

o F = = £ 9Dae

A Sampllng

A* Sampling

o F = = £ 9Dae

A Sampllng

A Sampllng

[m]

=

Come see us at the poster

e Experiments relating A" sampling to other samplers
o Analysis relating A" sampling to adaptive rejection type
samplers

e A* sampling couples which regions are refined and where the
sample is — more efficient use of bounds and likelihood.

Use Case

e Whenever you might sit down to implement slice sampling or
rejection sampling for low dimensional non-trivial distributions
consider A" sampling.

e e.g. for the conditionals of a Gibbs sampler
® In many cases more efficient that alternatives

e We do not solve the problem of high dimensions — scales

poorly in the worst case.

o Not surprising, because general & exact.

Conclusions

o Extended the Gumbel-Max trick to continuous spaces.

e Defined A" Sampling, a practical algorithm that optimizes a
Gumbel process with A*.

e Result is new generic sampling algorithm and a useful
perspective on the sampling problem.

Acknowledgments

Special thanks to:
James Martens
Radford Neal
Elad Mezuman
Roger Grosse

% UNIVERSITY OF Microsoft ® NSERC
% TorRONTO Research T

