
http://homepages.cwi.nl/~bertl/concurrency/archive/concurrency-1988-1990

From pratt@cs.stanford.edu Wed May 29 16:39:48 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 22 Oct 90 09:57:06 EDT

To: concurrency

Subject: modelling concurrency with partial orders

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

Date: 21 Oct 90 15:41:06 PDT (Sun)

Here's some correspondence that should be of interest to this list.

I was in a bit of a rush so my answer is a lot less polished than

I'd like, but it'll have to do.

 Vaughan Pratt

------- Forwarded Message

Date: Sun, 21 Oct 90 13:39:23 -0700

From: dcl@anna.Stanford.EDU

Sender: dcl@anna.Stanford.EDU

To: pratt@cs.Stanford.EDU

Subject: Partially Ordered Computations

Vaughn,

In some recent discussions with people funded by ONR's

program on distributed and realtime computing,

I have found an attitude that

"sets of linear traces

are entirely sufficient for analyzing distributed/concurrent

computations, AND Partial Ordrs are unnecessary".

I also notice that sets of linear traces are the basis for

Hoare's PROCOS project.

Questions to you:

1. What is your favourite simple example of a system where

 a partial order representation of its execution is superior

 to a set of linear traces of its execution,

2. Would you disagree with the ONR people, and how?

- David [Luckham]

------- End of Forwarded Message

------- Forwarded Message

To: dcl@anna.stanford.edu

Cc: pratt@cs.stanford.edu

Subject: Re: Partially Ordered Computations

In-Reply-To: Your message of Sun, 21 Oct 90 13:39:23 -0700.

 <9010212039.AA07939@Aphid.Stanford.EDU>

Date: 21 Oct 90 15:14:37 PDT (Sun)

From: pratt@cs.Stanford.EDU

The belief that linear orders capture partial is predicated on

several assumptions, most of which have to hold at the same time

in order for it to be reliable. While these assumptions tend to hold

in very simple or abstract systems, they all gradually fade away

as the systems you look at get larger and more concrete.

Here are seven such assumptions.

1. Fixed granularity.

2. No variability of atomic events.

3. Absence of autocurrence.

4. Single-poset processes.

5. Race-free.

6. Single-observer model.

7. Discrete time.

Here is the meaning of each of these concepts.

1. Variable granularity can arise in various quite different ways.

One way is just to look at a supposedly atomic event more closely and

resolve substructure. But another is to take a binary program whose

specification treats it as atomic (on the ground that the vendor

doesn't want you to assume anything about the package) and find when

you run it that it has a series of side effects on your system, that

may interleave with the side effects of other such packages.

You might find it interesting to look at "Teams Can See Pomsets" by

Plotkin and myself to see what influence variable granularity can

have. It turns out this is not the theoretically worst problem in our

paper, #2 below is worse, but it does have some influence.

You can anonymous-ftp a preliminary version of this paper this from

boole.stanford.edu on pub/pp2.*.

2. Variability of atomic events means that although an event stays

atomic it might not do identical things each time it happens. Plotkin

and I use this phenomenon to show that a sufficiently large team of

observers (see item 6) can distinguish *any* two finite pomsets.

3. Autocurrence means two concurrent and identical events. Without the

concurrency requirement we find two such repetitions in the word

"identity": there are two t's and two i's. An example with concurrence

is when you ask the bank teller for two dollars. If dollars always came

sequentially there'd be no quarrel about the legitimacy of the string 11

as a specification for two dollars. But what about 1|1 meaning "Give

me two dollars please." This phenomenon arises as soon as you

distinguish pomsets from posets.

With autocurrence you can get a|a, which traces can't distinguish from

aa. This can be solved via so-called "action refinement", used in

solving 1 above. But action refinement gets you only so far, in

particular it can't be used in conjunction with traces to distinguish

TR|TR (two parallel sequences each of T->R, e.g. two parallel message

streams) from the same thing with the extra requirement that one of the

T's precede *both* of the R's. But pomsets can make that distinction,

using the N pomset.

4. A single-poset process is one defined by a single poset. This is a

key assumption in the theorem coding posets as their linearizations.

However this assumption is rarely achievable in practice. It is false

that a set of posets can be encoded with the union of their respective

sets of linearizations.

5. When a and b are in a race, the trace model reveals only ab+ba.

But race-free nondeterminism, which chooses one of ab+ba, has the same

trace representation. This matters for example in the glitch problem.

You may want to implement ab+ba glitch-freely, but you cannot say it

with traces. This is a pretty simple argument, so you might use it

first (I suppose I should have).

The same argument applies to distinguishing the mutually exclusive

execution of two atomic operations from their concurrent execution.

The trace model has built into it the assumption that mutually

exclusive execution and concurrent execution are the same thing for

atomic events. This interacts with item 1.

6. Most models of concurrency assume that one observer collects all

the observations. In practice observers are as distributed as the

systems they observe, and can pool their distributed observations in

ways entirely unrelated to the computational model used to prove

correctness of a particular distributed system. This is a subtle point

that Plotkin and I go to pains to explain in detail in our paper.

7. Time must be discrete for traces to model interleaving. Just what

exactly is the set of all interleavings of two copies of the unit

interval [0,1]? Consider a dual beam oscilloscope. Are you going to

describe its two beams in terms of their interleavings?

These issues are specific technical problems that arise with traces.

But besides any question of what might actually go wrong, there is also

the question of the most *natural* model. I feel that models should

attempt to be reasonably faithful to what they model, *if* the

mathematics supports this. Even if your unnatural model happens to be

working today, my feeling is that unnatural models are more likely to

break down in the future than natural ones..

When you have a computer in Europe talking via satellite to one in the

US, the time between instructions is thousands of times less than that

between computers. A natural way to model the instruction streams of

the two computers then is with two sequences. The trace model does not

accept this, on the ground that a computation consists of one

sequence. It says that you must interleave the two sequences in all

possible ways before you can reason soundly about the system.

The problem is that the only serious mathematics that many practicing

computer scientists get exposed to is computation theory, where they

are taught that all computation is sequential. Getting through their

computation theory course was one of the bigger struggles of their

college education, but mastery of it vindicated the enormous outlay of

tuition and board for all those years when they could have been

learning on the job.

So then they run into concurrency in the real world and they simply

cannot cope with the concept of two parallel streams, because they have

never seen any such concept in their textbooks, nor any theorems about

such concepts. Therefore they do the only thing possible: they

interleave in order to reduce to a known model with known theorems.

I can say on the basis of having worked with both models for many years

that posets are far more flexible and easier to work with than traces.

Having to think about systems in terms of traces is like trying to do

arithmetic with Roman numerals. Yes, Roman numerals indeed code

integers, and furthermore the algorithms for adding and multiplying

Roman numerals do work, but that's not a great reason to stick with

Roman numerals.

- -v

------- End of Forwarded Message

From rance@adm.csc.ncsu.edu Wed May 29 16:39:49 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 22 Oct 90 11:41:30 EDT

To: concurrency

Subject: Re: modelling concurrency with partial orders

From: rance@adm.csc.ncsu.edu (Rance Cleaveland)

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 22 Oct 90 11:29:48 -0400

Another reason for using posets crops up when one wishes to reason about the

real-time properties of a system. Assuming that one is working in a setting

where each atomic action takes 1 time unit, a|b ("a and b truly in parallel")

should also take 1 time unit, while ab + ba will take 2. So it seems a bit

surprising to me that a group of people interested in real time would find

linearizations an adequate model of concurrency.

Rance Cleaveland

From pratt@cs.stanford.edu Wed May 29 16:39:50 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 23 Oct 90 11:27:12 EDT

To: concurrency

Subject: modelling concurrency with partial orders

From: Vaughan Pratt <pratt@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 22 Oct 90 12:57:26 PDT

Rance's comment on real time reminds me. I neglected to connect up

with recent work explaining why true-concurrency hackers seem to prefer

the poset side of an otherwise surely symmetric duality between posets

as schedules and distributive lattices as automata, a duality

generalized by Winskel et recently many al to event structures, dual to

families of configurations.

The reason is that automata are 1-dimensional and hence can only

exhibit the structure of interleaving concurrency. This is intuitively

obvious to true true concurrency hackers, and I can only infer that the

proponents of this duality in its published form are false true

concurrency hackers.

In order to faithfully and continuously represent, on the automaton

side of the duality, the structure of true concurrency that its

proponents like myself so vividly imagine to exist on the poset side,

automata should be made higher dimensional. This has been done

implicitly by van Glabbeek and Vaandrager in PARLE-87 via the notion of

ST-bisimulation. I will be momentarily sending off my POPL paper

explaining how to make more explicit the geometry implicit in this (if

I just can restrain myself long enough from writing these damn

messages).

A propos of real time, the phenomenon by which two pencils can be put

into a shirt pocket only high enough to accommodate one, impossible in

the interleaving world as Rance points out, translates under this

duality to the need for the L-infinity norm (i.e. max(x,y)) in

measuring duration of truly concurrent processes in higher-dimensional

automata. In contrast the L-1 norm or Manhattan metric x+y measures

duration of interleaved processes, that operate the way a New York taxi

has to in alternating between going East and North. (So you should

have inferred by now that this is the model where one lays out parallel

instruction streams orthogonally, as Papadimitriou does in treating

deadlock).

If one tries to approach true concurrency by refining the granularity

of this interleaving, one arrives in the limit at still the L-1 norm.

That is, you may have a perfectly straight line running diagonally

across the product square (the product of two transitions, a surface,

arising just as in the product construction for automata) but it still

represents interleaved concurrency by being its limit. In this extreme

case true concurrency can be distinguished from interleaving not by its

shape but only its speed.

Who was Procos? Zeno's turtle?

-v

From pratt@cs.stanford.edu Wed May 29 16:39:51 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Thu, 25 Oct 90 14:42:45 EDT

To: concurrency

Subject: Ad: Modeling Concurrency with Geometry

From: Vaughan Pratt <pratt@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Wed, 24 Oct 90 21:30:15 PDT

I've just finished "Modeling Concurrency with Geometry" for

POPL, see abstract below. It can be retrieved via

ftp -i boole.stanford.edu

Login: anonymous

Password: surname

cd pub

bin

mget cg.* pratt.bib

quit

 Modeling Concurrency with Geometry

 V.R. Pratt

Branching time and causality find their respective homes in the

Birkhoff-dual models of automata and schedules. This creates a

puzzle: if the duality is supposed to make the models completely

equivalent then why does each phenomenon have a preferred side? We

identify dimension as the culprit: 1-dimensional automata are

skeletons permitting only interleaving concurrency, true n-fold

concurrency resides in transitions of dimension n. The Birkhoff dual

of a poset then becomes a simply-connected space. We distinguish

Birkhoff duality from Stone duality and treat the former in detail from

a concurrency perspective. We introduce true nondeterminism and define

it as monoidal homotopy; from this perspective nondeterminism in

ordinary automata arises from forking and joining creating nontrivial

homotopy. We propose a formal definition of higher dimensional

automaton as an n-complex or n-category, whose two essential axioms are

associativity of concatenation within dimension and an interchange

principle between dimensions.

From infhil!eike@relay.eu.net Wed May 29 16:39:51 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 26 Oct 90 12:21:47 EDT

To: concurrency

Subject: Using partial orders to define time in asynchronous systems

From: infhil!eike@relay.eu.net (Eike Best)

Sender: meyer@theory.lcs.mit.edu

Date: Thu, 25 Oct 90 16:19:22 +0100

2 self--references on that subject:

--- Weighted Basic Petri Nets, Springer Lecture Notes Vol.335, 257--276

--- DEMON Project Motivation, Springer LNCS Vol.424, 487--506.

Eike Best

From infhil!eike@relay.eu.net Wed May 29 16:39:52 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 26 Oct 90 12:22:58 EDT

To: concurrency

Subject: Re: The discussion on (sometime) superiority of p.orders

From: infhil!eike@relay.eu.net (Eike Best)

Sender: meyer@theory.lcs.mit.edu

Date: Thu, 25 Oct 90 16:08:58 +0100

Here are my 2 Pfennige worth of contribution.

I claim:

Sometimes partial orders let you define a concept more smoothly

than arbitrary interleavings. A case in point is "finite delay".

Finite delay is supposed to mean: if an action is continually enabled,

then it occurs sometime.

In a sequential system, finite delay can be expressed by the

maximality of an execution sequence (you would like to go as far

as possible).

Consider a*||b* versus (a[]b)* (where [] is nondet. choice).

The sequence aaaaa... (infinitely often a but no b) contradicts the

finite delay property in a*||b*, since the b is not prohibited

>from occurring and could always occur. However, aaaaa... does

NOT contradict the finite delay property in (a[]b)*, since the

occurrence of a is always alternative to b,

and so b is continually prohibited from occurring.

The distinction can be captured by noticing that aaaaa...,

while being maximal as a string, is not maximal as a

partial order of a*||b*, but IS maximal as a partial order of (a[]b)*.

Eike Best

PS I don't claim you NEED partial orders here, but I do claim that

 it's nice to use them, since the concept of maximality directly

generalises

 the sequential one.

From meyer@theory.lcs.mit.edu Wed May 29 16:39:52 1991

Return-Path: <meyer@theory.lcs.mit.edu>

From: meyer@theory.lcs.mit.edu (Albert R. Meyer)

Date: Fri, 26 Oct 90 14:01:09 EDT

To: pratt@cs.stanford.edu

Cc: concurrency, dcl@anna.stanford.edu

In-Reply-To: pratt@cs.stanford.edu's message of Mon, 22 Oct 90 09:57:06 EDT

<9010221357.AA10447@stork>

Subject: modelling concurrency with partial orders

I support most of your remarks, but I don't think we should accept

David Luckham's formulation of the issue as

(1) Linear versus Partial Order

but rather emphasize

(2) Interleaving Nondeterminacy versus Concurrency

Formulation (1) highlights the particular detail of whether concurrent

processes are abstractly represented by some structure involving linear,

rather than partial, orders. This can hardly be crucial, since, as you

well know, every partial order is uniquely determined by the set of its

linearizations.

Formulation (2) forces us to clarify the limitations of the in many

respects successful interleaving-concurrency models of CCS, CSP, MEIJE,

ACP, etc. Though the following remarks are well known to you and the

Continental research community in concurrency, Luckham's note confirms my

impression that the issue is still not well understood elsewhere, so maybe

it's worth rehashing the basis of the story another time:

The crux of the criticism of interleaving is captured in the equation

(3) a|b = ab+ba.

Equation (3) may be read as asserting that the process a|b, which can

CONCURRENTLY perform actions a and b, may be identified with the process

ab+ba, which NONDETERMINISTICALLY chooses to do either a-then-b or else

b-then-a.

Equation (3) is an axiom in the interleaving-based theories, but

maintaining it RULES OUT extensions of the theory to include

(i) observations of simultaneity: a and b can be observed simultaneously

in the computation of process a|b, but not in ab+ba.

(ii) observations of the same computation by two or more sequential

observers at distributed locations: under reasonable assumptions about

signal propagation over distance, two such observers watching a

computation of a|b might see DIFFERENT linear traces (namely one could see

`ab' during the same interval that the other saw `ba'), but under the same

assumptions two observers would always see the SAME trace (namely, exactly

one of ab or ba) in any given computation of ab+ba. I was delighted by

this remark when I first learned it from you and Plotkin.

(iii) refinement of action atomicity--what you felicitously called

``variable granularity'': refining a in a|b to be the two step sequential

process cd yields a process with the trace cbe, but refining a in ab+ba

yields no such trace; I first learned this point from a note in 1987 by

Castellano et al in the EATCS Bulletin.

Insofar as these extensions are desirable, one has to retreat from the

simple interleaving model. The ideas that actions have duration, and more

generally the ideas of critical regions and atomicity, are usually

regarded as an important aspect of pragmatic concurrent processing.

Because (iii) seems like a plausible theoretical way to model both action

duration and relaxing atomicity requirements, extending the theory to

cover it does seem desirable.

On the other hand, having agreed that interleaving theories need

modification, I don't think we can say that your pomset models or the

Mazurkiewicz-trace models have been fully justified as appropriate

concurrency theories. For example, multiple observers don't justify

distinguishing the pomset processes P1 and P2 where P1 is the singleton

pomset (.a .b) and P2 = P1 union one of its augmentations, say the

singleton

 .a

 |

 .b

Similarly, the various proposed event/behavior structure models are all

based on generalized notions of bisimulation. I have raised my doubts in

earlier messsages to this forum about how the detailed distinctions

between processes made by bisimulation can be justified computationally.

Despite these reservations, let me say that I do believe that the modeling

of a concurrent run of a computation with a pomset is pretty natural.

Regards, A.

Moderator, concurrency@theory.lcs.mit.edu

From pratt@cs.stanford.edu Wed May 29 16:39:53 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 27 Oct 90 16:55:21 EDT

To: concurrency

Subject: Re: modelling concurrency with partial orders

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Fri, 26 Oct 90 14:01:09 EDT.

 <9010261801.AA13008@stork>

Date: 26 Oct 90 14:52:07 PDT (Fri)

I appreciate your words of support, Albert. Some minor comments on

four points.

>This can hardly be crucial, since, as you

>well know, every partial order is uniquely determined by the set of its

>linearizations.

This is Szpilrajn's theorem [1], a ``fragile'' theorem in the following

sense. A robust theorem about a structure should remain true when one

adds further structure. Szpilrajn's theorem holds neither for a set of

posets nor for labeled posets. Both these structures must be added to

the basic poset structure to make it useful as a model of concurrency.

I therefore view David's comparison of linear to partial orders in the

context of their application to concurrency as quite appropriate.

>(3) a|b = ab+ba.

>Equation (3) is an axiom in the interleaving-based theories, but

>maintaining it RULES OUT extensions of the theory to include

The equational logic of regular expressions has a very interesting

property. If you regard its variables as denoting only themselves as

symbols of an alphabet, the set of equations valid under that very

restricted interpretation turns out to be the same as when you let the

variables range over arbitrary languages. That is, the theory does not

change when you treat its variables as self-denoting constants.

This interesting property fails as soon as you add almost any other

operation, whether or not that operation preserves regularity. Such

operations include complement -a, intersection a&b, interleaving a|b,

quotient a\b, and residual a->b = -(a\-b).

Equational theories are closed under substitution. In view of this I

would like to discourage extending to other languages the practice in

the language of regular expressions of denoting atoms by variables. I

would be more comfortable seeing (3) written as a conditional

implication:

 atomic(a) & atomic(b) -> a|b = ab+ba.

 or more generally:

 atomic(a) & atomic(b) -> mutex(a,b)

 mutex(a,b) -> a|b = ab+ba

since mutex(a,b) (I hope the meaning is clear) is at its most useful

when it holds of particular nonatomic processes.

