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� Introduction

The input�output automaton model has recently been de�ned� in �LT�� LT��� as a
tool for modeling concurrent and distributed discrete event systems of the sorts
arising in computer science� Since its introduction� the model has been used
for describing and reasoning about several di	erent types of systems� including
network resource allocation algorithms� communication algorithms� concurrent
database systems� shared atomic objects� and data
ow architectures�
This paper is intended to introduce researchers to the model� It is orga�

nized as follows� Section � contains an overview of the model� Section � de�nes
the model formally and examines several illustrative examples concerning candy
vending machines� Section  contains a second example� a leader election algo�
rithm� Finally� Section � contains a survey of some of the uses that have so far
been made of the model�

� Overview of the Model

I�O automata provide an appropriate model for discrete event systems consist�
ing of concurrently�operating components� Such systems are often characterized
by the fact that� instead of simply computing some function of their input and
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halting� they continuously receive input from and react to their environment� Al�
though I�O automata can be used to model synchronous systems� they are best
suited for modeling systems in which the components operate asynchronously�
Each system component is modeled as an I�O automaton� which is essentially

a �possibly in�nite state� automaton with an action labeling each transition� A
fundamental property of our model is that we make a very clear distinction
between those actions whose performance is under the control of the automaton
and those actions whose performance is under the control of its environment�
An automaton�s actions are classi�ed as either �input�� �output�� or �internal��
An automaton generates output and internal actions autonomously� and trans�
mits output instantaneously to its environment� In contrast� the automaton�s
input is generated by the environment and transmitted instantaneously to the
automaton� Our distinction between input and other actions is fundamental�
based on who determines when the action is performed� an automaton can es�
tablish restrictions on when it will perform an output or internal action� but it
is unable to block the performance of an input action��

The fact that our automata are unable to block inputs distinguishes our
model from CSP �Communicating Sequential Processes� �Ho�� There� input
blocking is used for two purposes� as a way of blocking the activity of the en�
vironment and as a way of eliminating undesirable inputs� Our model does not
allow an automaton to block its environment or eliminate undesirable inputs�
Suppose� however� that we only wish to guarantee that an automaton exhibits
some behavior when the environment observes certain restrictions on the pro�
duction of inputs� Instead of allowing the automaton to block the bad inputs�
we permit these inputs to occur� but permit the automaton to exhibit arbitrary
behavior when they do� Our correctness conditions are often of the form �if the
environment behaves correctly� then the automaton behaves correctly�� Alter�
natively� our correctness condition may require the automaton to detect bad
inputs and respond to them with error messages� In either case� we have simple
ways of dealing with input restrictions without including input�blocking in the
model�
I�O automata may be nondeterministic� and indeed the nondeterminism is

an important part of the model�s descriptive power� Describing algorithms as
nondeterministically as possible tends to make results about the algorithms quite
general� since many results about nondeterministic algorithms apply a fortiori to
all algorithms obtained by restricting the nondeterministic choices� Moreover�
the use of nondeterminism helps to avoid cluttering algorithm descriptions and
proofs with inessential details�
I�O automata can be composed to yield other I�O automata� When we

compose a collection of automata� we identify the same�named actions of the
di	erent automata� Our composition guarantees that if one automaton has �

�The shared�memory model described in �LF� has had a strong in�uence on the present
work� In particular� the inability to block inputs appears as the �read�anything� property in
�LF��
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as an output action� then � is an input action of all remaining automata having
� as an action� As a result� an automaton generating an output action does
so autonomously� and this output is transmitted instantaneously to all other
automata having the same action as an input� All such components are passive
recipients of the input� and take steps simultaneously with the output step� As
in CSP� we use simultaneous performance of actions to synchronize components�
but we permit only one component to determine when the action occurs�
When I�O automata are run� they generate �executions� �alternating se�

quences of states and actions�� Among all the executions of an automaton� we
are primarily interested in the �fair� executions � those that permit each of the
automaton�s primitive components to have in�nitely many chances to perform
output or internal actions� The fair executions of an automaton give rise to the
�fair behaviors� of the automaton � the subsequences of the fair executions that
consist of external �that is� input and output� actions� It is this set of sequences
that we believe embodies the interesting behavior of an I�O automaton� thus�
our semantics is a �trace� semantics� The set of fair behaviors of an I�O au�
tomaton can consist of both �nite and in�nite sequences of actions� and is not
necessarily closed under the operation of taking pre�xes�
A �problem� to be solved by an I�O automaton is formalized essentially as

