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Introduction

➢ We propose a novel model leveraging graph convolutional networks to directly encode 
neighbor information into image descriptors.

➢ A novel guided similarity separation (GSS) loss function is introduced to optimize the 
proposed model in a fully unsupervised fashion.

➢ Refined spatial verification graph can be learned in our model. An approximate inference 
procedure enables us to leverage the information to achieve better results with a small 
constant overhead during the inference time. 

➢ Experiments on five public benchmarks show highly competitive performance with up to 25% 
relative improvement over leading baselines.

Figure 1: Example query image (left) and four retrieved results (right). Green 
indicate relevant match while red indicate irrelevant match.

➢ Given a query image, retrieve all the relevant images.
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Figure 2: Overall architecture

➢ The main idea behind guided similarity separation is 
to increase       if it is above a given threshold and 
lower it otherwise. 

➢ This has a clustering effect where images with higher 
similarity scores move closer together, and those with 
lower scores get pushed further apart.

➢ Loss function and gradient:

Figure 3: Example loss function plot.

➢ The edges in the adjacency matrix are verified by spatial 
verification.

➢  Once our model encodes information from the refined 
adjacency matrix into new index descriptors, the benefit of 
spatial verification can be effectively preserved without 
explicitly applying it to query during inference.

Figure 6: GSS gradients against the similarity scores between a query image and index images.

Table 1: Retrieval results on INSTRE, ROxford and RParis (Medium and Hard).

Figure 9: Qualitative analysis on ROxford. GeM and GeM+GSS descriptors are plotted 
using PCA followed by t-SNE projection to two dimensions. 
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Figure 5: Automatic 𝛽 selection

Figure 7: Verified kNN Graph
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Figure 4: Apply GSS loss on pairwise similarity scores

Figure 8: Multiple layers, training curve and run-time analysis