>For example, multiple observers don't justify

>distinguishing the pomset processes P1 and P2 where P1 is the singleton

>pomset (.a .b) and P2 = P1 union one of its augmentations, say the

>singleton

Provably so of course: our multiple observer model can't distinguish a

process from its augment closure. Gordon and I now have the converse

of this, at least for finite pomsets, that is that distinct augment

closed processes of finite pomsets are distinguishable by sufficiently

large teams (infinite when the dimension of the pomsets is unbounded).

>I have raised my doubts in earlier messsages to this forum about how

>the detailed distinctions between processes made by bisimulation can be

>justified computationally.

Having written about it you're better qualified than I to express such

reservations. However my intuitive feeling is that Hennessy-Milner

logic, which justifies all distinctions made by bisimulation, is not an

excessively strong language in the context of debugging, where the

programmer marches backwards and forwards along a misbehaved

nondeterministic computation trying to find what caused the misbehavior

and experimenting by making little changes and seeing how they

propagate side-effects forward and predicates backwards (through

predicate transformers).

[1] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16,

386-389, 1930.

From tcipro!ramu@unix.sri.com Wed May 29 16:39:55 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 27 Oct 90 18:07:44 EDT

To: concurrency

Subject: [tcipro!ramu@unix.sri.com: modelling concurrency with partial

orders]

From: Ramu Iyer <tcipro!ramu@unix.sri.com>

Sender: meyer@theory.lcs.mit.edu

Date: Fri, 26 Oct 90 16:09:54 PDT

Cc: sri-unix!cs.stanford.edu!pratt@unix.sri.com,

 sri-unix!anna.stanford.edu!dcl@unix.sri.com, armen@unix.sri.com,

 dbb@unix.sri.com, ramu@unix.sri.com, bads@unix.sri.com

In-Reply-To: Albert R. Meyer's message of Fri, 26 Oct 90 14:01:09 EDT

<9010261801.AA13008@stork>

>>>>> On Fri, 26 Oct 90 14:01:09 EDT, unix.sri.com!theory.lcs.mit.edu!meyer

(Albert R. Meyer) said:

 Albert> I support most of your remarks, but I don't think we should

accept

 Albert> David Luckham's formulation of the issue as

 Albert> (1) Linear versus Partial Order

 Albert> but rather emphasize

 Albert> (2) Interleaving Nondeterminacy versus Concurrency

 ^^

Here are three references that discuss these pioneering issues (^^^^) :

L. Castellano, G. De Michelis, L. Pomello. Concurrency vs Interleaving:

 An Instructive Example. Bulletin of the EATCS, 31, 1987, pp. 12-15.

D.B. Benson, Concurrency and Interleaving are Equally Fundamental.

 Bulletin of the EATCS, 33, 1987.

W. Reisig, Concurrency is More Fundamental than Interleaving, Bulletin

 of the EATCS, ??, 1988.

Cheers,

--Ramu Iyer

Email: ramu%tcipro.uucp@unix.sri.com

From pratt@cs.stanford.edu Wed May 29 16:39:55 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 27 Oct 90 18:12:24 EDT

To: concurrency

Subject: modelling concurrency with partial orders

From: Vaughan Pratt <pratt@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Sat, 27 Oct 90 00:55:01 PDT

>>>From: tcipro!ramu@unix.sri.com (Ramu Iyer)

>>>Subject: modelling concurrency with partial orders

>>>Here are three references that discuss these pioneering issues (^^^^) :

>>> <3 references from 1987-88: Castellano et al, Benson, Reisig>

I'd like to suggest some earlier dates than 1987 or 1988 as more

suitable candidates for "pioneering."

The earliest proposal I'm aware of to model concurrency with partial

orders is Irene Greif's MIT Ph.D. thesis from 1975. Jan Grabowski and

Nielsen-Plotkin-Winskel both have 1981 journal papers on partial orders

for concurrency, with both parties reporting on work done at the end of

the 1970's. C.A. Petri allegedly had advocated partial orders long

ago, though not in writing as far as I'm aware.

Unlike these pioneers I did not appreciate the need for partial orders

in concurrency myself until 1980. This was not for want of experience

with concurrent computing. I had implemented various interrupt-driven

packages in 1967-69, and I wrote and thought a fair bit about

concurrency during the 1970's (1972: thesis chapter on sorting

networks; 1974: showed with Larry Stockmeyer that P=NP on parallel

computers; 1974-5: two circuit complexity results; 1976: solved the

mutual exclusion problem for unreliable processes with Ron Rivest;

1979: axiomatized process logic).

But I did not appreciate the advantages of partial orders for

concurrency until early 1980 when I was trying to understand Brock and

Ackerman's paper. My pomset campaign began with my POPL-82 paper on

that subject, "On the Composition of Processes" which proposed

formalizing Brock and Ackerman's solution to their anomaly in terms of

partially ordered multisets. I coined the abbreviation "pomset" a few

months later.

I wrote a short paper on applying pomsets to the

Two-Way-Channel-With-Disconnect problem for the 1983 concurrency

workshop in Cambridge UK, LNCS 207, as well as a statement I circulated

at IFIP-83 a week after that conference as part of a concurrency panel

session chaired by Robin Milner in which I argued the case for

pomsets. I also spoke about pomset semantics at Logics of Programs

1983 (no written paper unfortunately), and again in LOP 85.

This last paper was subsequently published in International Journal of

Parallel Programming, 15:1, 33-71, 1986, as "Modeling Concurrency with

Partial Orders" (same title as the subject line of the last 10

messages). (If you don't have that journal in your library you can

retrieve this paper by anonymous FTP from boole.stanford.edu as

/pub/ijpp.{tex,dvi}.)

I reproduce here the arguments I gave in that 1986 paper in support of

partial orders. Note particularly item (v), which begins

 (v) "A serious difficulty with the interleaving model is that

 exactly what is interleaved depends on which events of a

 process one takes to be atomic."

and goes on to explain how refinement (as it is now called)

distinguishes a|b from ab+ba and hence makes the meaning of

interleaving dependent on granularity. While I know of no prior

reference in the literature to the use of refinement to distinguish a|b

>from ab+ba I'm sure the idea had occurred to many people before, even

if writing it down had not.

See also the postscript-1990 at the end, on the outcome of my

long-standing problem of axiomatizing the equational theory of

concatenation and interleaving for formal languages. It is noteworthy

that the solver independently invented pomsets for the express purpose

of solving this purely interleaving question.

=======Extract from "Modeling Concurrency with Partial Orders, 1986=======

1.2 Why Partial Orders?

Strings arise naturally in modelling ongoing sequential computation,

whether the symbols in the string correspond to states, commands, or

messages. Thus the string uvu may model the sequential execution of

three commands u,v,u, or a transition from state u to state v

followed by a transition back to u, or a sequence of three messages

u,v,u transmitted sequentially on some channel.

Strings are linearly ordered sets, or rather linearly ordered multisets

(since repetitions are possible), of symbols from some alphabet. In

unison with the workers mentioned at the end of this section we

advocate partial orders in place of linear orders in modelling

concurrent computation. At present however partial orders have nowhere

near the popularity of linear orders for modelling concurrent

computation. This could be for any of the following reasons.

(i) Languages and their associated operations, particularly union,

concatenation, Kleene star, and shuffle, provide a natural model for

the corresponding programming language control structures: choice,

sequence, iteration, and concurrency. The behavior of languages under

these operations has been studied intensively for more than two decades.

Thus languages provide a familiar and well-understood model of

computation. In this model the linear order on the elements of a string

is interpreted as the linear temporal order of events, and the

operations on languages may be interpreted as control structures:

concatenation as begin-end sequencing, star as iteration, shuffle as

concurrency, etc.

(ii) Every poset is representable as the set of its linearizations.

This theorem would appear to confer on linear orders the same

representational ability as partial orders.

(iii) Linear orders appear to be faithful to physical reality. In the

practical engineering world, as opposed say to the physicist's

relativistic world, instantaneous events have a well-defined temporal

order, justifying the assumption of linearly ordered time.

Furthermore, in any rigid system temporal order is well-defined even in

a relativistic model. Any departures from rigidity are assumed to be

sufficiently minor in practice as to justify adhering to a linear-order

model.

Reason (i) would lose most of its force if partial orders were to be

equipped with operations analogous to those of formal languages that

could be interpreted as programming language control structures. This

is just what this paper does; some of the operations on pomsets that we

introduce correspond to more or less familiar programming language

constructs, others are merely candidates for possible future

programming or hardware languages.

Reason (ii) is based on the following well-known theorem, which shows

that a partial order can be represented as the set of its

linearizations.

{\bf Theorem 1.} The intersection of the linearizations of a partial

order is that partial order.

(For the purposes of defining intersection, a partial order is

considered to be its graph, that is, the set of all pairs (a,b) such

that $a\leq b$.)

This theorem is easily proved under the (non-obvious) assumption that

every partial order has at least one linearization, by showing that any

partial order in which a and b are incomparable can be extended to

one in which $a<b$ and to another in which $b<a$.

This theorem about posets runs into two difficulties when trying to

apply it to processes modelled as sets of pomsets. The theorem

generalizes neither to {\it pomsets} nor to sets of {\it posets}, and

{\it a fortiori} not to sets of pomsets. We will return to this issue

in section 2.6, after the necessary definitions have been given.

Reason (iii), that the engineer's world is linear in time, fails in at

least three situations: complex systems, nonatomic events, and

relativistic systems. Beyond a certain scale of system complexity it

becomes infeasible to keep thinking in terms of a global clock and a

linear sequence of events. A cover story in the magazine

Electronics$^{(3)}$ describes a growing trend in the design of logic

circuits to eliminate global clocks and rely more on self-timed

circuits. On a larger scale asynchrony has been with us for a long

time. When a large number of computers communicate with each other

over channels whose delay is several orders of magnitude greater than

the clock time of each computer, the concept of global time provides

neither a faithful account of the concurrent computation of all those

computers nor even a particularly useful one. There is no reason to

suppose that the various instructions streams of these computers are

interleaved to form one stream. Indeed it is much more convenient,

both conceptually and computationally (e.g. when computing with such

streams as part of reasoning about them) just to lay down these streams

side by side and call this juxtaposition of streams a model of their

concurrent execution. Data flowing between the computers may augment

the order implicit in the juxtaposition, but this relatively sparse

augmentation of the order is motivated by the actual mechanics of

communication, unlike the more stringent and totally artificial

ordering requirement of completely interleaving the streams.

A concrete situation that may make this more compelling consists of a

ship rolling somewhere in the Pacific, in satellite communication with

another ship in the Indian Ocean. The events on the buses of the

computers on each ship take place with a precision measured in

nanoseconds, but the delay in getting a packet from one computer to

another may be on the order of a second or more. The idea that the

totality of events in the two computers has a well-defined linear

ordering can have no practical status beyond that of a convenient

mathematical fiction. Our position is that it is neither convenient

nor mathematically useful. It is just as convenient, and more useful,

to work with partial orders.

Nonatomic events provide another situation where linear orders break

down. An event may be more complex than a moment in time. It may be

an interval, in the sense of a convex subset of a linear order. It may

be a set of intervals, such as a game punctuated by timeouts or a TV

movie punctuated by commercials. More generally still it may be some

arbitrary set of moments. However even for such complex events it

still makes sense to say that one event may precede or follow another,

meaning that every moment of the first event precedes every moment of

the second. Yet such events are clearly not linearly ordered.

Relativity provides yet another situation where time is not linearly

ordered. In any nonrigid system, that is, one whose components are

moving with respect to each other, simultaneity ceases to be

well-defined and two moving observers can report contradictory orders

of occurrence of a pair of events. Any system nontrivially subject to

relativistic effects is a candidate for a partially ordered model of

computation. Of course many systems will not be so subject, but we

see it as an advantage of the partial-order approach that it applies

equally well to relativistic and Newtonian (global-time) situations.

In addition to our responses to (i)-(iii), we have the following

additional reasons for preferring partial orders.

(iv) Some concepts are only definable for partial orders, in

particular orthocurrence, which amounts to the direct product of

pomsets, which we define in full later. The solution given above to

the problem of specifying the two-way-channel-with-disconnect contains

two essential uses of orthocurrence, along with two less essential

uses. The concept is an extremely natural and useful one for partial

orders, but it is not at all obvious how one would go about defining it

in a linear-order model, or even whether it is definable.

(v) A serious difficulty with the interleaving model is that exactly

what is interleaved depends on which events of a process one takes to

be atomic. If processes P and Q consist of the single atomic

events a and b respectively then their interleaving is

$\{ab,ba\}$. However if the same events a and b are perceived by

someone else not to be atomic, by virtue of having subevents, then P

and Q have a richer interleaving than $ab\cup ba$. It is

reasonable to consider instantaneous events as absolutely atomic, but

we would like a theory of processes to be just as usable for events

having duration or structure, where a single event can be atomic from one

point of view and compound from another. In the partial-order model

what it means for two events to be concurrent does not depend on the

granularity of atomicity.

(vi) In some situations pomsets appear to be easier to reason about

than strings. For example it is relatively straightforward to

axiomatize the equational theory of pomsets under the operations of

concurrence and concatenation (Theorem 5.2$^{(4)}$). The corresponding

theory for strings has resisted all attempts at its axiomatization.

Gischer and the author have both worked extensively on the problem of

whether this simply described theory has a finite axiomatization. The

problem has been posed on two occasions at the (San Francisco) Bay Area

Theory Symposium, generating interest but no answers in more than

eighteen months.

[Postscript 1990: this problem was finally solved in 1988 by Steve

Tschantz, an algebraist at Vanderbilt, who settled it in the

affirmative by a truly beautiful argument only a week after I posed the

problem along with a list of others at the end of an invited lecture at

a universal algebra conference in 1988. In doing so he reinvented

pomsets quite independently as an essential tool in the proof; I had

stated the problem purely for languages with no mention of pomsets at

any point in my talk, which was about dynamic logic. -vp]

 Vaughan Pratt

From sa@doc.imperial.ac.uk Wed May 29 16:39:56 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 6 Nov 90 18:52:38 EST

To: types, logic, concurrency

Subject: Computational interpretations of Linear Logic

From: Samson Abramsky <sa@doc.imperial.ac.uk>

Sender: meyer@theory.lcs.mit.edu

Date: Tue, 30 Oct 90 18:17:58 GMT

Albert,

I've just completed a paper on this topic. Please put the abstract on any

of the lists (types, concurrency etc.) for which you think it would be

appropriate.

Best wishes,

Samson

=====================================

Computational Interpretations of Linear Logic

Samson Abramsky

Imperial College

We study Girard's Linear Logic from the point of view of giving a concrete

computational interpretation of the logic, based on the Curry-Howard

isomorphism. In the case of Intuitionistic Linear Logic, this leads to

a refinement of the lambda calculus, giving finer control over order

of evaluation and storage allocation, while maintaining the logical content

of programs as proofs, and computation as cut-elimination. In the classical

case, it leads to a concurrent process paradigm with an operational

semantics in the style of Berry and Boudol's Chemical Abstract machine.

This opens up a promising new approach to the parallel implementation of

functional programming languages; and offers the prospect

of typed concurrent programming in which correctness is guaranteed by the

typing.

From lamport@src.dec.com Wed May 29 16:39:57 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Wed, 7 Nov 90 17:11:10 EST

To: concurrency

Subject: Flame re distributed processes and granulity

From: lamport@src.dec.com (Leslie Lamport)

Sender: meyer@theory.lcs.mit.edu

Date: Tue, 6 Nov 90 17:13:59 -0800

To: meyer@theory.lcs.mit.edu

Subject: for the concurrency mailing list

I admire philosophers. They have so much to teach us. From Aristotle

I learned that heavier bodies fall faster than lighter ones; Kant

showed me that nonEuclidean geometry is impossible; and Spinoza proved

that there can be at most seven planets. And now, the philosophers on

the concurrency mailing list have told me all the things I can't do

because I use a logic based on an interleaving model:

 I can't reason about distributed systems.

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  In 1982 I published a proof of the distributed algorithm then used in 

  the Arpanet to maintain its routing tables ["An Assertional Correctness 

  Proof of a Distributed Algorithm", Science of Computer Programming 2, 3 

  (Dec. 1982), 175-206].  Since then I have written more formal proofs 

  of more complicated distributed algorithms. 

 

   

  I can't deal with changes in the grain of atomicity.   

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 In 1983 I published a paper ["Specifying Concurrent Program Modules",

 TOPLAS 5, 2 (April 1983) 190-222] containing:

 A specification of a queue, in which adding or removing an element is a

 single atomic operation.

 An implementation in which an element is moved into and out of the

 queue one bit at a time.

 A proof that the implementation satisfies the specification.

 Nowadays, my standard approach to verification is to start with a

 high-level program having a coarse grain of atomicity, and to refine

 the grain of atomicity until I reach the desired program.

 I can't reason about (nondiscrete) real time.

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

  At a workshop in 1988, I gave a one-hour lecture in which I: 

   

    Specified a distributed spanning-tree algorithm having the requirement 

    that the computation reach and maintain a correct configuration within 

    a fixed length of (real) time.   

   

    Gave an implementation using timers.  I assumed only that timers ran at 

    a rate of 1 +/- epsilon seconds per second, and that messages were  

    delivered within delta seconds of the time they were sent.  (Epsilon  

    is any real number in the range [0, 1) and delta is any positive 

    real number.) 

   

    Sketched a proof that the implementation satisfied the specification. 



   

  I have since written a detailed formal correctness proof. 

 

 

  I can't reason about programs without assuming a fixed granularity. 

  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 A recent paper of mine ["win and sin--Predicate Transformers for

 Concurrency", TOPLAS 12, 3 (July 1990), 396-428] gave a rigorous

 correctness proof for the bakery algorithm. This algorithm makes no

 assumption about the grain of atomicity of its operations. (It was

 the first algorithm to achieve mutual exclusion without assuming

 lower-level mutual exclusion.)

I'm sure the philosophers can explain why I haven't really done these

things. I'll be happy to listen to their explanations, as soon as they

can use their philosophically approved methods to reason formally about

something more complicated than a biscuit machine.

