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Goal: Given an unnormalized log density φ(x), produce
independent samples x1, . . . , xn from the Gibbs distribution

p(x) ∝ exp(φ(x)).



The Gumbel Distribution

G ∼ Gumbel(m) is Gumbel distributed with location m,
if its density is

p(g) = exp(−g + m) exp(− exp(−g + m))

0

m



The Gumbel Distribution

The Gumbel distribution is max-stable.
If Gi ∼ Gumbel(0) IID, then

max{G1,G2} ∼ Gumbel(log 2)



The Gumbel-Max Trick (well-known, see Yellott 1977)

Suppose we want to sample from a finite distribution

p(i) ∝ exp(φ(i)) for i ∈ {1, 2, 3, 4, 5}

φ(1)

φ(2)
φ(3)

φ(4)

φ(5)

1 2 3 4 5

• • • • •



The Gumbel-Max Trick (well-known, see Yellott 1977)

Suppose we want to sample from a finite distribution

p(i) ∝ exp(φ(i)) for i ∈ {1, 2, 3, 4, 5}

φ(1)

φ(2)
φ(3)

φ(4)

φ(5)

G(1) G(2) G(3) G(4) G(5)

1 2 3 4 5

G (i) ∼ Gumbel(0) IID

• • • • •



The Gumbel-Max Trick (well-known, see Yellott 1977)

Suppose we want to sample from a finite distribution

p(i) ∝ exp(φ(i)) for i ∈ {1, 2, 3, 4, 5}

φ(1) + G(1)

φ(2) + G(2)

φ(3) + G(3)

φ(4) + G(4)

φ(5) + G(5)

1 2 3 4 5

• • • • •



The Gumbel-Max Trick (well-known, see Yellott 1977)

Suppose we want to sample from a finite distribution

p(i) ∝ exp(φ(i)) for i ∈ {1, 2, 3, 4, 5}

φ(1) + G(1)

φ(2) + G(2)

φ(3) + G(3)

φ(4) + G(4)

φ(5) + G(5)

1 2 3 4 5

exact sample

• • • • •



The Gumbel-Max Trick (well-known, see Yellott 1977)

More formally for any subset B of the indices.

argmax
i∈B

G (i) + φ(i) ∼ exp(φ(i))1(i ∈ B)∑
i∈B exp(φ(i))

max
i∈B

G (i) + φ(i) ∼ Gumbel(log
∑
i∈B

exp(φ(i)))



What about continuous space?

1. Is there an analogous process for perturbing infinite spaces?

2. Can we define practical algorithms for optimizing it?
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Perturbing Continuous Space

Now we are interested in

p(x) ∝ exp(φ(x)) for x ∈ Rd

µ(B) =

∫
x∈B

exp(φ(x)) for B ⊆ Rd

For this talk just look at R.



A Quick Re-Frame

We produced a sequence of Gumbels and locations

(G (1) + φ(1), 1) . . . (G (5) + φ(5), 5)

such that

max{G (i) + φ(i) | i ∈ B} ∼ Gumbel(log
∑
i∈B

exp(φ(i)))

argmax{G (i) + φ(i) | i ∈ B} ∼ exp(φ(i))1(i ∈ B)∑
i∈B exp(φ(i))



Perturbing Continuous Space

By analogy, we want a sequence (Gk ,Xk) for k →∞ such that

max{Gk |Xk ∈ B} ∼ Gumbel(logµ(B))

argmax{Gk |Xk ∈ B} ∼ exp(φ(x))1(x ∈ B)∫
i∈B exp(φ(x))



Perturbing Continuous Space

bottom-up: instantiate noise → find maxes

• Generating infinitely many random variables, then finding
maxes is a non-starter.

top-down: pick max → generate the rest

• Generate maxes over increasingly refined subsets of space.

With Gumbel noise, these two directions are equivalent.
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Top-Down Construction

A stream (Gk ,Xk) for k = 1, . . . ,∞
Gk bounds the noise in its subset

X1 ∼ exp(φ(x))/µ(R)

X1
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Top-Down Construction

A stream (Gk ,Xk) for k = 1, . . . ,∞
Gk bounds the noise in its subset
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G2 ∼ TruncGumbel(log µ(B),G1)
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Top-Down Construction

A stream (Gk ,Xk) for k = 1, . . . ,∞
Gk bounds the noise in its subset

X1

G1

B BcX2

G2

G3

X3

recursively subdivide space and generate regional maxes



Perturbing Continuous Space

For B ⊆ R

max{Gk |Xk ∈ B} ∼ Gumbel(logµ(B))

argmax{Gk |Xk ∈ B} ∼ exp(φ(x))1(x ∈ B)

µ(R)

Call {max{Gk |Xk ∈ B} |B ⊆ R} a Gumbel Process.



Recap

1. We want to draw independent samples

2. We found a process whose optima are samples

3. But the procedure for generating it assumes we can draw
independent samples



A∗ Sampling

How to practically optimize a Gumbel process without assuming
you can tractably sample from p(x) and compute µ(B).



A∗ Sampling

Like in rejection sampling, decompose φ(x) into a tractable and
boundable component

φ(x) = i(x) + o(x)

where for region B we can tractably sample and compute volumes
from q(x) ∝ exp(i(x)) and bound o(x) ≤ MB .

We can also decompose the Gumbel Process



A∗ Sampling

We can take (Gq
k ,X

q
k ), a stream of values from the Gumbel

process for q(x) and transform it into a realization of a Gumbel
process for p(x) by adding o(x).

Gq
k + o(X q

k ) = Gk



A∗ Sampling

Take stream (Gq
k ,X

q
k ) for q(x), then

max{Gq
k + o(X q

k ) |X q
k ∈ B} ∼ Gumbel(logµ(B))

argmax{Gq
k + o(X q

k ) |X q
k ∈ B} ∼ exp(φ(x))1(x ∈ B)

µ(B)
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A∗ Sampling

G1

X1
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A∗ Sampling

To draw a sample we want to find

argmax{Gq
k + o(X q

k )}

This decomposition is useful because we can bound

• contribution from the noise of q Gumbel process

• contribution of o(x) — this community is good at bounding
these functions

max{Gq
k + o(X q

k ) |X q
k ∈ B} ≤ max{Gq

k |X
q
k ∈ B}+ MB

Core Idea: Use A∗ search to find the optimum.



A∗ Sampling — Ingredients

• The stream of values (Gq
k ,X

q
k )

• G q
k bounds the noise in its subset.

• Upper bounds on a subset B, Gq
k + MB

• Lower bounds on a subset B, Gq
k + o(X q

k )

Generally, the two expensive operations are computing MB and
o(X q

k )



A∗ Sampling

o(X )



A∗ Sampling
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Come see us at the poster

• Experiments relating A∗ sampling to other samplers

• Analysis relating A∗ sampling to adaptive rejection type
samplers

• A∗ sampling couples which regions are refined and where the
sample is — more efficient use of bounds and likelihood.



Use Case

• Whenever you might sit down to implement slice sampling or
rejection sampling for low dimensional non-trivial distributions
consider A∗ sampling.

• e.g. for the conditionals of a Gibbs sampler
• In many cases more efficient that alternatives

• We do not solve the problem of high dimensions — scales
poorly in the worst case.

• Not surprising, because general & exact.



Conclusions

• Extended the Gumbel-Max trick to continuous spaces.

• Defined A∗ Sampling, a practical algorithm that optimizes a
Gumbel process with A∗.

• Result is new generic sampling algorithm and a useful
perspective on the sampling problem.
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