an arbitrary set of ��nite and in�nite� sequences of external actions� Our notion
of what it means for an automaton to �solve� a problem is particularly simple�
essentially� an automaton is said to �solve� a problem P provided that its set of
fair behaviors is a subset of P � It might not be obvious to the reader that this
de�nition is nontrivial� for example� if an automaton had no fair behaviors� then
our de�nition would say that it is a solution to every problem� However� this
anomaly does not arise� since our de�nitions imply that every automaton has
a nonempty set of fair behaviors� Since an automaton cannot block its input�
for every possible pattern of inputs that might arrive from the environment� the
automaton is required to provide some response such that the resulting sequence
of actions is in the problem set P � That is� the automaton is required to respond
appropriately to every possible input pattern�
The model permits description of algorithms and systems at di	erent levels of

abstraction� Abstraction mappings are de�ned� mapping automata that include
implementation detail to more abstract automata that suppress some of the
detail� Such mappings can be used as aids in correctness proofs for algorithms�
if automaton A is an image of B under an appropriate abstraction mapping and
A solves problem P � then B also solves P �
The model allows very careful and readable descriptions of particular concur�

rent algorithms� We have developed a simple language for describing automata�
based on �precondition� and �e	ect� speci�cations for actions� This notation�
similar to Dijkstra�s �guarded commands�� has proved su�cient for describing
all algorithms we have attempted so far� However� the model does not depend
on this manner of describing automata� for example� the model is general enough
to serve as a formal basis for languages that include more elaborate constructs
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for sequential 
ow of control�
Our model also allows precise statements of the problems that are to be

solved by modules in concurrent systems� As described above� such problems
are formulated as sets of �nite and in�nite sequences of external actions� We
have not so far developed any particular language or notation for describing
such sets� but have used a variety of notations �e�g�� temporal logic or generating
automata� as they have seemed convenient� Again� our model is general enough
to serve as an operational model for many di	erent languages describing sets of
action sequences�
The model can be used as a formal basis for algorithm correctness proofs

� proofs that particular algorithms solve particular problems in the sense de�
scribed above� In fact� a current major thrust of our research involves producing
correctness proofs for substantial�sized and complex concurrent algorithms� We
use a variety of techniques for such proofs� primarily based on notions of com�
position and abstraction� In every case� we try to utilize the modularity that
is suggested by informal descriptions of the algorithm in our formal correctness
proofs� So far� our proofs have been done by hand� but it appears that machine�
checking of some of our proofs might be possible using current automatic proof
technology�
The model can also be used for carrying out complexity analysis� proving

upper and lower bounds on the complexity of solving particular problems� and
proving impossibility results�

� The Input�Output Automaton Model

In this section we formally de�ne our model of computation� show how it can be
used to model a system� how it can be used to construct a problem speci�cation�
and how it can be used to prove that a system satis�es a speci�cation�

��� Input�Output Automata

We begin with the de�nition of an automaton� As previously mentioned� an
automaton�s actions are partitioned into sets of input� output� and internal
actions� This set of actions and its partition determines an interface between
the automaton and its environment� We refer to this interface as the action
signature of the automaton� Formally� an action signature S is a partition of
a set acts�S� of actions into three disjoint sets in�S�� out�S�� and int�S� of
input actions� output actions� and internal actions� respectively� We denote by
ext�S� � in�S� � out�S� the set of external actions� those actions visible to the
environment of any automaton have S as its action signature� An external action
signature is an action signature S with no internal actions� that is� int�S� � �
or acts�S� � ext�S�� Given an action signature S� we de�ne extsig�S� to be
the external action signature S� with in�S�� � in�S� and out �S�� � out�S��





We denote by local�S� � out�S� � int�S� the set of locally�controlled actions�
those actions under the local control of any automaton having S as its action
signature� Given an automaton A with action signature S� we will frequently
abuse notation and denote in�S� by in�A�� etc�
An input�output automaton A �also called an I�O automaton or simply an

automaton� consists of �ve components�

� an action signature sig�A��

� a set states�A� of states�

� a nonempty set start�A� � states�A� of start states�

� a transition relation steps�A� � states�A�� acts�A� � states�A� with the
property that for every state s� and input action � there is a transition
�s�� �� s� in steps�A�� and

� an equivalence relation part�A� partitioning the set local�A� into at most
a countable number of equivalence classes�

Since the equivalence relation part�A� is used only in the de�nition of fair com�
putation in Section ���� we will ignore it for now� It is used to identify the
primitive components of the system being modeled by the automaton� each
class is thought of as the set of actions under the local control of one system
component�
Each element of an automaton�s transition relation represents a possible step

in the computation of the system the automaton models� We refer to an element
�s�� �� s� of steps�A� as a step of A� If �s�� �� s� is a step of A� then � is said to
be enabled in s�� Since every input action is enabled in every state� automata
are said to be input�enabled� This means that the automaton is unable to block
its input� which is one of the fundamental assumptions made in our model �the
other being that the performance of an action is controlled by at most one
system component��
When an automaton �runs�� it generates a string representing an execution

of the system the automaton models� An execution fragment of A is a �nite
sequence s�� ��� s�� ��� � � � � �n� sn or an in�nite sequence s�� ��� s�� ��� � � � of al�
ternating states and actions of A such that �si� �i��� si��� is a step of A for
every i� An execution is an execution fragment beginning with a start state� We
denote the set of executions of A by execs�A�� and the set of �nite executions
of A by it �nexecs�A�� We say that a state is reachable if it is the �nal state of
a �nite execution�
While an execution represents a system computation� we are often interested

only in the sequence of actions performed during the course of the computation�
and not in the states through which the computation passes� The schedule of an
execution fragment � is the subsequence of � consisting of the actions appearing
in �� and is denoted by sched ���� We say that � is a schedule of an automaton

�



A if � is the schedule of an execution of A� We denote the set of schedules
of A by scheds�A�� and the set of �nite schedules of A by �nscheds �A�� The
behavior of an execution or schedule � of A is the subsequence of � consisting of
external actions� and is denoted by beh���� Intuitively� beh��� is the externally
observable portion of � � the sequence of actions the external environment might
observe during �� We say that � is a behavior of A if � is the behavior of an
execution of A� We denote the set of behaviors of A by behs�A� and the set of
�nite behaviors of A by �nbehs �A��
We remark that since the same action may occur several times in an ex�

ecution or a schedule� it is sometimes convenient to distinguish the di	erent
occurrences� On these occasions we refer to a particular occurrence of an action
as an event�
We will be illustrating many of our de�nitions using simple examples of

candy machines and their customers� We hope that� since this class of examples
is so popular in the CSP literature� they will provide an interesting comparison
of the models� In the remainder of this section� we de�ne automata modeling
these candy machines and customers�
Our three candy machines CM��� CM��� and CM�� di	er only in their tran�

sition relations� We begin with the de�nition of CM��� This candy machine has
the following action signature�

Input actions� PUSH�� PUSH�
Output actions� SKYBAR� HEATHBAR� ALMONDJOY
Internal actions� none

We will sometimes abbreviate the two push actions as � and �� and the three
dispensation actions as S� H and A� The partition part�CM��� places all three
output actions S� H� and A in the same equivalence class� The state of CM��
consists of one variable �button pushed�� which takes on values �� � and �� In
the initial state� �button pushed� is set to �� We describe the transition relation
for CM�� by giving a precondition and an e�ect for every action � � the triple
�s�� �� s� is a step of CM�� exactly if the precondition of � is satis�ed by s� and
s is the result of transforming s� as determined by the e	ects of � � We omit
the precondition for an action when this precondition is true� The transition
relation for CM�� is as follows�
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PUSH�
E	ect� button pushed � �

PUSH�
E	ect� button pushed � �

SKYBAR
Precondition� button pushed � �
E	ect� button pushed � �

HEATHBAR
Precondition� button pushed � �
E	ect� button pushed � �

ALMONDJOY
Precondition� button pushed � �
E	ect� button pushed � �

When the customer pushes button �� CM�� can dispense a SKYBAR� When
the customer pushes button �� CM�� can dispense either a HEATHBAR or an
ALMONDJOY� but not both� The choice between H and A is made nondeter�
ministically by CM���
Candy machine CM�� is identical to CM��� except that its HEATHBAR ac�

tion has �false� as its precondition� This candy machine never dispenses HEATH�
BARs� but is able to dispense SKYBARs and ALMONDJOYs�
Candy machine CM�� is identical to CM�� except that all three candy dis�

pensation actions have �false� as their precondition� It never dispenses candy�
which must disappoint a number of its customers�
Like our candy machines� our three customers CUST��� CUST��� and CUST�

� are also quite similar� Customer CUST�� continues to request candy bars
ad in�nitum� nondeterministically choosing which button to push� Its action
signature is the �complement� of the candy machines��

Input actions� SKYBAR� HEATHBAR� ALMONDJOY
Output actions� PUSH�� PUSH�
Internal actions� none

The state of CUST�� consists of one variable �waiting�� which takes on values
�yes� and �no�� In the initial state� �waiting� is set to �no�� CUST���s actions are
as follows�
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SKYBAR
E	ect� waiting � no