From pratt@cs.stanford.edu Wed May 29 16:39:58 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Thu, 8 Nov 90 16:23:15 EST

To: concurrency

Subject: Re: Flame re distributed processes and granulity

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

Date: 08 Nov 90 12:58:19 PST (Thu)

On p.419 of the proceedings of Logics of Programs 81 (LNCS 131) appears

the following extract from the panel discussion that wrapped up that

conference. Context: Amir Pnueli had just expressed the wish that

every paper on programming logic say something about how this

programming logic is to be applied to proving something about

programs.

"Nemeti: I'd like to protest a little bit about what you (Pnueli) said

about our papers. The structure of our technological society is just

not like that. There was a guy called Roentgen. You could have gone to

him and said, `What are you doing playing around with these funny

things of yours? Why don't you try to heal people who have colds?'

There are theoreticians who are doing basic research, and there are

less theoretical theoreticians, and there are technologists, so there

is a whole spectrum of research in science. The theoreticians doing

the basic research are really needed, because the basic ideas, the

fundamental ways we look at things, come from there. Now, if you want

to restrict them to report each time how this will be used, then it

will result in impotence."

While I have nothing to add to this, I do have a question arising out

of it. Who believes that "the basic ideas, the fundamental ways

systems people look at things" come from the theoreticians? Do

systems people believe this? And do theoreticians believe it?

-v

From RJH@ai.mit.edu Wed May 29 16:39:58 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 12 Nov 90 11:19:35 EST

To: concurrency

Subject: re: Re: Flame re distributed processes and granulity

From: Robert J. Hall <RJH@ai.mit.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Sat, 10 Nov 90 12:58 EST

To: pratt@cs.stanford.edu, concurrency@theory.lcs.mit.edu

 Date: Thu, 8 Nov 90 16:23 EST

 Subject: Re: Flame re distributed processes and granulity

 From: pratt@cs.stanford

 On p.419 of the proceedings of Logics of Programs 81 (LNCS 131) appears...

 "Nemeti: ..." (regarding need for theoreticians, etc)

It seems to me this quote does not directly address Lamport's complaint

which was, I believe, that the theoreticians on this list seem to be

making false claims (as enumerated by Lamport). He seemed to be fraternally

suggesting that one way of avoiding such false claims may be to keep a

closer contact between theory and practice, if indeed theory is attempting

to have some benefits for practice. In particular, if one's claim is to

the effect that a technologist "can't do" something using a theory, one must

at least be more precise about what it means to do that thing.

Obviously, Lamport believes he has successfully used the interleaving-based

view to reason about multiple granularities, whereas previous discussions

on the list seem to claim he can't have done so (similarly for the other

issues raised).

-- Bob

From pratt@cs.stanford.edu Wed May 29 16:39:59 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 12 Nov 90 11:30:35 EST

To: "Robert J. Hall" <RJH@ai.mit.edu>

Cc: concurrency@theory.lcs.mit.edu

Subject: [pratt@cs.stanford.edu: Re: Flame re distributed processes and

granulity]

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

Date: 11 Nov 90 20:22:55 PST (Sun)

 It seems to me this quote does not directly address Lamport's

 complaint which was, I believe, that the theoreticians on this

 list seem to be making false claims (as enumerated by

 Lamport).

My quote addressed Leslie's complaint in the most direct way possible

under the circumstances. Leslie did not identify any particular claim

made on the list. Rather he complained generally that certain

contributors to the list, whom he did not specify, had claimed there

were certain things he couldn't do, which he did specify. There have

been various claims on this list about limitations of interleaving, but

none that I recall making the claims Leslie was complaining about, nor

any that conflicted with the evidence he adduced in support of his

complaint.

One claim about interleaving in this forum is in my October 26 message

to David Luckham. There I claimed that Szpilrajn's representation

theorem for posets, that every poset is representable as the set of its

linearizations, depends on several assumptions. For each assumption I

showed informally in what way the theorem could fail in the absence of

that assumption, in some cases giving pointers to where more detailed

proofs of those failure modes could be found.

I see no logical connection between Leslie's complaint and my claim.

And even if there were some connection, the existence of failure modes

of trace-based logic when certain assumptions are violated in no way

implies that every trace-based proof violating those assumptions must

be unsound. I do not begrudge Leslie his sound proofs, however

obtained.

The failure modes of Szpilrajn's theorem are not just mathematical

curiosities but potentially real engineering problems. Perhaps Leslie

knows how to take care of these problems using trace-based logic, but I

don't see how his cited examples demonstrate this at all. How might a

logic based on sets of traces deal with each of the following

situations?

1. Distinguish the race implicit in a|b from the race-free situation

implied by ab+ba.

2. Reason about observations made by a team of distributed observers

who agree on what events happened but not in what order.

3. Reason about the possible interleavings of two concurrent sine

waves. (Presumably one falls back on some other technique for

combining traces than interleaving them.)

 He seemed to be fraternally suggesting that one way of avoiding

 such false claims may be to keep a closer contact between

 theory and practice

I found no hint of such a suggestion in Leslie's message.

-v

From lamport@src.dec.com Wed May 29 16:40:00 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 12 Nov 90 11:31:28 EST

To: concurrency

Subject: [lamport@src.dec.com: for the concurrency mailing list]

From: lamport@src.dec.com (Leslie Lamport)

Sender: meyer@theory.lcs.mit.edu

Date: 10 Nov 1990 1721-PST (Saturday)

Dear Dr. Roentgen,

I am writing to congratulate you on the success of your continuing

experiments with X-rays. I can imagine your dismay at the many

charlatans who have used your X-rays to justify "invisible ray"

theories based on fancy rather than science. And those silly French

physicists with their N-rays! How fortunate that we live in a society

where scientific validity is determined by rigorous experiment. I

presume you are aware of the disturbing developments in the Soviet

Union, where Dr. Lysenko attacks the work of Mendel on idealogical

grounds. I'm afraid it will be many years before the Soviets permit

sound research in genetics, since they value philosophical correctness

above empirical observation.

Sincerely yours,

Leslie Lamport

From jcm@cs.stanford.edu Wed May 29 16:40:01 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 13 Nov 90 08:32:56 EST

To: concurrency

Subject: philosophy

From: John C. Mitchell <jcm@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 12 Nov 90 11:01:53 -0800

One of the few things I remember from my first course in philosophy,

taught by John Perry, was that philosphy gets a bad name from the

fact that as soon as some subfield starts to become useful (e.g.,

mathematics, physiscs, astronomy), it stops being called philosophy.

To a certain degree, I think the same is true of "theoretical"

computer science. One example is parsing, and another seems

to be various forms of circuit and protocol verification.

From pratt@cs.stanford.edu Wed May 29 16:40:03 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 13 Nov 90 08:47:40 EST

To: concurrency

Subject: Re: [lamport@src.dec.com: for the concurrency mailing list]

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

Date: 12 Nov 90 13:20:57 PST (Mon)

Leslie's "fraternal suggestions" could easily create the impression

that he is for interleaving and I am against. This construes my

position too narrowly. Let me set this in the historical perspective

of a FOCS-76 paper by Ron Rivest and myself that Leslie attacked at

that time.

Ron and I had given an interleaving proof of correctness of our

solution of the mutual exclusion problem for two unreliable processes.

The gist of our proof was that the many paths through our code fell

into 6 classes, permitting a straightforward case analysis each case of

which had a simple argument. We found this program by making small

random perturbations to a tiny but buggy mutual exclusion protocol.

Even after looking at the four instructions of our resulting program

for a long time we had absolutely no intuitive understanding of why

that perturbation was correct and others very like it were not!

Leslie protested to us that such a proof as ours based on

classification of interleavings was inappropriate. He showed us a

proof of correctness of our procedure based on a theory he had evolved

of why it worked.

Had we considered our program to be the final word on this subject we

could well have agreed with Leslie that having an "insightful theory"

of our code was worthwhile. After all, the method used to find a prime

need not be the best method to convince someone of its primality.

However even assuming that Leslie's proof gave us the additional

insight into our procedure that he claimed it should, it seemed to us

that our procedure was surely just one of more to come, and that the

effort of making up such a theory after the fact was therefore wasted.

Furthermore our strategy for discovering new such algorithms depended

critically on the automatic nature of interleaving analysis; we had no

idea how to write a program which given a random algorithm would

generate a theory of how it might work, whereas we knew how to

enumerate and check all its interleavings mechanically in a short

time.

This was borne out by the subsequent extension of our work by Mike

Fischer and Gary Peterson, published in STOC-77. Whereas our solution

involved I think 7 states for each of two processes they had 3 states

each (3+3, and another solution with 4 states at one process and 2

states at the other, 4+2). They found their very economical solutions

by trying out various possible programs and checking all interleavings

of each until they found one that worked. They used two such checkers,

written independently by Mike and Gary.

Gary did come up with a Lamport-style after-the-fact theory of why

their 3+3 mutex procedure worked. Mike's comment to me about that

proof was that since they'd already mechanically checked correctness

simply by running their procedure through all possible interleavings,

this more conventional proof, which had to be manually checked, added

nothing to Mike's confidence in the correctness of their procedure, and

indeed seemed to him more likely to contain lacunae.

Now I can see clearly that such post hoc theories of these procedures

might have a certain esthetic attraction, and might even be useful. My

point is not to fault Leslie for coming up with such a theory but only

to demonstrate that I am not a religious zealot on the use of

interleaving analysis in concurrency. Indeed I still know of no

simpler proof of our FOCS-76 algorithm than our 6-case interleaving

analysis, and if I were writing it up today I would still prove it

correct in that way. Moreover I have no problem with the use of

interleaving in any situation to which it is applicable. In particular

I have no quarrel with Leslie on the applicability of logics based on

interleaving to the problems he listed in his flame.

I trust that Leslie uses a different logic to prove the correctness of

his algorithms from the one he uses to prove that those of us who have

in the course of twenty-five years gradually moved from writing

concurrent programs to reasoning abstractly about them have by so doing

turned themselves into charlatans. This was the only fraternal

suggestion I found in Leslie's two messages. A century ago the same

logic would have demonstrated with equal validity that Cantor was a

charlatan.

 Vaughan Pratt

From mischu@allegra.tempo.nj.att.com Wed May 29 16:40:03 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 13 Nov 90 08:49:13 EST

To: concurrency

Subject: Begin-the great debate-End

From: mischu@allegra.tempo.nj.att.com (Michael Merritt)

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 12 Nov 90 15:45:48 EST

While I can't pretend to follow all the subtleties

of the ongoing discussion, I do have a fairly specific

query for the proponents of partial orders, growing out

of my fairly extensive experience in modelling concurrent

algorithms using interleaving.

Specifically, I generally model operations as consisting

of a sequence of two atomic events, the beginning and

ending of the operation. When communication

is involved, these are described as requests and replies.

(E.g. Request-Read(register-x), Reply-Read(register-x,value).)

When operations run concurrently, their begin and end events

occur in an interleaved sequence. Using this approach,

I would resolve the a|b vs ab+ba debate by denoting a and

b by begin-a,end-a and begin-b,end-b, respectively.

Then a|b is the set of sequences:

{(begin-a,end-a,begin-b,end-b),

 (begin-b,end-b,begin-a,end-a),

 (begin-a,begin-b,end-a,end-b),

 (begin-b,begin-a,end-b,end-a)}

and ab+ba is the (very different set)

{(begin-a,end-a,begin-b,end-b),

 (begin-b,end-b,begin-a,end-a)}.

Similar causally distinct processes would

seem to be distinguished by such a semantics, as well.

When refining an operation, I never change the symbols

denoting the begin and end of the operation. I simply

change the (internal) operations that occur between

the begin and end actions.

The begin/end distinction is particularly useful at

interfaces, where the system issues a request and

the environment responds, or vice-versa.

I am interested in reactions to this method of

resolving the (over-emphasized, in my mind) debate.

On multiple observers of concurrent

systems: it seems to me that

an accurate model of such systems should distinguish

between the occurance of an event and its observation.

(I think even the physicists do this much.)

A run of such a system then consists of an interleaved sequence

of events and their observations. The subsequence

experienced by a single observer is obviously consistent

with a set of runs.

What's missing?

I'll send references and/or papers if anyone is interested

in seeing these ideas applied to algorithmic problems.

But I should say that I work within the formal framework

(I/O automata) devised by Nancy Lynch and Mark Tuttle.

Now, it is true that in reasoning about concurrent

systems I often find myself reasoning about partial

orders embedded in the language (set of sequences)

denoted by the system, and I am interested in tools

that would help me do that. But I am also reluctant

to give up induction as a proof technique. Why can't

I have both?

Michael Merritt

From pratt@cs.stanford.edu Wed May 29 16:40:04 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Wed, 14 Nov 90 10:42:20 EST

To: concurrency

Subject: Homotopy = homobject

From: Vaughan Pratt <pratt@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Tue, 13 Nov 90 15:55:21 PST

Cellular geometry arises both with categories, starting with

Ehresmann's 1965 notion of an n-category, and with concurrency as per

my POPL-91 paper and also as per a paper that David Murphy just brought

to my attention, ``Deterministic Asynchronous Automata,'' Mike Shields,

Proc. Formal Models in Programming (Ed. E.Neuhold, G.Choust), Elsevier

1985.

I'm not sure who in category-land cares about homotopy in n-categories,

but it is the basis for distinguishing true from false nondeterminism

in my POPL paper. As David points out to me, a special case of

homotopy can be found in Mazurkiewicz's independence relation: the

independence of a and b should be identified with the paths ab and ba

being homotopic, as in a|b. In ab+ba however these two paths are not

homotopic: one has to decide which of the ab or ba paths one is going

to follow.

While the following is obviously too cryptic for general consumption, I

am mentioning the idea here for two reasons: to mumble my obscure

thought processes concerning true nondeterminism out loud on the

concurrency and category lists, and to find out if this definition of

homotopy as homobject rings a bell with anyone. It seems so obvious

that I am fully expecting it to have been around for decades, at least

somewhere. It just isn't in the places I've looked so far. If it is

spelled out somewhere, any attempt on my part to expand on the mumbling

below may not be necessary.

Here's the idea. It seems to me that a very natural definition of

homotopy is arrived at by identifying homotopy with homobject, in the

enriched category sense. That is, the homotopy of the paths from x to

y is the homobject [x,y], or d(x,y) in the notation of Casley et al,

CTCS-89, Manchester, LNCS 389, the "distance" from point x to point y.

(The basic law governing homobjects is the abstract triangle

inequality, which is why it is appropriate to think of the homobject

[x,y] as an abstract distance d(x,y). This view is due to Lawvere

1974.)

Hence homotopy is governed principally by the triangle inequality, the

basic law of enriched category theory. In this sense the homotopy from

x to y and the distance from x to y become the same thing.

The homotopy of an ordinary category is discrete because its homobjects

are sets. The homotopy of a set is nonexistent because sets don't have

homobjects worth mentioning (all points are equidistant). The homotopy

of a poset is trivial because its homobjects contain either no elements

(i.e. paths) or one.

The intuitive notion of homotopy as an equivalence relation on paths

arises for categories whose homobjects are equivalence relations; then

[x,y] is a set (X,~) of paths and an equivalence ~ on paths whose

blocks are the homotopy classes. However it would seem nicer to take

arbitrary categories for homobjects, the homotopy of a 2-category.

The homotopy of an order-enriched category lies between that of

categories and 2-categories. The simplest case of this arises for a

monoid (1-object category), the basis for my recently developed "action

logic" ACT (pub/jelia.{tex,dvi} via ftp from boole.stanford.edu).

Action logic is accessible to anyone who understands lattice theory,

and employs no categorical language or explicit categorical concepts,

yet it contains interesting homotopy in the above sense, in a way that

Boolean logic and intuitionistic logic as cartesian closed posets do

not.

In a closed category homotopy is internalized just like a homobject,

via exponentiation/implication. That is, the entire homotopy [x,y] can

be compressed into the single point b^a or a=>b as its internal

representation. The homotopy so coded can then be recovered as the

homotopy from I (the unit of the closed category) to that point, via

the isomorphism between [I,a=>b] and [a,b]. Thus isomorphic copies of

all homotopy present in a closed category can be found radiating out

>from its unit.

In the case of action logic the homotopies so radiating out from I

(called 1 there) are exactly the theorems of action logic.

I know the above must look to many of you rather unrelated to the

traditional geometry of triangles, circles, and squares. Hopefully

someone will someday volunteer to draw enough pretty pictures of this

really very simple notion of homotopy to dispel any remaining mystery

about it. You will find a few such pictures at the end of the action

logic paper, of paths with fixed endpoints sweeping across surfaces,

which should fit right in with any prior intuition you had about

homotopy.

 Vaughan Pratt

From rvg@frege.stanford.edu Wed May 29 16:40:05 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Wed, 14 Nov 90 10:47:43 EST

To: concurrency

Subject: Begin-the great debate-End

From: Rob van Glabbeek <rvg@frege.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Michael Merritt's message of Tue, 13 Nov 90 08:49:13 EST

<9011131349.AA01750@stork>

Date: Tue, 13 Nov 90 16:53:13 PST

 Date: Tue, 13 Nov 90 08:49:13 EST

 From: mischu@allegra.tempo.nj.att.com (Michael Merritt)

 Sender: meyer@theory.lcs.mit.edu

 Date: Mon, 12 Nov 90 15:45:48 EST

 While I can't pretend to follow all the subtleties

 of the ongoing discussion, I do have a fairly specific

 query for the proponents of partial orders, growing out

 of my fairly extensive experience in modelling concurrent

 algorithms using interleaving.

 Specifically, I generally model operations as consisting

 of a sequence of two atomic events, the beginning and

 ending of the operation. When communication

 is involved, these are described as requests and replies.

 (E.g. Request-Read(register-x), Reply-Read(register-x,value).)

 When operations run concurrently, their begin and end events

 occur in an interleaved sequence. Using this approach,

 I would resolve the a|b vs ab+ba debate by denoting a and

 b by begin-a,end-a and begin-b,end-b, respectively.

 Then a|b is the set of sequences:

 {(begin-a,end-a,begin-b,end-b),

 (begin-b,end-b,begin-a,end-a),

 (begin-a,begin-b,end-a,end-b),

 (begin-b,begin-a,end-b,end-a)}

 and ab+ba is the (very different set)

 {(begin-a,end-a,begin-b,end-b),

 (begin-b,end-b,begin-a,end-a)}.

 I am interested in reactions to this method of

 resolving the (over-emphasized, in my mind) debate.

This idea occurs in many teksts on interleaving semantics. The

following formulation is taken from HOARE 85: `The actual occurrence

of each event in the life of an object should be regarded as an

instantaneous or an atomic action without duration. Extended or

time-consuming actions should be represented by a pair of events, the

first denoting its start and the second denoting its finish.'

The idea of splitting events with a duration is a very powerful one,

and makes that many features of concurrent systems can in principle be

modelled adequately in interleaving semantics. However, in a lot of

cases one can doubt whether it is *natural* to model a concurrent

system in interleaving semantics only, even if this can be done

theoretically.

Take for instance the extremely useful distinction between

functional behaviour and performance. The idea is that for a given

(distributed) system one first studies whether it is functionally

correct, and only when this has been shown (ideally), one moves to

questions concerning its time/space complexity. The problem that we

see in the above `solution' for dealing with actions with

duration, is that the issues of functional behaviour and performance

get mixed up. The following trivial example to illustrate this point

comes from Frits Vaandrager, but is for the opportunity adapted by me

to a setting with biscuit machines.

Suppose we are interested in a vending machine which produces two

biscuits when a coin is inserted and then returns to its initial

state. The machine should satisfy the following trace-specification

S:

 2*(coins - 1) <= biscuits <= 2*coins,

i.e. for each sequential trace of the machine we should have that the

number of occurrences of the action biscuit in this trace is bounded

by 2 times the occurrences of the action coin and 2 times (coins -1).

A first proposal for a machine with this property is described by the

recursion equation

VMS = coin ; bisc ; bisc ; VMS .

An alternative proposal could be

VMS' = coin ; (bisc || bisc) ; VMS' .

In interleaving semantics we of course have: VMS = VMS'. This means

that under certain conditions we may infer that VMS and VMS' have the

same functional behaviour. So as soon as we have shown in some

appropriate calculus that VMS satisfies S, we can conclude that also

VMS' satisfies S. We now can make two observations:

1. Especially when dealing with the functional aspects of the system

the above choice of actions seems very natural. Working with actions

begin-coin, end-coin, etc. gives an overhead which nobody would like

to have. The traditional problem of interleaving semantics, namely

combinatorial state explosion, will arise even faster in case actions

are split. Moreover the functional equivalence of the two machines

can not so easily be determined.

2. Intuitively the situation concerning performance is clear: machine

VMS' is *faster* than machine VMS because it will work in parallel. So

why not build a semantic theory in which this intuition can be

formalised?

In the view of Frits and me the above considerations strongly plead

for a semantic theory with at least *two* notions of equivalence: (1)

an interleaving equivalence for dealing with functional aspects, and

(2) a non-interleaved equivalence for dealing with performance. The

idea is then that at the non-interleaved level actions can have

duration and structure, whereas at the interleaving level one

abstracts from these aspects and imposes a total order on the actions.

One of the options for the non-interleaved equivalence - in the spirit

of Hoare and Merritt - is to say that two processes are to be regarded as

equivalent iff their splitted versions have the same interleavings.

This non-interleaved semantics lays somewhere between interleaving

semantics and partial order semantics.

 Similar causally distinct processes would

 seem to be distinguished by such a semantics, as well.

However not *all* causally distinct processes can be distinguished by

such a semantics. Especially when permitting autoconcurrency (the

independent execution of two events which on the chosen level of

abstraction are considered to be occurrences of the same action) the

proposed semantics falls short in a number of aspects:

Consider the processes (abc || b) + (ab || bc) and (ab || bc).

Here ab is the sequential composition of actions a and b, ab || bc is

the parallel and independent composition of the processes ab and ac,

and P + Q denotes a (nondeterministic) process that behaves either

like P or like Q. If we don't care for branching time the left hand

side process can be represented by the automata:

 -----a---->-----b---->*

 ^ ^ ^

 | | |

 c c c

 | | |

 | | |

 -----a---->-----b---->*-----c---->*

 ^ ^ ^ ^

 | | | |

 b b b b

 | | | |

 | | | |

 START-----a---->*-----b---->*-----c---->*

After splitting al actions in two the automaton looks like:

 -a0->-a1->*-b0->*-b1->*

 ^ ^ ^ ^ ^

 | | | | |

 c1 c1 c1 c1 c1

 | | | | |

 | | | | |

 -a0->-a1->*-b0->*-b1->*

 ^ ^ ^ ^ ^

 | | | | |

 c0 c0 c0 c0 c0

 | | | | |

 | | | | |

 -a0->-a1->*-b0->*-b1->*-c0->*-c1->*

 ^ ^ ^ ^ /^ ^ ^

 | | | | / | | |

 b1 b1 b1 b1 / b1 b1 b1

 | | | | / | | |

 | | | |/ | | |

 -a0->-a1->*-b0->*-b1->*-c0->*-c1->*

 ^ ^ ^ /^ ^ ^ ^

 | | | / | | | |

 b0 b0 b0 / b0 b0 b0 b1

 | | | / | | | |

 | | |/ | | | |

 START-a0->*-a1->*-b0->*-b1->*-c0->*-c1->*

By mirroring the right wing of the automaton in the displayed diagonal

one easily sees that all interleavings originating from (abc || b) are

already present in the big square (ab || bc). Hence the two processes

(abc || b) + (ab || bc) and (ab || bc) (if allowed to exists) are

equivalent in Merritt's semantics. Nevertheless one can argue that

(ab || bc) can be executed *faster* than (abc || b) + (ab || bc):

If all actions a, b and c are considered to take one hour each, and

the automata don't wait needlessly, the left hand automaton has the

possibility to need one hour more than the right hand one.

A slightly more complicated example shows that in fact it makes a

difference whether actions are split in two or in three (considering

start, end and halfway actions for instance)!

 When refining an operation, I never change the symbols

 denoting the begin and end of the operation. I simply

 change the (internal) operations that occur between

 the begin and end actions.

In case you don't allow autoconcurrency - as occurs in the example

above - that's fine. In order to capture the more general case, where

processes like the one above are considered, you have to do some

bookkeeping linking end actions explicitely to begin actions.

Otherwise the operation of refining an action fails to be a congruence

for your semantical equivalence, i.e. cannot be defined consistently.

Counterexamples on request.

 The begin/end distinction is particularly useful at

 interfaces, where the system issues a request and

 the environment responds, or vice-versa.

Don't misunderstand me; I do think the distinction can be applied usefully.

 On multiple observers of concurrent

 systems: it seems to me that

 an accurate model of such systems should distinguish

 between the occurance of an event and its observation.

 (I think even the physicists do this much.)

 A run of such a system then consists of an interleaved sequence

 of events and their observations. The subsequence

 experienced by a single observer is obviously consistent

 with a set of runs.

 What's missing?

The coordination, at the end of each single run of the investigated

system, of the data obtained by different observers.

Suppose that the system (a || b), where the occurrences of a and b may

even be considered to be instantaneous events, runs only once, and is

observed by two experimentors (traveling in different inertial frames

for instance). Then it may happen that one of them observes ab

whereas the other observes ba. If they now would simply drop there

observations into a big bag of interleavings where also sequences that

where observed during other runs of the system are gathered, their

work does not provide evidence for the fact that they are observing

(a || b) rather than (ab + ba). However, if the two meet after their

observations and compare notes, they may realize that they percieved the

very same run of the system in a different way. From this they

conclude that a and b must have been executed independently.

 I'll send references and/or papers if anyone is interested

 in seeing these ideas applied to algorithmic problems.

Send me.

 But I should say that I work within the formal framework

 (I/O automata) devised by Nancy Lynch and Mark Tuttle.

Oh... Well, send me anyway.

 Now, it is true that in reasoning about concurrent

 systems I often find myself reasoning about partial

 orders embedded in the language (set of sequences)

 denoted by the system, and I am interested in tools

 that would help me do that. But I am also reluctant

 to give up induction as a proof technique. Why can't

 I have both?

Yes, why can't you?

 Michael Merritt

Rob van Glabbeek

From pratt@cs.stanford.edu Wed May 29 16:40:05 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Wed, 14 Nov 90 10:53:35 EST

To: concurrency

Subject: DO the great debate CONTINUE

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Tue, 13 Nov 90 08:49:13 EST.

 <9011131349.AA01750@stork>

Date: 13 Nov 90 12:30:27 PST (Tue)

 From: mischu@allegra.tempo.nj.att.com (Michael Merritt)

 Specifically, I generally model operations as consisting

 of a sequence of two atomic events, the beginning and

 ending of the operation

 ...

 What's missing?

In fact for deterministic parallel constructs this is a provably sound

abstraction (or contrapositively, languages are a fully abstract model

with respect to the semantics defined by just sets of such begin-end

pairs). Theorem 2.3 of Gischer's thesis (Stanford report

STAN-CS-84-1033, 1984) is that two pomsets are language equivalent iff

they are digram equivalent. (I don't know why Jay omitted this theorem

>from the journal version, TCS 61:199-224.) That is, take the

operations of one's language to be all pomset-definable operations

(namely concatenation, concurrence, N(a,b,c,d), etc.), and let the

variables range over arbitrary sets of strings. Then the resulting

equational theory, consisting of all equations between terms of this

language that are universally true in this interpretation, is the same

theory as obtained when the strings are restricted to strings of length

two.

Perhaps you don't care about *all* pomset definable operations, but

presumably you at least care about two of them, namely concatenation

and interleaving. This case can be formally defined and treated

without mentioning pomsets or true concurrency at all. In this case

the theorem is just about how sets of strings combine under

concatenation and interleaving. Jay's theorem 2.3 applies equally to

this restricted case.

This seems to provide positive support for the two-event interpretation

of operations. But in fact there *is* something missing, namely

nondeterminism. (Pomset definable operations such as concurrence,

although indeed nondeterministic from a false-concurrency perspective,

are properly considered deterministic in the true concurrency world.)

In 1988 Van Glabbeek and Vaandrager asked whether digrams sufficed for

the richer language obtained by expanding this deterministic language

of pomset-definable operations with the nondeterministic choice

operator p+q, interpreted simply as language union. Their initial

answer was that a gap now appeared between digrams and trigrams, which

they showed with an automaton they called the "owl" because of its

shape. They have subsequently extended this result to show that

(n+1)-grams make finer distinctions than n-grams for all n. (This

incidentally is a *very* nontrivial result, which took them a long time

to find. I tried very hard even just to separate 3 from 4 without

success, I guess my brain is out to lunch these days.)

So why don't practitioners notice these phenomena in their work?

Presumably because they don't leap out at the casual observer. For

just this reason 19th century engineers did not notice discrepancies in

their day-to-day work due to relativity and quantum mechanics. It is

true that any engineer whose measurements depended on the velocity of

light not changing between summer and winter by an amount as large as

twice the earth's orbital velocity would be grateful for relativity,

but how many engineers in those days felt this was a serious problem?

Nowadays surveyors who use $10,000 interferometers routinely in the

field to measure hundreds of feet to an accuracy of hundredths of an

inch would find these seasonal variations in the velocity of light very

distracting if they existed. The earth's orbital velocity is 29.8 km/s

and light travels at 299,800 km/s, so according to the ether theory the

length of a 500-foot boundary would appear to be gently oscillating at

32 nanohertz with a peak-to-peak amplitude of 1.2 inches.

By the same token Wien's law did have an odd bump, but how many

practicing chemical and other engineers of the day had their work

thrown off by it?

Nowadays quantum mechanics explains a host of phenomena that would have

started accumulating without explanation at an alarming rate during

this century had quantum mechanics not been in place to account for

them.

But to early 20th century engineers relativity and quantum mechanics

were just theoretical curiosities that one would only notice if one

looked extremely closely in the neighborhood of where their delicate

effects were to be felt. Perhaps more strikingly, it has been said

that a common view among late 19th century physicists was that the

structural aspects of physics had been fully elucidated, with the bulk

of the remaining work being a matter of measuring everything more

accurately.

I suggest that we have much the same situation here. Take the largest

concurrent algorithm that anyone has ever proved correct. Is the

future of concurrency just a matter of extending the proof techniques

that worked there to yet larger code fragments? I don't think so, for

the various reasons I gave in my message to David Luckham. As we pass

to more widely distributed computations, as the ratio of end-to-end

time over bit-to-bit time increases, as observations become more

complex, and as glitching intrudes itself into yet more situations, the

linear-time model will become a Procrustean bed that some may continue

to find the equal of a Beautyrest mattress but that many others will

find unreasonably painful.

 Now, it is true that in reasoning about concurrent systems I

 often find myself reasoning about partial orders embedded in

 the language (set of sequences) denoted by the system, and I am

 interested in tools that would help me do that. But I am also

 reluctant to give up induction as a proof technique. Why can't

 I have both?

I could not ask for a better example of reason (i) in my 1986 IJPP

paper (obtainable by ftp from boole.stanford.edu as ijpp.{tex,dvi},

instructions in Boole's /pub/README) for why people prefer

interleaving. Over the years people have built up a substantial

workshop full of tools for manipulating strings and sets of strings.

Put them in a partial order environment and they feel disoriented and

deprived of their tools.

My answer to this reason was that we should remove it by building the

tools needed for a universe in which time is partially ordered. To

this end my IJPP paper developed a number of language constructs some

of which like orthocurrence had no analog in the world of linear

orders, and some of which like network composition could be defined for

linear orders but were then vulnerable to the Brock-Ackerman anomalies

in the presence of nondeterminism.

With regard specifically to induction, my recent paper "Action Logic

and Pure Induction" (similarly obtainable from Boole as

jelia.{tex,dvi}) shows how to do induction in a wide range of

situations, going well beyond languages and binary relations. In

commutative action logic the "horizontal" operation ab becomes

concurrence, a|b. Yet one can still perform induction on iterated

concurrence. Another interpretation of ab is orthocurrence, as per my

IJPP 86 paper. Again one can do induction with iterated

orthocurrence. And as always one can do induction on iterated

concatenation, i.e. the usual Kleene star but in other settings than

languages and relations, e.g. pomsets, where the concatenation of

pomsets is only linear when the given pomsets are linear.

If all you want is the ability to reason as you have always done by

induction, that is no reason to replace pomsets by strings.

Tony Hoare disagrees with me that unfamiliarity with partially ordered

time is a major obstacle to its greater adoption. I confess I don't

have any strong evidence (though the above is one data point), but I do

have a very strong feeling that if people felt that they could move

>from linear time to partial without giving up *any* of their tools, and

also appreciated the advantages I and others have been pointing out for

partial orders, there would be a lot more such migration than at

present.

The argument is sometimes made that linear time is fully abstract for

concurrent computation and partial time is not (i.e. it makes

unobservable distinctions), e.g. Bengt Jonsson in POPL-89, Jim Russell

in FOCS-89, and I think others (I recently saw a mention by Tony Hoare

of a similar sounding result by Mark Josephs). While this is true in

the domain of Szpilrajn's theorem, outside its domain what happens is

that partial time becomes fully abstract while linear time becomes

unsound (asserts false equalities), see my paper on this with Gordon

Plotkin (pp2.{tex,dvi} obtainable from Boole as above).

Given the choice of two theories such that, as one moves in and out of

the domain of Szpilrajn's theorem, one theory varies between being

fully abstract and not fully abstract, but always remaining sound,

while the other varies between sound and unsound, but always remaining

fully abstract, which would *you* choose?

-v

From lamport@src.dec.com Wed May 29 16:40:06 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 16 Nov 90 18:28:10 EST

To: concurrency

Subject: Reply to Pratt

From: lamport@src.dec.com (Leslie Lamport)

Sender: meyer@theory.lcs.mit.edu

Date: Thu, 15 Nov 90 11:43:10 -0800

Vaughan asks

 How might a logic based on sets of traces deal with each of the

 following situations?

 1. Distinguish the race implicit in a|b from the race-free situation

 implied by ab+ba.

 2. Reason about observations made by a team of distributed observers

 who agree on what events happened but not in what order.

 3. Reason about the possible interleavings of two concurrent sine

 waves. (Presumably one falls back on some other technique for

 combining traces than interleaving them.)

The answer is that I don't know and I don't care. These questions

never arise in my work.

How can it be that I find these issues to be irrelevant when Vaughan,

who's an intelligent and (generally :-) reasonable computer scientist,

considers them important? To answer this, I must begin with a

discussion of the nature of science.

Any science is ultimately concerned with the real world. A scientific

theory consists of a mathematical formalism together with a way of

relating that formalism to the real world. For example, Newtonian

mechanics consists of a mathematical theory of point masses moving

along trajectories in mathematical 3-space, together with a way of

relating those mathematical objects to the motions of real objects,

such as planets. Note that not every concept in the mathematcal

formalism need correspond to something in the physical reality--for

exaample, the vector potential of classical electromagnetism has no

physical counterpart.

Any useful scientific theory has a limited domain of application. A

theory-of-everything is generally good for nothing. Newtonian

mechanics can't describe the flow of fluids, for which one needs a

theory containing mathematical concepts corresponding to friction and

viscosity.

For computer science, the real world usually consists of computers

(hunks of wire and silicon) executing programs. Theories in computer

science are based on such diverse mathematical formalisms as Turing

machines, temporal logic, and CCS.

To judge a scientific theory, one must know what its claimed domain of

applicability is. The work of mine that I mentioned in an earlier

message involves a theory whose domain is the specification and

verification of functional properties of concurrent systems. I won't

describe this domain here, except to note that "functional properties"

include eventual termination and upper and lower time bounds on

termination; they exclude probability of termination and expected time

to termination.

Computer scientists have tended to be vague about the domain of

applicability of their theories. As a result, people who work in one

theory often think their theory is good for everything. For example, I

have heard people say that the algebraic laws of CCS make it good for

verifying distributed algorithms. CCS works fine for verifying biscuit

machines. It is hopelessly impractical for verifying even the simplest

distributed spanning tree algorithm, let alone the more complex

algorithms that system builders use. Robin Milner realizes this (I've

discussed it with him), but many of his disciples don't.

This doesn't mean that CCS is worse than my theory; just that it has a

different domain of applicability. It is as silly to say that CCS is

better or worse than my theory as it is to say that physics is better

or worse than biology. Human nature being what it is, almost all

physicists believe in their hearts that physics is more important than

biology. However, physicists understand that not everyone believes

this, so a university will teach biology even if the dean of faculty is

a physicist. One wishes that computer scientists were as

understanding.

I think there are two general reasons why a concept that's important to

theory A may be absent from theory B:

 (i) The concept is irrelevant to the domain of applicability of

 theory B.

(ii) The concept belongs to the mathematical formalism of theory A

 and, even though the two theories have overlapping domains of

 applicability, theory B's method of translating reality into

 mathematical formalism makes the concept irrelevant or

 meaningless.

Case (ii) is the more insidious cause of misunderstanding. People get

so used to their favorite theory that they confuse its mathematical

formalism with physical reality. For example, some advocates of CCS

will say that my theory is deficient because it doesn't distinguish

between internal and external nondeterminism. They don't realize that

internal/external nondeterminism is part of the mathematical formalism

of CCS, not a property of physical reality, so there is no reason why

it should be a meaningful concept in another theory. This error is not

confined to one side of any ideological fence. A colleague of mine

once asserted that he could prove any kind of property of a program,

since he could prove safety and liveness properties and any property is

the conjunction of a safety and a liveness property. He was confusing

the real-world concept of a property (in "prove any kind of property")

with the mathematical concept of a property as a set of behaviors (in

"any property is the conjunction ...").

It can be argued that (ii) is an unavoidable source of

misunderstanding, since one can discuss physical reality only in terms

of mathematical models. I don't think the situation is so hopeless.

We can make statements about the physical world like "if you press this

key, then the system crashes" that mean approximately the same thing to

everyone, regardless of his philosophical persuasion.

I think that Vaughan's question 3 (sine waves) is an example of (i) and

his question 2 (teams of observers) is an example of (ii). His

question 1 (race conditions) is more interesting and warrants

discussion.

A race condition is bad if it makes the circuit behave incorrectly.

When verifying circuits, one is interested only in proving that a

circuit behaves correctly, not that it behaves incorrectly. So, one

never has to prove the existence of a race condition. The

specification of the circuit describes its external behavior, and a

race condition is something that happens inside the circuit. So,

proving the absence of a race condition is never a primary goal. If

there is a potential race condition that never actually occurs--for

instance, because of the initial conditions--then the proof will

contain a lemma (a mathematical formula) whose physical interpretation

will be the absence of a race condition.

However, the concept of a race condition is not irrelevant. A race

condition on its inputs might cause a circuit component to produce an

invalid output voltage--a "1/2" instead of a "0" or a "1". In this

case, a mathematical model of the component that allows only the

outputs "0" and "1" is inadequate. With such a model, the domain of

applicability of the theory would not include the actual circuit.

Fortunately, with more sophisticated models (for example, by including

a "1/2" output), I believe it is possible to use my theory to reason

about real circuits. (I haven't done such reasoning myself, but others

have using similar theories.) The concept of a race condition is

relevant for modeling the real circuit in the mathematical formalism,

but it doesn't appear in the formalism itself.

Scientific theories are useful because the mathematical formalism is

simpler than physical reality. Newtonian physics eliminates an awful

lot of important details--like you and me--when it represents the earth

as a point mass. Those details are irrelevant for computing planetary

orbits. They are not irrelevant for studying human history. Science

is the art of simplification.

 A theory should be as simple as possible, but no simpler.

 - Albert Einstein

The test of a scientific theory is how well it helps us understand

and/or manipulate the real world.

I will close with a word about mathematics. Many computer scientists

aren't scientists at all; they're mathematicians. They work in the

domain of mathematical formalism, with no concern for its application

to the real world. That's fine. The world needs pure mathematicians

as well as scientists. But it's important for mathematicians to

realize that they're not scientists. Number theorists don't criticize

Newtonian mechanics for using real numbers rather than integers.

Computer-scientist/mathematicians should be equally sensible.

From sf@csli.stanford.edu Wed May 29 16:40:07 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 16 Nov 90 22:13:04 EST

To: concurrency

Subject: [sf@csli.stanford.edu: Re: Reply to Pratt]

From: Sol Feferman <sf@csli.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Fri, 16 Nov 90 18:28:10 EST

Date: Fri, 16 Nov 1990 17:40:07 PST

To: meyer@theory.lcs.mit.edu

Bravo! (I don't know anything about any of the theories involved but

I agree completely with your general comments.)

From lynch@holmes.lcs.mit.edu Wed May 29 16:40:08 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sun, 18 Nov 90 17:47:34 EST

To: concurrency

From: lynch@holmes.lcs.mit.edu (Nancy A. Lynch)

Sender: meyer@theory.lcs.mit.edu

Subject: On Lamport and Milner

Date: Sat, 17 Nov 90 07:03:36 EST

I have been following the debate about trace models with interest, and

liked Leslie Lamport's most recent comments.

They do seem to get at the heart of the differences between the different

research communities.

One of the most interesting (and troubling) comments he makes is the remark

about CCS not being useful for verifying distributed algorithms of any

complexity; supposedly, Robin Milner agrees with this (!).

Now, I thought I understood that a major goal of process algebraic research

WAS to verify complex concurrent and distributed algorithms.

I would like to hear more about this issue from proponents of CCS-like

methods. More specifically, can anyone tell me clearly what

types of algorithms such methods are suited for verifying, and what are

outside their domain of applicability?

If the methods so far have really had only limited success, then

is this limitation inherent in the methods

(or their intended domain of applicability)

or just a matter of time?

Nancy Lynch

lynch@theory.lcs.mit.edu

From pratt@cs.stanford.edu Wed May 29 16:40:09 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sun, 18 Nov 90 17:52:16 EST

To: concurrency

Subject: Reply to Lamport's reply to Pratt

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Fri, 16 Nov 90 18:28:10 EST.

 <9011162328.AA05325@stork>

Date: 18 Nov 90 00:04:52 PST (Sun)

[The story so far.] On Oct. 21 David Luckham queried me about an

attitude to partial orders that he'd run into during discussions with

ONR-funded software people. I shared my reply to David with this list,

which led to considerable discussion. On Nov. 6 Leslie Lamport entered

the discussion with a complaint that certain parties to this discussion

whom he did not name were claiming that he couldn't do what he was

doing, an assertion that he could indeed do what he was doing, and a

deduction that those parties must therefore be charlatans.

I pleaded innocent to the complaint, agreed with the assertion, and, in

case Leslie had me in mind as one of the charged parties, attempted to

refute the deduction with some situations where partial orders helped.

Leslie's reply of yesterday (Nov. 16) put my situations into three

classes: those outside his world, e.g. sine waves, those in his world

but independent of his theory of his world, e.g. multiple observers,

and those that potentially conflicted with his theory but which he felt

confident his theory could be extended gracefully to handle, e.g. race

conditions. He concluded by chastising mathematicians who criticize

what scientists do. [Now read on.]

This conclusion leaves me puzzled. While Leslie has defended himself

admirably, I cannot tell what criticism stung him into defense. Let me

repeat what I said on Nov. 12:

 There have been various claims on this list about limitations

 of interleaving, but none that I recall making the claims

 Leslie was complaining about, nor any that conflicted with the

 evidence he adduced in support of his complaint.

Leslie's techniques seem to be fine for their purposes. I don't know

why this message isn't getting through.

Echoing Sol Feferman's "Bravo," I heartily concur with the rest of

Leslie's stimulating essay, to within the following differences.

 The answer is that I don't know and I don't care. These

 questions never arise in my work.

I know that and I didn't care at first. Robert Hall supplied the

necessary existence proof that there were people on the list who did

care, or I would have let the matter rest with just the Nemeti quote

>from LOP-81 (LNCS 131, p.419), my initial response to Leslie's opening

message.

Although Leslie's view of concurrency is adequate for him, it is also

somewhat of a straitjacket. There are aspects of concurrency that he

does not find worth studying but that others do. Perhaps the

implications of those aspects will never insinuate themselves into

Leslie's world, but who knows? Which residents of Nagasaki and

Hiroshima foresaw the abrupt intrusion of the abstract equation E=mc^2

into their world?

 Fortunately, with more sophisticated models (for example, by

 including a "1/2" output), I believe it is possible to use my

 theory to reason about real circuits.

Yes, this is an excellent idea. Its origins are surely shrouded in

history, but it can be found recently in van Glabbeek and Vaandrager's

PARLE-87 notion of ST-bisimulation, with Leslie's 1/2 represented as

marked transitions. It is also the basis for the "prosset" model

Gaifman and I described in LICS-87, a model described more elegantly in

"Temporal Structures" (in LNCS 389 21-51, also STAN-CS-89-1297, also

available by ftp from boole.stanford.edu as man.{tex,dvi}, and to

appear in Math. Struct. in CS 1:2), in terms of the "idempotent closed

ordinal" 3'. In Leslie's notation 3' = {0,1/2,1}. This important

(non-cartesian-closed) ordinal is also the dualizing object 3 in the

Stone-Birkhoff duality described in my POPL-91 paper, though space and

time have conspired to let me do little more than name 3 in that paper;

a proper account of the dualizing role of 3 will appear in a subsequent

paper. The essential idea is that {0,1/2,1}, or {0,T,1} as I call it

in the POPL paper, refer respectively to before, transition, and

after. A race is characterized by the possibility of having two

processes both being in state T. The function of mutual exclusion is

to rule out that combination. This is the essential distinction

between a|b and ab+ab: both permit 8 of the 9=3^2 combinations in

(0,T,1)x(0,T,1), but only the former permits the 9th combination (T,T),

I apologize for the large amount of algebraic machinery in which we

have embedded Leslie's 1/2 in some of this work, like Sigourney Weaver

in her exoskeleton in Aliens. Those wishing to meet 1/2 in a more

comfortable outfit will have to await our return to planet Earth,

hopefully soon. Meanwhile let me assure you that this unnerving

exoskeleton really does amplify power just like the ads promise. I had

no idea by how much until my students started using it on big jobs.

 CCS works fine for verifying biscuit machines. It is

 hopelessly impractical for verifying even the simplest

 distributed spanning tree algorithm, let alone the more complex

 algorithms that system builders use. Robin Milner realizes

 this (I've discussed it with him), but many of his disciples

 don't.

You could get both Robin and me to agree to this, much as perhaps Robin

and certainly I would agree that the axiomatic theory of vector spaces

is fine for treating sums and scalar multiples of vectors, but is

hopelessly impractical for inverting even the most well-conditioned

matrices, let alone the ill-conditioned matrices that arise in

transcontinental surveys. Surveyors just want their programs to give

the right results, their passion for the axiomatic theory of vector

spaces rarely exceeds that of Leslie's for CCS.

 But it's important for mathematicians to realize that they're

 not scientists.

This is indeed the popular, standard, and authorized view. Nicolas

Goodman makes a strong argument for the opposing view in a recent

article entitled "Mathematics as Natural Science," JSL 55(1)182-193

(March 1990).

My own view (I do hope no one is actually paying to receive this

stuff:-) strays even further from the standard than Goodman's. I think

of us as dealing with incoming data from the world mainly by inventing

theories through which this data is filtered to yield predictions about

the world; that, mutatis mutandis (important), natural selection

selects for those theories whose predictions are more accurate; and

(the most controversial bit) that the theories most successful at

predicting are sufficiently like the most successful theories of pure

mathematics that the latter should prove to have good survival value

while the former could with little violence be turned into respectable

mathematics. The controversial bit has the merit that both directions

are in principle testable given suitable advances in AI and brain

mapping respectively.

 A theory-of-everything is generally good for nothing... For

 computer science, the real world usually consists of computers

 (hunks of wire and silicon) executing programs.

It has not escaped the attention of some contributors to concurrency

theory that it is starting to look like a "theory of everything." This

is the result of abstracting away wire, silicon, and programs to leave

a set of abstractions that could as readily be applied to the

interactions of galaxies of stars, swarms of bees, and rioting soccer

fans as to processes communicating via ethernets, IP/TCP, and remote

procedure calls.

However concurrency theory is only a "theory of everything" in the same

sense that number theory and group theory are "theories of everything."

Just as number theory is more than the theory of counting sheep and

beans, and group theory more than a means of proving that quintics

don't have solutions expressible in radicals, so is concurrency theory

more than the theory of what concurrent "hunks of wire and silicon"

do.

There are then two roads one may follow here, the conservative and the

liberal. The conservative road requires keeping wire and silicon in

mind as the ultimate domain of application of concurrency research.

The liberal road replaces "computer science" by "information science"

and seeks instead a theory of information processing that will turn out

to be applicable to information processors in general, whether dumb

like galaxies, smart like bees and computers, or brilliant like us

(pats all round).

I am most interested in the liberal road because it seems to me that

the techniques of both computer science and engineering, provided they

are not artificially constrained, should turn out to be broadly

applicable.

For example today's factory designers have only relatively primitive

tools to help them develop a design on line, test it out to get a

better feeling for how well it might work in practice, turn it into a

detailed blueprint for a factory, and make it the basis both for the

ongoing operation and maintenance of the factory and for future

modifications and redesigns.

The analog of this scenario for software systems is much further along,

though it too has far to go or software research would have nothing

left to do. There is no reason why the foundations of the latter

should not also prove to be equally useful foundations for the former.

If this is the case then the taxpayers' research dollars are spent more

efficiently by working out concurrency theory so as to fully realize

its benefits in all domains to which it is applicable.

I want very badly to follow the liberal road. My big problem has

always been that I don't know how to write a good program until I

understand the theory of what that program is about. Hence my current

preoccupation with theory. This is now well along however, and I hope

to be able to start designing and implementing soon. I'm hoping that

many of Leslie's excellent ideas will prove useful in aspects of this

work.

 Vaughan Pratt

From luca@cogs.sussex.ac.uk Wed May 29 16:40:09 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 19 Nov 90 12:07:45 EST

To: concurrency

Subject: Two papers on begin-end

From: Luca Aceto <luca@cogs.sussex.ac.uk>

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 19 Nov 90 14:20:31 GMT

In the debate on "True Concurrency vs. Interleaving" on the

concurrency mailing list some of the recent messages have been

concerned with the modelling of the behaviour of concurrent systems

under the assumption that actions have a beginning and an ending.

We have been working on semantic theories for process algebras based

on variations on the above idea and our results are reported in a

series of papers, which are available to whoever requests them.

L Aceto, M Hennessy

 Towards Action Refinement in Process Algebras

 Luca Aceto and Matthew Hennessy

 ABSTRACT

 We present a simple process algebra which supports a form of

 refinement of an action by a process and address the question

 of an appropriate equivalence relation for it. The main result

 of the paper is that an adequate equivalence can be defined in

 a very intuitive manner. In fact we show that it coincides with

 the "timed-equivalence" proposed by one of the authors in [H88].

 This is a bisimulation-like equivalence based upon the idea of

 splitting every action into two sub-actions, the beginning

 and the end. For the language which we consider this equivalence

 also coincides with a variation, called "refine eqivalence", in

 which the beginings and endings of actions with the same name must

 be properly matched.

Reference: [H88] M. Hennessy, Axiomatizing Finite Concurrent Processes,

 SIAM Journal on Computing 17(5), pp. 997-1017, 1988.

 Adding Action Refinement to a Finite Process Algebra

 Luca Aceto and Matthew Hennessy

 ABSTRACT

 In this paper we present a process algebra for the specification

 of concurrent, communicating processes which incorporates operators

 for the refinement of actions by processes, in addition to the usual

 operators for communication, nondeterminism, internal actions and

 restrictions, and study a suitable notion of semantic equivalence

 for it. We argue that action-refinements should, in some formal

 sense, preserve the synchronization structure of processes and their

 application to processes should consider the restriction operator

 as a "binder". We show that, under the above assumptions, the weak

 version of the refine equivalence introduced in [AH89] is preserved

 by action refinement and, moreover, is the largest such equivalence

 relation contained in weak bisimulation equivalence. We also discuss

 an example showing that, contrary to what happens in [AH89],

 refine equivalence and timed equivalence are different notions of

 equivalence over the language considered in this paper.

Reference: [AH89] This is the paper mentioned above.

-

From rounds@caen.engin.umich.edu Wed May 29 16:40:10 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 19 Nov 90 12:12:42 EST

To: concurrency

Subject: can't resist a comment

From: rounds@caen.engin.umich.edu (Prof Rounds)

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 19 Nov 90 12:09:21 EST

I'd like to throw two cents' worth into

what seems to be one of the best ``bulletin board''

discussions I've seen in a long time.

I agree with both Leslie Lamport and Vaughan Pratt.

A mathematical model is always just that; it represents

our cognitive abstraction of what reality we perceive.

The theorems true in the model make predictions, which

we then reinterpret in the real world, at least that

part of the world which interests us.

The best models simplify and constrain reality enough

so that they make really strong predictions

(I would put the finite-state machine in that category.)

Of course, in a particular domain, the model may not

account for observed phenomena, and may in fact be

contradicted. If one wants to predict these new

phenomena, one must refine the mathematical model.

This process, though painful for those who believe in the

old model, is at the heart of scientific progress.

The preceding paragraph talked about science; there is

another point to make about engineering. In the

field of computers we have the unprecedented opportunity

to create real-world systems which conform to our

mathematical perceptions. So, machines were designed

to mirror our conception of digital computation;

programming languages help us express mathematical algorithms,

and so forth. The fascinating thing about concurrency theory

is that it seems to be on the fence between science and

engineering. We can use it to ``explain'' race conditions,

or we can use it to help us design programs (witness

CSP, occam, and the transputer.) Of course this was

true about computability theory itself in the 30's and 40's.

Witness the creation of the stored-program machine to

embody the Universal Turing machine.

One other nice thing about mathematical models is that

they port themselves into other domains of applicability.

About 4 years ago I was working with a graduate student,

Bob Kasper, on some problems in natural language processing.

The problem involved specifying disjunctive information

in record-like structures -- more or less like variant record

types are specified in Pascal. We saw a simple way to

understand and to implement a system, using extremely

basic notions from concurrency theory. Essentially one

views a complex record as a transition system. The states

are the individual nodes, and the transitions are the field designators.

Then the simple logic of Hennessy and Milner, or the simplest

possible subcase of deterministic PDL, becomes a way

of declaring record types. Once this is seen, there are

a lot of ways to reinterpret the concepts of concurrency

in data types. I've been using the notions of Smyth and Hoare powerdomains,

along with Aczel's non-wellfounded set theory,

for example, to help understand and design so-called complex

objects in object-oriented databases. Notice

that Aczel's work came from an attempt to provide a proper

mathematical foundation for SCCS!

The point of this last experience is that one

should always keep an open mind, especially where mathematical

models are concerned.

Bill Rounds

From hg17@cunixd.cc.columbia.edu Wed May 29 16:40:11 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Tue, 20 Nov 90 09:34:00 EST

To: concurrency

Subject: Lamport on Spinoza, Science and related matters

From: Haim Gaifman <hg17@cunixd.cc.columbia.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Mon, 19 Nov 90 19:39:10 EST

This is rather a belated reaction to some of the claims made in the exchange

that has started with Leslie Lamport's message of November 7 ("Flame etc.")

While Lamport's observations concerning Aristotles, Kant and Spinoza are

marginal to the real issues of the debate, at least one point needs

correction:

 ".... and Spinoza proved that there can be at most seven planets."

As a matter of fact, Spinoza never "proved" that there can be at most

seven planets. Lamport is probably confusing Spinoza with Hegel (who lived

two centuries later). Somewhere in Hegel's dissertation, so the story goes,

is buried an argument purporting to show that the number of planets should

be

seven.

Perhaps the difference between Spinoza and Hegel does not mean much to

Lamport.

After all, they were both philosphers, that is to say vaporizing

theoreticians

making ridiciluously unfounded claims. But, as a scientist, he should have

gotten his facts straight.

As to the debate itself:

 If A claims to have done something that B has proved to be impossible, then

either

 (i) there is an errors in A's construction,

 or

 (ii) there is an error in B's proof,

 or

 (iii) they are speaking about different things.

 In cases (i) and (ii) the debate can be clearly decided; the errors are

found, one of the claims (perhaps both) is withdrawn and there the matter

ends.

But this happy state of affairs is mostly a privelege of mathematicians. In

philosophy it is usually the third case that obtains. When things

get clarified, it turns out that the real issue is not the correctness

of a certain proof, but the correct way of defining certain notions, or

of setting up a framework. The debate is about which setup is more intuitive,

illuminating, fruitful, efficient, etc.

 It appears that, in this respect, many computer scientists share the fate

of

philosophers. What has statrted as a claim for a contradiction ("I have done

something that somebody proved cannot be done") turns out to be a claim about

the relative merits of trace models versus partial order models.

Lamport is certainly entitled to the view that the methods developed by him

are

simpler and more efficient, for the purposes of analysing and proving

correctness of distributed algorithms. No doubt, he can produce his own

impressive work as an argument for this view. The claim could be evaluated

(certainly not by me!) in a matter of fact way. This does not guarantee that

the question would be settled, but at least we would have a clearer

view of what is involved. Unfortunately, he has got this bad habit of

philosophers to start with an imprecise presentation of the problem.

Another bad influence of popularized philosophy is the temptation to anchor

one's views, no matter what the subject is, in some major principles; in

the present case maxims about what is and what is not good science are

mobilized for the sake of the argument:

 "Any useful scientific theory has a limited domain of application. A

 theory-of-everything is generally good for nothing."

In one sense, this is a sound rule of thumb that one would hardly wish to

quarrel with: The more phenomena you try to accomodate the more likely you

are

to get an impractical system. The rule has, nonetheless, some spectacular

exceptions. A higher level description that encompasses a wider range of

phenomena might be more efficient then a narrower view. Every mathematician

knows cases in which generalizing (hence strengthening) a theorem leads to a

conceptually clearer, hence easier, proof of it. From an Arsitotelian point

of

view Newtonian physics would have been a project unlikely to succeed, because

it tried to account for the immense variegated domain of movement phenomena

by

few simple laws.

As a general *prescription* for science, the above quote goes certainly

against the grain that is exemplified by great scientists, such as

Newton, Maxwell or Einstein. A "theory-of-everything" is the elusive goal

that has motivated big scientific enterprises. What else is the point of the

reduction of chemistry to physics, or of finding a unified field theory?

All this has no direct bearing on whether an interleaving model, or a partial

order model, or some other abstract model, is more suitable for reasoning

about concurrent processes. But in trying to drag in general philosophical

principles, Leslie Lamport seems to have committed himself to quite a narrow

perspective of science, it is rather an engineer's view than anything else.

Haim Gaifman

From pratt@cs.stanford.edu Wed May 29 16:40:11 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sun, 25 Nov 90 17:25:09 EST

To: concurrency

Subject: Early pomset paper

From: Vaughan Pratt <pratt@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

Date: Sun, 25 Nov 90 12:25:32 PST

If there are any historians of concurrency theory subscribing to this

forum they might be interested in the origins (as I understand them) of

the term "pomset."

The terms "labeled partial order" and "partial word" had been used

previously, but the earliest paper I'm aware of that refers explicitly

to partially ordered multisets as a synonym for these notions is:

 @InProceedings(

Pr82, Author="Pratt, V.R.",

 Title="On the Composition of Processes",

 Booktitle="Proceedings of the Ninth Annual ACM Symposium on

 Principles of Programming Languages",

 Month=Jan, Year=1982)

However I had not at that time come up with the contraction "pomset."

This term was first advertised in a talk I gave on Sept. 13, 1983 at a

workshop whose proceedings however were not published until 1985:

 @InProceedings(

Pr83, Author="Pratt, V.R.",

 Title="Two-Way Channel with Disconnect",

 Booktitle="The Analysis of Concurrent Systems:

 Proceedings of a Tutorial and Workshop, LNCS 207",

 Publisher="Springer-Verlag", Year=1985)

I also used it in a talk I gave the following week at IFIP-83 in

Paris. It appears in the position statement I circulated at that

panel, a hundred or so copies of which were distributed to the

audience:

 @Unpublished(

Pr83b, Author="Pratt, V.R.",

 Title="Position Statement",

 Note="Circulated at the Panel on Mathematics of Parallel

 Processes, chair A.R.G. Milner, IFIP-83",

 Month=Sep, Year=1983)

Now that I look at it again it seems to me that this position statement

is quite clear about my motivation in those days for pomsets and how I

thought they should be used. Since it's reasonably short and can't be

found elsewhere I've appended it below. (My apologies for it's being

in Scribe, this was what many of us at MIT and Stanford used back

then. Just read the raw Scribe, the only obscurity should be x@-[y],

the Scribe for x subscript y.)

The cryptic allusion therein to ab|ab and N(a,a,b,b) refers to the

fact, found by my student Jay Gischer, that these two pomsets are

language-equivalent. That is, regarded as language operations applied

to languages a and b under the evident interpretation, they denote the

same language. In 1982 Jay independently came up with the partially

ordered multiset concept, though not by that name, while investigating

the problem of completely axiomatizing the equational theory of

concatenation and shuffle of languages which I had posed to him. Jay

reduced my axiomatization problem to the question of whether for any

two N-free pomsets, language-equivalence implied isomorphism. I was

quite surprised to find the partially ordered multisets of my POPL-82

paper arising so naturally in connection with this question about pure

interleaving semantics. Neither Jay nor I found an answer to this

question, which I publicized (as an axiomatization question) on various

occasions during 1986-1988. It was eventually solved in 1988 by Steve

Tschantz, an algebraist at Vanderbilt, in

 @Unpublished(

Tsch, Author="Tschantz, S.T.",

 Title="Languages under concatenation and shuffling (preliminary)",

 Note="Manuscript, Department of Mathematics, Vanderbilt University",

 Month=Jun, Year=1988)

Steve independently discovered the same reduction of the axiomatization

problem to the question about language-equivalence of N-free pomsets,

which he answered affirmatively by an ingenious argument. Luca Aceto

subsequently applied Tschantz's theorem to infer the surprising result

[correspondence, Apr. 1989] that timed-equivalence coincides with

trace-equivalence for the language p::= 0 | a | p;p | p|p.

Since 1983, starting with my LOP-85 paper

 @InProceedings(

Pr85, Author="Pratt, V.R.",

 Title="Some Constructions for Order-Theoretic Models of Concurrency",

 Booktitle="Proc. Conf. on Logics of Programs, LNCS 193",

 Address="Brooklyn", Publisher="Springer-Verlag", Pages="269-283",

 Year=1985),

which turned into

 @Article(

Pr86, Author="Pratt, V.R.",

 Title="Modeling Concurrency with Partial Orders",

 Journal="International Journal of Parallel Programming",

 Volume=15, Number=1, Pages="33-71", Month=Feb, Year=1986),

my thoughts on the appropriate combinators for pomsets have shifted

>from the network emphasis in my POPL-82 paper and IFIP-83 statement to

a more arithmetic kind of language in which pomsets are added and

multiplied (and these days exponentiated, whose relevance to

concurrency I did not appreciate in 1985). Nowadays, at my student

Roger Crew's prodding, I regard network combination as merely one of

several variants of addition.

 Vaughan Pratt

 Nov. 25, 1990

===============APPENDIX---IFIP-83

STATEMENT===================================

@libraryfile(specialcharacters)

 @b[@center(IFIP-83 - Panel on Mathematics of Parallel Processes)

 @center(Position Statement)

 @center(V. R. Pratt)

 @center(Stanford University)]

 @center(September, 1983)

@b[Abstract]. The notion of function as a set of ordered pairs is

mathematically appealing but not quite rich enough for modelling processes.

Our position is that it suffices to generalize ordered pairs to pomsets

(partially ordered multisets) to obtain a satisfactory notion of process.

@b[Functions]. A function abstracts the essence of stimulus-response:

it collects all possible stimuli and pairs each with a corresponding

response. Furthermore functions obey the principle of behavioral

extensionality: two functions with the same set of stimulus-response

pairs are considered not merely behaviorally equivalent functions but

in fact the same function. These two attributes are captured

simultaneously in defining a function from A to B to be a subset of AxB

(with additional conditions when being single-valued and total

matters).

@b[Processes]. Processes are like functions in some respects.

Processes accept stimuli and emit responses. And behavioral extensionality

is just as natural for processes as for functions.

A process is not however an ordinary function. It may for example respond

to each of a series of numeric inputs with the sum of all inputs to date;

this is the behavior of a cumulative "function," which is not really a

function since it takes memory to keep a running sum.

@b[Functions on Histories]. A process can be made a function if the domain

is taken to be sequences of stimuli instead of individual stimuli.

That is, a process may be defined to be a function from histories. It

is natural to then take the codomain to be histories as well, i.e. a

process is a function on histories.

This definition is the basis for the semantics of parallel processes given at

IFIP 74 by G. Kahn [K], and elaborated on at IFIP 77 by Kahn and D. MacQueen

[KM]. This definition works well for deterministic processes.

@b[The Nondeterminism Anomaly]. In 1978 D. Brock and W. Ackerman

exhibited an anomaly demonstrating that the straightforward extension

of Kahn-MacQueen semantics to nondeterministic processes, namely

relations on histories, did not yield sensible behaviors [BA]. They

identified the problem as a lack of information about the relative

timing of individual input and output events. The Kahn-MacQueen model

did not specify any interleaving information between input and output

histories. Brock and Ackerman noted that a little additional

information of this sort sufficed to dispose of the anomaly at hand.

@b[Our Position.] We consider the Brock-Ackerman fix, appropriately

formalized [Pr], to provide a very attractive model of processes. Before

defining this model we introduce the notion of partially ordered multiset

or pomset.

@b[Pomsets]. A @i[pomset] on a set A is, up to isomorphism, a

structure (U,L,<) consisting of an underlying set U, a labelling

function L:U@k(rightarrow)A, and a partial order < on U.

The labels supply the elements of the pomset. The same label can be

reused, hence multiset rather than set. Pomsets are defined only up to

isomorphism (of structures) because the identity of the underlying set

is unimportant; only the labels (the @i[real] multiset elements) and

the order matter.

@b[Main definition.] @i[A process on a set E is a set of pomsets on E.]

@b[Intended Interpretation]. E is a set of events. Each pomset of

events is one of the possible computations of the process. The order

on each pomset is that of necessary temporal precedence; the order of

the events in a computation need not be completely specified.

@b[Contrast with Functions]. A function is a set of totally ordered

doubletons. This definition exposes three differences between

functions and processes: the dropping of the cardinality requirement

that each element of a function have two elements, the switch from sets

to multisets, and the switch from a total order to a partial order.

The cardinality change is motivated by the ongoing nature of a process: many

events may need to be considered as part of a single computation. Multisets

are needed because an event may be repeated, e.g. the arrival of the number

3.

Partial orders are preferred over total because it is not always natural to

totally order events - consider for example two communicating processes

on Earth and Saturn respectively, each running at nanosecond speeds.

@b[Inadequacy of Total Orders]. The use of total rather than partial

orders enjoys some currency in modelling parallel processes [H][Pn]. However

there does not appear to be a natural way of using total orders to

distinguish the following two ways in which two a's might precede two b's.

@begin(verbatim)

 a a a a

 | | |\ |

 | | | \ |

 | | | \|

 b b b b

@end(verbatim)

Thus not only are total orders unnatural, they are not an expressively

adequate substitute for pomsets.

@b[Examples]. The above-drawn pomsets together form a two-element

process. Any n-ary relation (hence binary relation, and hence

function) is a process if each n-tuple in the relation is regarded as a

totally ordered set. A power set is a process if each element is

regarded as a set with the empty partial order. The power set C of a

power set B is a process if each element of C is regarded as ordered by

inclusion on B: event e necessarily follows event d just when e is d

with some additional elements - the process makes progress by

accumulating elements and distinct accumulations leading to the same

subset are (in this case) considered the same event.

@b[Spatial Localization]. In order to put processes in communication

with each other it is helpful to know where their events are taking

place (cf. [W], p.64). We define an @i[event space] to be a Cartesian

product CxD, consisting of @i[spatial events]. The intended

interpretation is that C is a set of @i[channels] or @i[places] (cf.

[B]) where the events may be found and D the set of @i[data] that may

be sent over the channels of C. A @i[spatial process] is a process on

an event space.

@b[Nets.] A @i[net] is a process P on CxD having constituent processes

P@-[1],...,P@-[n] on C@-[1]xD,...,C@-[n]xD respectively. Process

P@-[i] is a @i[constituent] of P just when there exists a function

a@-[i]:C@-[i]@k(rightarrow)C determining a projection

A@-[i]:P@k(rightarrow)P@-[i]. (a@-[i] gives the attachment of the

channels (i.e. ports) of P@-[i] to the channels of the net.) The

projection A@-[i] is determined from a@-[i] by taking A@-[i](p) to be

the multiset {(c,d)|(a@-[i](c),d) is in p}. Order is preserved, that

is, (c,d) < (c',d') in A@-[i](p) iff (a@-[i](c),d) < (a@-[i](c'),d') in

p. (Note that A@-[i] need not be onto, i.e. it is not required that

P@-[i] equal A@-[i](P), only that it include it.)

@b[Process Composition.] Processes are composed to form a new process

in two steps: given the processes P@-[i] with corresponding attachments

a@-[i]:C@-[i]@k(rightarrow)C for i from 1 to n-1, the maximum (under

set inclusion) net P having those processes as constituents is formed,

and then an additional attachment a@-[n]:C@-[n]@k(rightarrow)C is used to

determine the projection A@-[n]:P@k(rightarrow)P@-[n]. The

result is A@-[n](P). The n attachments themselves can thus be seen to

determine an (n-1)-ary operation on processes.

@b[Example.] Ordinary composition of binary relations on D is

determined by C@-[1] = C@-[2] = C@-[3] = {0,1}, C = {0,1,2}

with a@-[1](c) = c, a@-[2](c) = c+1, and a@-[3](c) = 2c. In this

net P@-[1] and P@-[2] are composed to yield P@-[3]. This is of

course a particularly simple example.

@b[Bibliography]

[B] Brauer, W., Net Theory and Applications, Springer-Verlag LNCS 84, 1980.

[BA] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of

Non-Determinate Computation. In LNCS 107: Formalization of Programming

Concepts, J. Diaz and I. Ramos, Eds., Springer-Verlag, New York, 1981,

252-259.

[H] Hoare, C.A.R., Communicating Sequential Processes, CACM, 21, 8,

666-672, August, 1978,

[K] Kahn, G., The Semantics of a Simple Language for Parallel Programming,

IFIP 74, North-Holland, Amsterdam, 1974.

[KM] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel

Processes, IFIP 77, 993-998, North-Holland, Amsterdam, 1977.

[M] Milner, R., A Calculus of Communicating Systems, Springer-Verlag

LNCS 92, 1980.

[Pn] Pnueli, A., The Temporal Logic of Programs, 18th IEEE Symposium on

Foundations of Computer Science, 46-57. Oct. 1977.

[Pr] Pratt, V.R., On the Composition of Processes, Proceedings of the

Ninth Annual ACM Symposium on Principles of Programming Languages, Jan. 1982.

[W] Winskel, G., Events in Computation, Ph.D. Th., Dept. Comp. Sci, U.

of Edinburgh, Dec. 1980.

From heddaya@cs.bu.edu Wed May 29 16:40:12 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 26 Nov 90 18:10:59 EST

To: concurrency

Subject: Early pomset paper

From: heddaya@cs.bu.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Sun, 25 Nov 90 17:25:09 -0500.

 <9011252225.AA00710@stork>

Date: Mon, 26 Nov 90 12:12:26 -0500

Here's a LaTeX version of Pratt's IFIP-83 workshop position paper that he

recently posted to the concurrency mailing list. I did not edit it in any

way, but I must take responsibility for any notational erros I may have

introduced in the twenty minutes I spent converting it from Scribe format.

%==================================Cut here=================================

% Template for short articles in LaTeX.

%

% Author: Abdelsalam Heddaya, Boston University

% Created: 1988 at Harvard

% Modified: 1989.07 at BU

% Modified: 1990.10.23 at BU

%==

=

\documentstyle[11pt]{article}

\pagestyle{plain}

% ==

% Layout dimensions

% ==

% NOTE: All the variables listed below have default values that depend

% on the document style, so, it is wise to leave as many of them as

% possible untouched.

% ---------------------

% Page layout:

% ---------------------

\textheight 9.0in % Total height including Head

\textwidth 6.5in % Total width including (probably) Margin Notes

\topmargin 0.0in % Point of origin is (1in,1in) from

 % upper left corner

\oddsidemargin 0.0in % Left side of odd pages (or all in

 % case of one sided printing)

\evensidemargin 0.0in % Left side of even pages (in case of

 % two sided printing)

\headheight 0.0in

\headsep 0.0in % Between Head and top of text

%\footheight 0.0in

%\footskip 0.0in % Between bottom of text and Foot (not

 % footnotes)

% ---------------------

% Paragraph layout:

% ---------------------

\parskip 0.5 \baselineskip % Inter-paragraph space

\parindent 1.3em % Paragraph indentation

%

===

=

% Custom settings of dimensions and other variables go here.

% Check the preamble file for comments on the layout variables.

\parindent 0.0in

\begin{document}

\begin{centering}

{\Large IFIP-83 - Panel on Mathematics of Parallel Processes \\

Position Statement

}\\

\medskip

V.R. Pratt\\

Stanford University

\medskip

{\it September, 1983}

\bigskip

\end{centering}

{\bf Abstract}. The notion of function as a set of ordered pairs is

mathematically appealing but not quite rich enough for modelling processes.

Our position is that it suffices to generalize ordered pairs to pomsets

(partially ordered multisets) to obtain a satisfactory notion of process.

{\bf Functions}. A function abstracts the essence of stimulus-response:

it collects all possible stimuli and pairs each with a corresponding

response. Furthermore functions obey the principle of behavioral

extensionality: two functions with the same set of stimulus-response

pairs are considered not merely behaviorally equivalent functions but

in fact the same function. These two attributes are captured

simultaneously in defining a function from A to B to be a subset

of $A \times B$

(with additional conditions when being single-valued and total

matters).

{\bf Processes}. Processes are like functions in some respects.

Processes accept stimuli and emit responses. And behavioral extensionality

is just as natural for processes as for functions.

A process is not however an ordinary function. It may for example respond

to each of a series of numeric inputs with the sum of all inputs to date;

this is the behavior of a cumulative ``function,'' which is not really a

function since it takes memory to keep a running sum.

{\bf Functions on Histories}. A process can be made a function if the domain

is taken to be sequences of stimuli instead of individual stimuli.

That is, a process may be defined to be a function from histories. It

is natural to then take the codomain to be histories as well, i.e. a

process is a function on histories.

This definition is the basis for the semantics of parallel processes given at

IFIP 74 by G. Kahn [K], and elaborated on at IFIP 77 by Kahn and D. MacQueen

[KM]. This definition works well for deterministic processes.

{\bf The Nondeterminism Anomaly}. In 1978 D. Brock and W. Ackerman

exhibited an anomaly demonstrating that the straightforward extension

of Kahn-MacQueen semantics to nondeterministic processes, namely

relations on histories, did not yield sensible behaviors [BA]. They

identified the problem as a lack of information about the relative

timing of individual input and output events. The Kahn-MacQueen model

did not specify any interleaving information between input and output

histories. Brock and Ackerman noted that a little additional

information of this sort sufficed to dispose of the anomaly at hand.

{\bf Our Position.} We consider the Brock-Ackerman fix, appropriately

formalized [Pr], to provide a very attractive model of processes. Before

defining this model we introduce the notion of partially ordered multiset

or pomset.

{\bf Pomsets}. A {\em pomset} on a set A is, up to isomorphism, a

structure $(U,L,<)$ consisting of an underlying set U, a labelling

function $L: U \rightarrow A$, and a partial order $<$ on U.

The labels supply the elements of the pomset. The same label can be

reused, hence multiset rather than set. Pomsets are defined only up to

isomorphism (of structures) because the identity of the underlying set

is unimportant; only the labels (the {\em real} multiset elements) and

the order matter.

{\bf Main definition.} {\em A process on a set E is a set of pomsets on E.}

{\bf Intended Interpretation}. E is a set of events. Each pomset of

events is one of the possible computations of the process. The order

on each pomset is that of necessary temporal precedence; the order of

the events in a computation need not be completely specified.

{\bf Contrast with Functions}. A function is a set of totally ordered

doubletons. This definition exposes three differences between

functions and processes: the dropping of the cardinality requirement

that each element of a function have two elements, the switch from sets

to multisets, and the switch from a total order to a partial order.

The cardinality change is motivated by the ongoing nature of a process: many

events may need to be considered as part of a single computation. Multisets

are needed because an event may be repeated, e.g. the arrival of the number

3.

Partial orders are preferred over total because it is not always natural to

totally order events - consider for example two communicating processes

on Earth and Saturn respectively, each running at nanosecond speeds.

{\bf Inadequacy of Total Orders}. The use of total rather than partial

orders enjoys some currency in modelling parallel processes [H][Pn]. However

there does not appear to be a natural way of using total orders to

distinguish the following two ways in which two a's might precede two b's.

\begin{verbatim}

 a a a a

 | | |\ |

 | | | \ |

 | | | \|

 b b b b

\end{verbatim}

Thus not only are total orders unnatural, they are not an expressively

adequate substitute for pomsets.

{\bf Examples}. The above-drawn pomsets together form a two-element

process. Any n-ary relation (hence binary relation, and hence

function) is a process if each n-tuple in the relation is regarded as a

totally ordered set. A power set is a process if each element is

regarded as a set with the empty partial order. The power set C of a

power set B is a process if each element of C is regarded as ordered by

inclusion on B: event e necessarily follows event d just when e is

d

with some additional elements - the process makes progress by

accumulating elements and distinct accumulations leading to the same

subset are (in this case) considered the same event.

{\bf Spatial Localization}. In order to put processes in communication

with each other it is helpful to know where their events are taking

place (cf. [W], p.64). We define an {\em event space} to be a Cartesian

product $C \times D$, consisting of {\em spatial events}. The intended

interpretation is that C is a set of {\em channels} or {\em places} (cf.

[B]) where the events may be found and D the set of {\em data} that may

be sent over the channels of C. A {\em spatial process} is a process on

an event space.

{\bf Nets.} A {\em net} is a process P on $C \times D$ having constituent

processes P_1,\ldots ,P_n on $C_1 \times D, \ldots ,C_n \times D$

respectively. Process P_i is a {\em constituent} of P just when

there exists a function $a_i : C_i \rightarrow C$ determining a

projection $A_i : P \rightarrow P_i$. (a_i gives the attachment of

the channels (i.e. ports) of P_i to the channels of the net.) The

projection A_i is determined from a_i by taking $A_i(p)$ to be the

multiset \{$(c,d) \mid (a_i(c),d)$ is in p\}. Order is preserved, that

is, $(c,d) < (c',d')$ in A_i(p) iff ($a_i(c),d) < (a_i(c'),d')$ in

p. (Note that A_i need not be onto, i.e. it is not required that

P_i equal $A_i(P)$, only that it include it.)

{\bf Process Composition.} Processes are composed to form a new process

in two steps: given the processes P_i with corresponding attachments

$a_i : C_i \rightarrow C$ for i from 1 to $n-1$, the maximum (under

set inclusion) net P having those processes as constituents is formed,

and then an additional attachment $a_n : C_n \rightarrow C$ is used to

determine the projection $A_n: P \rightarrow P_n$. The

result is $A_n(P)$. The n attachments themselves can thus be seen to

determine an $(n-1)$-ary operation on processes.

{\bf Example.} Ordinary composition of binary relations on D is

determined by C_1 = C_2 = C_3 = \{0,1\}, C = \{0,1,2\}

with $a_1(c) = c$, $a_2(c) = c+1$, and $a_3(c) = 2c$. In this

net P_1 and P_2 are composed to yield P_3. This is of

course a particularly simple example.

{\bf Bibliography}

[B] Brauer, W., Net Theory and Applications, Springer-Verlag LNCS 84, 1980.

[BA] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of

Non-Determinate Computation. In LNCS 107: Formalization of Programming

Concepts, J. Diaz and I. Ramos, Eds., Springer-Verlag, New York, 1981,

252-259.

[H] Hoare, C.A.R., Communicating Sequential Processes, CACM, 21, 8,

666-672, August, 1978,

[K] Kahn, G., The Semantics of a Simple Language for Parallel Programming,

IFIP 74, North-Holland, Amsterdam, 1974.

[KM] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel

Processes, IFIP 77, 993-998, North-Holland, Amsterdam, 1977.

[M] Milner, R., A Calculus of Communicating Systems, Springer-Verlag

LNCS 92, 1980.

[Pn] Pnueli, A., The Temporal Logic of Programs, 18th IEEE Symposium on

Foundations of Computer Science, 46-57. Oct. 1977.

[Pr] Pratt, V.R., On the Composition of Processes, Proceedings of the

Ninth Annual ACM Symposium on Principles of Programming Languages, Jan. 1982.

[W] Winskel, G., Events in Computation, Ph.D. Th., Dept. Comp. Sci, U.

of Edinburgh, Dec. 1980.

\end{document}

From hewitt@ai.mit.edu Wed May 29 16:40:13 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 1 Dec 90 12:26:03 EST

To: concurrency

Subject: Early pomset dissertation

From: hewitt@ai.mit.edu

Sender: meyer@theory.lcs.mit.edu

Date: Fri, 30 Nov 90 01:05 EST

Folks,

Since there is a resurgence of interest in partial order of event models of

concurrent computation, I thought to mention Will Clinger's MIT Math Dept.

doctoral dissertation "Foundations of Actor Semantics," Technical Report

AI-TR-633, MIT A.I. Laboratory, Cambridge, MA, May 1981.

Readers may be particularly interested in Clinger's results on (non-unique)

global times since it is related to the questions about total orderings that

have been discussed in this forum.

Also of interest is Clinger's results on functions as special cases of Actors

which satisfy the criteria mentioned by Pratt in his IFIP-83 paper. In

particular Clinger gives an elegant proof to a theorem of Henry Baker and

myself to the effect that any function which can be implemented using Actors

satisfies Scott's continuity criterion. In this way, the fundamental

assumption of Scott's theory of denotational semantics can be proved as a

theorem in the Actor model.

Clinger also developed a fixed point semantics for a simple universal Actor

programming language.

To those who send me their US Mail address, I will be happy to send excerpts

of his thesis that are being reprinted in the book ``Towards Open Information

Systems Science'' edited by Hewitt, Manning, Inman, and Agha, MIT Press,

December 1990.

Sincerely,

Carl Hewitt

From infhil!eike@relay.eu.net Wed May 29 16:40:14 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 1 Dec 90 12:28:33 EST

To: concurrency

Subject: Market

From: infhil!eike@relay.eu.net (Eike Best)

Sender: meyer@theory.lcs.mit.edu

Date: Fri, 30 Nov 90 10:35:07 +0100

Dear Participants of the Concurrency Net,

It seems an excellent idea to fill otherwise idly wasted

net bandwidth with the broadcasting of unpublished notes

in duplication. So far, I received:

-- A note by Pratt.

-- This same note in LaTeX form.

-- This same note in LaTeX form.

 (There seems to be a fixpoint here.)

-- A paper by Hewitt.

And I'm looking forward to spending my time reading and re--reading

many more unpublished notes. If I may suggest sending also **published**

papers around in triplicate, or at least in duplicate so that people

can give the spare copies to their respective history departments

(maybe the nonLaTeXed version, as historians tend to be a little

antiquated); from what I hear they are just dying to write down

the history of concurrency.

In fact I am now encouraged to plan putting my own unpublished work on

partially ordered sets (starting from 1976) three times on the net.

Maybe somebody could follow suit with respect to all of the

work of the Petri Net and related schools, since that seems to have

escaped the attention of concurrency theorists and historians alike:

 Holt et al. 1968

 Petri 1973 and 1976

 Grabowski and Starke 1979

 Shields 1978

 Mazurkiewicz 1977

 Goltz and Reisig 1985

 Fernandez, Nielsen and Thiagarajan 1987

 Best and Fernandez 1988

not to forget:

 Hewitt and Baker 1977

 Lamport 1977.

...

Books could perhaps be processed chapter by chapter.

Yours: Eike Best (:-)

From hewitt@ai.mit.edu Wed May 29 16:40:14 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Wed, 12 Dec 90 17:10:13 EST

To: Eike Best <infhil!eike@relay.eu.net>

Cc: concurrency

Subject: Those who do not remember are doommed to ...

From: hewitt@ai.mit.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: <9012011728.AA05532@stork>

Date: Wed, 12 Dec 90 16:56 EST

Eike,

I just saw your important message to this list.

In response I would like to note that you can obtain a copy of Clinger's

doctoral dissertation from University Microfilms in Ann Arbor Michigan at

their standard publication rate. Unfortunately, the Technical Report

publication from the MIT Artificial Intelligence Lab has long been out of

print thereby limiting the dissemination of knowledge about Clinger's

pioneering work.

Cheers,

Carl (:-)

From saraswat@parc.xerox.com Wed May 29 16:40:15 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Thu, 20 Dec 90 13:54:41 EST

To: concurrency, logic

Subject: Concurrent Constraint Programming

From: Vijay Saraswat <saraswat@parc.xerox.com>

Sender: meyer@theory.lcs.mit.edu

Date: Thu, 20 Dec 1990 04:25:59 PST

I forgot to send out the abstract of our forthcoming POPL 91 paper

earlier. Among other things, it gives a simple analysis of the

notion of a constraint system.

To obtain a copy, send mail to sslreceptionist@parc.xerox.com.

Vijay

--

Semantic foundations of concurrent constraint programming

Vijay A. Saraswat, Xerox PARC

Martin Rinard, Stanford University

Prakash Panangaden, McGill University

(Preliminary Report)

October 1990

Concurrent constraint programming [Sar89,SR90] is

a simple and powerful model of concurrent computation based on

the notions of *store-as-constraint* and *process as

information transducer*. The *store-as-valuation* conception

of von Neumann computing is replaced by the notion that the store

is a constraint (a finite representation of a possibly infinite

set of valuations) which provides partial information about the

possible values that variables can take. Instead of ``reading''

and ``writing'' the values of variables, processes may now

ask (check if a constraint is entailed by the store) and

tell (augment the store with a new constraint). This is a very

general paradigm which subsumes (among others) nondeterminate

data-flow and the (concurrent)(constraint) logic programming

languages.

This paper develops the basic ideas involved in giving a coherent

semantic account of these languages. Our first contribution is to

give a simple and general formulation of the notion that a

constraint system is a system of partial information (a la

the information systems of Scott). Parameter passing and hiding

is handled by borrowing ideas from the cylindric algebras of

Henkin, Monk and Tarski to introduce diagonal elements and

``cylindrification'' operations (which mimic the projection of

information induced by existential quantifiers).

The second contribution is to introduce the notion of determinate

concurrent constraint programming languages. The combinators

treated are ask, tell, parallel composition, hiding and

recursion. We present a simple model for this language based on

the specification-oriented methodology of [OH86]. The

crucial insight is to focus on observing the *resting points*

of a process---those stores in which the process quiesces without

producing more information. It turns out that for the determinate

language, the set of resting points of a process completely

characterizes its behavior on all inputs, since

each process can be identified with a closure operator over

the underlying constraint system. Very natural definitions of

parallel composition, communication and hiding are given. For

example, the parallel composition of two agents can be

characterized by just the intersection of the sets of constraints

associated with them. We also give a complete axiomatization of

equality in this model, present a simple operational semantics

(which dispenses with the explicit notions of renaming that

plague logic programming semantics), and show that the model is

fully abstract with respect to this semantics.

The third contribution of this paper is to extend these modelling

ideas to the nondeterminate language (that is, the language

including bounded, dependent choice). In this context it is no

longer sufficient to record only the set of resting points of a

process---we must also record the path taken by the process (that

is, the sequence of ask/tell interactions with the environment)

to reach each resting point. Because of the nature of

constraint-based communication, it turns out to be very

convenient to model such paths as certain kinds of closure

operators, namely, bounded trace operators. We extend the

operational semantics to the nondeterminate case and show that

the operational semantics is fully consistent with the model, in

that two programs denote the same object in the model iff there

is no context which distinguishes them operationally.

This is the first simple model for the cc languages (and

ipso facto, concurrent logic programming languages) which

handles recursion, is compositional with respect to all the

combinators in the language, can be used for proving liveness

properties of programs, and is fully abstract with respect to the

obvious notion of observation.

From jeffrey@cs.chalmers.se Wed May 29 16:40:16 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Thu, 20 Dec 90 14:23:55 EST

To: concurrency

Subject: Zeno machines

From: Alan Jeffrey <jeffrey@cs.chalmers.se>

Sender: meyer@theory.lcs.mit.edu

Date: Wed, 19 Dec 90 15:01:35 +0100

God Jul everyone,

A short question about timed concurrency... One of the standard

counter-examples to throw at any real-timed model is the {\em Zeno

machine\/} defined

 ZENO_{n} = WAIT 2^{-n} ; a ; ZENO_{n+1}

So ZENO_1 does an a at time 1/2, then at time 3/4, then at time 7/8,...

So despite being a guarded recursion (well, sort of guarded, depending

how you define guardedness) it can do an infinite number of actions

before time 1.

The question is, who coined the name `Zeno machine'? It seems to have

entered the folklore, but I wondered if anyone had a reference to the

name being used in the literature.

A suitably merry Christmas and New Year to all,

Alan.

Alan Jeffrey Tel: +46 31 72 10 98 jeffrey@cs.chalmers.se

Department of Computer Sciences, Chalmers University, Gothenburg, Sweden

From jcm@cs.stanford.edu Wed May 29 16:40:16 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 21 Dec 90 16:35:27 EST

Cc: concurrency@theory.lcs.mit.edu

Subject: Re: Zeno machines

From: John C. Mitchell <jcm@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

To: Alan Jeffrey <jeffrey@cs.chalmers.se>

In-Reply-To: Your message of Thu, 20 Dec 90 14:23:55 -0500.

 <9012201923.AA19323@stork>

Date: Thu, 20 Dec 90 14:43:02 -0800

This example seems odd to me. If a programming language has a WAIT

statment, then shouldn't the semantics of doing an action include

some elapsed time? Otherwise, what can the WAIT be waiting for?

If this is so, then the "a" action in

 ZENO_{n} = WAIT 2^{-n} ; a ; ZENO_{n+1}

takes some amount of time, and the process can only do a finite number of

actions before time 1.

The example reminds me of a standard "trick" question used in MIT oral

exams: Suppose a class of Turing machines has the property that the first

instruction takes 1/2 secound to execute, the second 1/4 second, the third

1/8 second, and so on. Is the halting problem solvable for this class of

machines?

The point of the question is to debug the question, not answer it.

John Mitchell

From jeffrey@cs.chalmers.se Wed May 29 16:40:17 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 21 Dec 90 16:42:17 EST

Cc: concurrency

Subject: Re: Zeno machines

From: Alan Jeffrey <jeffrey@cs.chalmers.se>

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: John C. Mitchell's message of Thu, 20 Dec 90 14:43:02 -0800

<9012202243.AA03282@Iswim.Stanford.EDU>

Date: Fri, 21 Dec 90 10:51:21 +0100

To: jcm@cs.stanford.edu

>John C. Mitchell <jcm@cs.stanford.edu>

>This example seems odd to me. If a programming language has a WAIT

>statment, then shouldn't the semantics of doing an action include

>some elapsed time? Otherwise, what can the WAIT be waiting for?

>If this is so, then the "a" action in

> ZENO_{n} = WAIT 2^{-n} ; a ; ZENO_{n+1}

>takes some amount of time, and the process can only do a finite number of

>actions before time 1.

Well, that's certainly one way of modelling the world (c.f. Timed CSP)

but it has its problems. Specifically, you can't have a version of

the expansion lemma. For example,

 a ||| b = ab + ba

doesn't hold if the actions must take time, but does hold if they're

instantaneous. This is why (Muller and Tofts) and (Hennessy and

Regan) have got a complete axiomatization for their languages and

Timed CSP hasn't.

The problem is that if you allow instantaneous prefixing, you allow an

awful lot of very uncomputational processes, like the Zeno Machine.

How worried you are about that depends on taste. Personally I can

live with uncomputational structures living in a model, if they make

the algebra easier to work with---the analogy is with complex numbers,

which have no `real world' equivalent but are damn useful.

What's more worrying is that in some models (notably transition

systems) there's no concept of behaviour after doing an infinite

number of actions (you `drop off' the bottom of the T.S.) so a process

like ZENO_1 is a `time stop'. No process placed in parallel with it

will ever get to time 1, because ZENO_1 is flooding the T.S. with

actions. Again, how worried you are about this depends on taste.

There seems to be two distinct viewpoints going on here, the Timed CSP

viewpoint, where everything in the model (well, almost everything) is

computational; and the Timed CCS viewpoint, where there's a lot of

uncomputational structures in the model, but they make the algebra

easier to deal with.

It's all swings and roundabouts I guess...

>John Mitchell

Cheers,

Alan.

Alan Jeffrey Tel: +46 31 72 10 98 jeffrey@cs.chalmers.se

Department of Computer Sciences, Chalmers University, Gothenburg, Sweden

From jcm@cs.stanford.edu Wed May 29 16:40:17 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 21 Dec 90 16:50:27 EST

Cc: concurrency

Subject: Re: Zeno machines

In-Reply-To: Your message of Fri, 21 Dec 90 10:51:21 +0100.

 <9012210951.AA21747@birk.cs.chalmers.se>

From: John C. Mitchell <jcm@cs.stanford.edu>

Sender: meyer@theory.lcs.mit.edu

To: Alan Jeffrey <jeffrey@cs.chalmers.se>

Date: Fri, 21 Dec 90 10:45:57 -0800

Here's what I don't understand. If you have a WAIT(n) statement

or guard, where n is supposed to be time in some units, then it

seems that you must have some idea of the passage of time.

If you are waiting, then time should pass while you are doing so.

What are the things that happen as time goes by? If actions are

instantaneous, then of course you could do infinitely many of them

before time 1; the WAIT statement is just a red herring in this

case. On the other hand, if actions happen over time, then

they should have some duration. This would seem the more realistic

case, if you care to think about time. And so what if

 a || b = ab + ba

fails? This equation seems arguable anyway. The main thing is that

I can't see the motivation for you mixed set of assumptions about

time, so the fact that you get a "paradox" seems an indictment of

your assumptions.

John

From pratt@cs.stanford.edu Wed May 29 16:40:18 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Sat, 22 Dec 90 04:04:25 EST

To: concurrency

Subject: Re: Zeno machines

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Fri, 21 Dec 90 16:35:27 EST.

 <9012212135.AA20407@stork>

Date: 21 Dec 90 22:35:50 PST (Fri)

The first time I heard the term "Zeno machine" was from Carl Hewitt

around 1979, whose office was then next door to mine. He would

therefore be a good person to ask concerning its origin.

Carl was concerned about fairness in actor semantics. I believe the

concern was that a Zeno machine might be accorded unfairly preferential

treatment. A certain axiomatization of actors was purported either to

rule out the possibility of such Zeno machines, or to depend for its

efficacy on their absence, I forget which. The sense of the

axiomatization was that every unblocked machine waited only a finite

length of time before taking its next step. In the absence of Zeno

machines computation was then supposed or expected to be inherently

fair.

Concurrency divides somewhere near the root into real time and ordered

time. As I understood actors at that time, their official semantics

were of the latter kind, at least in the sense that neither reals nor

integers appeared explicitly anywhere in actor theory. Indeed the

earliest partial order model of concurrency appears to be Irene Greif's

1975 axiomatization of actors; the following extract starting on p.7 of

her thesis gives a very modern motivation for partial orders.

 Partial orders are appropriate for characterization of computer

 systems since, using them, orderings that must exist among

 certain operations can be expressed without the hypothesizing

 of total orders over all operations. Some operations may not

 be related due, for instance, to lack of physical connection

 between the processors on which they occur. Other operations,

 while they can be ordered as they occur, will in fact occur in

 unpredictable orders each time the computer system is run.

 Even though quantifying over all possible orders of operations

 in all parts of a sytem may in some sense be guaranteed to

 capture all possible properties, it can in fact obscure the

 important properties. The important properties will generally

 be the properties of ordering relations which are common to all

 of the postulated total orders. Such common properties should

 be abstracted from the set of all possible total orders and

 expressed directly as a partial order.

 Choosing a model. The actor model of computation on which this

 specification language is based has several properties which

 relate well to the physical realities of parallel processing.

 ... In real computer systems the speed at which the messages

 travel would be a factor. In the actor model that factor

 cannot be relied on, making it impossible to write

 specifications for systems which could be realizable only in

 limited kinds of environments (e.g. on particular computer

 configurations.)

 Individual actors are specified by *causal axioms* which are

 properties that will hold for any behavior of any actor system

 of which the particular actor is a part. They specify

 relations among events. These relations are then the

 properties of the behaviors as partial orders.

This makes very clear that the essence of actors, at least as

understood in 1975, was order theoretic.

Now I claim that the concept of a Zeno machine, at least in isolation,

is meaningless for a purely ordered theoretic model. Consider the

binary numbers .1, .11, .111, ..., that is, 1/2, 3/4, 7/8, ... As a

sequence of reals this sequence has limit 1. This is the sequence that

arises with Alan Jeffrey's notion of Zeno machine.

However as a linearly ordered set it is isomorphic to the ordered set

of natural numbers. Thus on the basis only of order of events, a Zeno

machine is indistinguishable from any other machine executing an

infinite number of steps.

So if actor semantics is really order theoretic, with no notion of real

number or measure, the concept of a Zeno machine would seem

inappropriate.

However for ordered time one may capture at least the spirit of Zeno

machines in terms of the notion of unfair augment. There is a wealth

of literature on fairness, including Nissim Francez's book of that

title, and I apologize for citing my work instead in what follows. My

excuse is that so little of the prior work on fairness benefits from

partial orders in the manner illustrated in the following.

Following Gaifman and Pratt, LICS-87, define the rank of an element v

of a well-founded poset to be the set rank(v) = {rank(u)|u<v}.

(Identifying the ordinal n with the set of ordinals less than n makes

rank an ordinal, with those elements without predecessor having rank

0.) Define a fair event to be one with finite rank, and a fair poset

one with all elements fair. (Exercise: Show that requiring a fair

element to have only finitely many predecessors yields a strictly

stronger notion of fairness, while requiring that it have no infinite

chain leading up to it is strictly weaker.)

An augment of a poset is the same set with the same or a stronger

ordering. A fair augment of a fair poset p is an augment of p that is

a fair poset. In particular a fair linearization of p is a fair linear

augment of p.

For a process P to synchronize with other processes it may be necessary

to admit augments of posets of P, since the posets being synchronized

with may be more ordered (they might be linear, for example). It is at

this point that the requirement of fairness is most naturally

incorporated into the semantics, namely by permitting only fair

augments when synchronizing.

In fact this should happen automatically if one defines synchronization

of two fair posets such that augmentation only sufficient to achieve

synchronization be imposed. Thus fairness is obtained as a theorem.

The fairness requirement enters in a more essential way when the

alternative approach is adopted of keeping all processes "augmented

closed" from the outset, so that no additional augmentation is required

when synchronizing. It is here that one needs to rule out unfair

augments explicitly. Here fairness is obtained by fiat rather than as

a theorem.

A Zeno machine could then be taken to be one which when synchronized

with a fair non-Zeno machine yields behaviors containing unfair events

performed by the latter machine. The axiom forbidding unfair augments

can then be interpreted as ruling out the existence of, or at least

rendering impotent, such Zeno machines.

 Vaughan Pratt

PS. The sequence .1,.11,.111,... suggests suitable pedagogy for

introducing higher ordinals: define them as the order type of certain

sets of reals all in [0,1]. Problems:

1. Let k be a nonnegative integer. What is the order type, under the

standard ordering of the reals, of the set of finite-length binary

numerals of the form .(0,1)*1 containing at most k occurrences of 0?

(For k=0 it is evidently omega.)

2. Give an ordinal bounding the order type of any well-ordered set of

reals in [0,1] representable as a regular set of finite binary strings,

interpreted as starting with a binary point. Give corresponding

ordinals for the rest of the Chomsky hierarchy.

These sets also afford an opportunity to exercise topological notions.

Assume the standard (real) topology on [0,1]. For each of the sets X

in the previous problem state whether X is (i) open (ii) closed (iii) a

boundary (iv) Hausdorff (v) compact. Which of the answers change with

the discrete topology on [0,1]? The coarse topology? The topology

whose open sets are all sets X_a = {y|y<a}? All X_a = {y|a<y}?

From infhil!eike@relay.eu.net Wed May 29 16:40:19 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Mon, 24 Dec 90 10:46:26 EST

To: concurrency

Subject: Re: Zeno Machines

From: infhil!eike@relay.eu.net (Eike Best)

Sender: meyer@theory.lcs.mit.edu

Date: Sun, 23 Dec 90 12:19:23 +0100

The discussion on 'Zeno Machines' had been brought up already about a year

ago by Mathai Joseph. At that time I sent him a remark which did not make

it to the net. So here is an extended version of my comment:

The situation being discussed is typical of what in Petri Net Theory is

called the 'Non--discreteness' of a behaviour.

The Petri Net view of behaviour is by means of special partial orders.

Every behaviour is simply a partial order of events, with ordering meaning

prior/later, and absence of order meaning concurrent. Between any two

immediately successive events there must be a so-called condition which

describes the local state between the two (i.e. the state in which the

first has just ended but the second has not yet begun).

In 1976 Petri invented something he called K--density, which can be stated

order--theoretically as 'every maximal chain intersects every maximal

antichain', and interpreted as 'every sequential subprocess intersects

every global state'.

In 1977 I found a characterisation of K--density which I described in a

Technical Report of the University of Newacstle upon Tyne, in a talk at a

Workshop in Aarhus (at which I met Carl Hewitt for the first time), and

which was finally was published as a paper in Fundamenta Informaticae in

1980 (Vol.III.1, pp.77-94).

One of the consequences of this characterisation is that K--density

implies the absence of partial orders which describe 'an infinite sequence

of events before another one', like the following one (where | and / mean

downward arrows):

 e->b->e->b->e-> or, formally:

 | | | Events={E,e_0,e_1,e_2,...}

 c c c

Conditions={b_0,b_1,...,c_0,c_1,...}

 | / / Partial order is transitive

closure of:

 | / / e_i < b_i < e_{i+1} for

all i>=0

 | / / e_i < c_i for all i>=0

 | / / c_i < E for all i>=0

 (so all e_i are before E)

 E

In my article I discussed this situation using Achilles and the tortoise,

which is however the same problem as discussed in connection with Zeno

machines. The article may be interesting to read but goes a bit overtop in

proposing K--density as an axiom. In the meantime we think that an axiom

called 'Discreteness w.r.t. a cut' is the one to require; it is weaker

than K--density.

This discussion bears a connection with the interleaving vs. partial

orders discussion, since one may observe that the above partial order,

while being linear on its events, canNOT be brought into the form of what

one normally would describe as an interleaving (which really must be

order--isomorphic with the set of integers or a subsection thereof).

Discreteness w.r.t. a cut essentially captures this property of being

capable of being linearised into an interleaving.

So the bottom line is: Assuming one of these axioms, Zeno's 'process' is

not a behaviour.

Our book `Nonsequential processes: a Petri net view', Springer EATCS

Monographs No.13 (1988) discusses some of the connections between various

properties of this kind of partial orders, refraining however from giving

any interpretations. Amongst others, it contains exact conditions for a

partial order to have an interleaving linearisation.

Other, perhaps more easily accessible articles are:

(1) E.Best: Concurrent Behaviour: Sequences, Processes and Axioms.

 Lecture Notes in Computer Science Vol.197 (eds. Brookes, Roscoe,

 Winskel), 221-245 (1984).

(2) E.Best and R.Devillers: Sequential and Concurrent Behaviour in Petri Net

 Theory. TCS (Theoretical Computer Science) Vol.55/1, 87--136 (1987).

Petri's original article is:

Nichtsequentielle Prozesse. Gesellschaft fuer Mathematik und

Datenverarbeitung Bonn, ISF-Bericht 76-6; an English translation is

available.

Copies can be obtained from GMD or through me:

Eike Best, Institut fuer Informatik,

Universitaet Hildesheim, W-3200 Hildesheim.

From pratt@cs.stanford.edu Wed May 29 16:40:20 1991

Return-Path: <meyer@theory.lcs.mit.edu>

Date: Fri, 28 Dec 90 17:55:33 EST

To: concurrency

Subject: Re: Zeno Machines

From: pratt@cs.stanford.edu

Sender: meyer@theory.lcs.mit.edu

In-Reply-To: Your message of Mon, 24 Dec 90 10:46:26 EST.

 <9012241546.AA21550@stork>

Date: 24 Dec 90 21:08:49 PST (Mon)

 From: infhil!eike@relay.eu.net (Eike Best)

 In 1976 Petri invented something he called K--density, which

 can be stated order--theoretically as 'every maximal chain

 intersects every maximal antichain', and interpreted as 'every

 sequential subprocess intersects every global state'.

 ...

 One of the consequences of this characterisation is that

 K--density implies the absence of partial orders which describe

 'an infinite sequence of events before another one', like the

 following one

(Eike's diagram appears to have been mangled en route, most likely due

to improper expansion of tabs. My guess is that it originally looked

like:)

 e->b->e->b->e-> or, formally:

 | | | Events={E,e_0,e_1,e_2,...}

 c c c Conditions={b_0,b_1,...,c_0,c_1,...}

 | / / Partial order is transitive closure of:

 | / / e_i < b_i < e_{i+1} for all i>=0

 | / / e_i < c_i for all i>=0

 | / / c_i < E for all i>=0

 (so all e_i are before E)

 E

As a minor quibble, even if K-density did rule out such infinite

chains, these constitute only the weakest of the three kinds of "event

at infinity" I described in my previous message, the next stronger

being that of having infinite rank and the strongest being that of

having infinitely many predecessors.

A more serious objection is that, contrary to what I understand Eike to

be claiming, K-density does not rule out even the weakest of these

kinds of "event at infinity."

Theorem. Every linear order is K-dense.

Proof. A linear order contains only one maximal chain, namely itself,

but its maximal antichains are all and only its singleton subsets.

Taking E = omega in the ordinal omega+1 then supplies a suitable

counterexample of a K-dense poset containing an "event at infinity."

It is however true that Eike's example is not K-dense: the c's

constitute a maximal antichain while the e's, b's, and E constitute a

maximal chain. Since this seemed a rather unlikely counterexample, I

found myself wondering just what this was a counterexample to. After

looking up the 1976 paper that Eike referred to and thinking a while

about it, I think I understand. This is a counterexample to the

converse of a theorem by Petri in that paper, that every K-dense poset

is N-dense.

Here are two versions of Eike's counterexample. The one on the right

is essentially what Eike gave (the b's contribute nothing and I've

dropped them). The one on the left is a plausible variant where the

conditions c_i happen in the order caused.

 __ E

 __/_/// \\

 E __/ _/ / | | \

 / \ __/ _/ / / \ \

 / \ : _/ / | | \

 : : : / | | \

 : : : / | | |

 e3--->c2 e3--->c3 | | |

 ^ ^ ^ | | |

 | | | | | |

 e2--->c2 e2-------->c2 | |

 ^ ^ ^ | |

 | | | | |

 e1--->c1 e1------------->c1 |

 ^ ^ ^ |

 | | | |

 e0--->c0 e0------------------>c0

Neither poset is K-dense. However the one on the left already fails

K-density within the first three events. Just take the maximal

antichain c0,e2 and the maximal chain beginning e0<e1<c1.

The one on the right is more interesting. Here there exists a (unique)

infinite maximal antichain, namely c0,c1,c2,... and a maximal chain

e0<e1<e2<...<E; this combination of chain and antichain is the only one

with an empty intersection.

What is special about the example on the right is that it is N-dense.

Here are the details.

Definition. N is the four-element poset

 c d

 ^ ^

 | \ |

 | \|

 a b

(Note that N is isomorphic to its order dual, a property holding of

exactly half of the 16 4-element posets. Does anyone happen to know

whether the self-dual posets are in a minority or majority of the

n-element posets as n -> oo ?)

A poset is said to be N-free when it does not contain N as a subposet.

Now at this point one might be inclined to guess that a partial order

that contains an N cannot be K-dense. The following supplies an easy

counterexample.

 c d

 ^ ^

 | \ |

 | e |

 | \|

 a b

The maximal antichains of this poset are a,b; a,e,d; and c,d. These

intersect the respective maximal chains a,c (or b,d); b,e,d; and a,c

(or b,d). Hence this is a K-dense poset containing an N.

Definition (Petri, IMMD Jubilee Colloq. 1976; GMD Report ISF-77-05,

June 15, 1977). P is *N-dense* when for every occurrrence of N as a

subposet of P there exists an element x such that b<x<c (where b,c are

as in the above definition of N and < is strict.)

Theorem (Petri, op.cit.) (AC). K-dense -> N-dense.

Petri did not supply a proof, and did not mention requiring AC, the

Axiom of Choice. Here is an easy proof using AC. My guess is that the

theorem fails in the absence of choice, but I do not have a proof of

this and would very much like to see one.

Proof. Let P be K-dense, and suppose {a,b,c,d} is any occurrence of N

in P. By AC we may choose a maximal chain containing b and c, and a

maximal antichain containing a and d. By K-density there exists an

element x of P common to the chain and the antichain. x <= b is

impossible since x would then compare with d. Similarly c <= x is

impossible since x would then compare with a. Since x lies on the

chain it follows that b<x<c. QED

Inspection of Eike's example and my variant of it shows that although

both are not K-dense, only the former is N-dense.

What I don't understand is, what is the significance of either? As I

argued above, whatever the significance of K-density, it is not what

Eike claimed. Moreover I can't think what small change would help.

The interesting counterexample to "N-dense -> K-dense" (it seems very

likely that any counterexample must be infinite) suggests that the

thought was that under the assumption of N-density, the impact of

further constraining things by requiring K-density would be to rule out

"events at infinity." However this hope is dashed by the theorem that

every chain is K-dense.

Something has been left out.

Although W. Reisig's very nice 1985 book on Petri nets defines

K-density, it does not use it for anything, nor does it mention

N-density.

 Vaughan Pratt