HEATHBAR
E	ect� waiting � no

ALMONDJOY
E	ect� waiting � no

PUSH�
Precondition� waiting � no
E	ect� waiting � yes

PUSH�
Precondition� waiting � no
E	ect� waiting � yes

This customer is very patient� after pushing a button� it waits for a candy bar
before pushing a button a second time� The partition part�CUST��� of this
customer�s locally�controlled actions puts PUSH� and PUSH� together in one
equivalence class�
Customer CUST�� is somewhat more selective than CUST��� It pushes

button � repeatedly just until the machine dispenses a HEATHBAR� and then
pushes button � forever� Formally� CUST�� has another variable �heathbar received�
in its state in addition to �waiting�� This variable takes on values �yes� and �no��
initially �no�� The actions of CUST�� that di	er from those of CUST�� are as
follows�

HEATHBAR
E	ect� waiting � no� heathbar received � yes

PUSH�
Precondition� waiting � no� heathbar received � yes
E	ect� waiting � yes

PUSH�
Precondition� waiting � no� heathbar received � no
E	ect� waiting � yes

Customer CUST�� is similar to CUST�� except that it may make a transition
to a �satiated� state from which it no longer requests any candy bars� Formally�
CUST���s state has an additional �satiated� variable besides the �waiting� vari�
able of CUST��� It takes on values �yes� or �no�� initially �no�� CUST�� has an
additional internal action BECOME SATIATED� de�ned as follows�

BECOME SATIATED
Precondition� satiated � no� waiting � no
E	ect� satiated � yes

Also� each of PUSH� and PUSH� has the additional precondition �satiated � no��
Again� part�CUST��� puts all three locally�controlled actions PUSH�� PUSH��
and BECOME SATIATED in the same equivalence class�
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��� Composition

We can construct an automaton modeling a complex system by composing au�
tomata modeling the simpler system components� The essence of this composi�
tion is quite simple� when we compose a collection of automata� we identify an
output action � of one automaton with the input action � of each automaton
having � as an input action� Consequently� when one automaton having � as an
output action performs � � all automata having � as an action perform � simul�
taneously �automata not having � as an action do nothing�� For example� in the
composition of CM�� and CUST��� we identify the output action PUSH� of the
customer with the input action PUSH� of the candy machine� The occurrence
of PUSH� causes both the candy machine and the customer to perform PUSH��
causing button pushed to be set to � in the candy machine�s local state� and
waiting to be set to �yes� in the customer�s local state� This synchronization
models a form of communication from the customer to the candy machine�
We impose certain restrictions on the composition of automata� Since inter�

nal actions of an automaton A are intended to be unobservable by any other
automaton B� we cannot allow A to be composed with B unless the internal
actions of A are disjoint from the actions of B� since otherwise one of A�s in�
ternal actions could force B to take a step� Furthermore� in keeping with our
philosophy that at most one system component controls the performance of any
given action� we cannot allow A and B to be composed unless the output actions
of A and B form disjoint sets� Finally� since we do not preclude the possibility
of composing a countable collection of automata� each action of a composition
must be an action of only �nitely many of the composition�s components� One
motivation for this restriction is Milner�s motivation for ruling out in�nite prod�
ucts in CCS �M�� if each automaton in an in�nite product has � as an action�
then an in�nite amount of work is performed by a single action � � which we
consider unreasonable� Since we do not have a recursion operation as CCS does�
however� we require in�nite products in order to model systems that can create
processes dynamically�
Since the action signature of a composition �the composition�s interface with

its environment� is determined uniquely by the action signatures of its compo�
nents� it is convenient to de�ne a composition of action signatures before de�ning
the composition of automata� The preceding discussion motivates the follow�
ing de�nition� A countable collection fSigi�I of action signatures is said to be
strongly compatible� if for all i� j � I satisfying i �� j we have

�� out �Si� 	 out�Sj � � ��

�� int�Si� 	 acts�Sj� � �� and

�Such a collection is said to be compatible if it satis�es the �rst two of the three properties
listed� Some of the results below follow simply from compatibility� while others require strong
compatibility� Here� we simplify matters by considering the stronger de�nition only� The
consequences of the two de�nitions are described more carefully in �LT���
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�� no action is contained in in�nitely many sets acts�Si��

We say that a collection of automata are strongly compatible if their action sig�
natures are strongly compatible� CM�� and CUST��� for example� are strongly
compatible�
When we compose a collection of automata� internal actions of the compo�

nents become internal actions of the composition� output actions become output
actions� and all other actions �each of which can only an input action of a com�
ponent� become input actions� For example� all actions become output actions
in the composition of CM�� and CUST��� Notice that this composition does
not hide actions such as PUSH� representing communication between compo�
nents CM�� and CUST�� by making them internal actions of the composition
CM��
CUST��� As motivation for this decision� consider one automaton A hav�
ing � as an output actions and two automata B� and B� having � as an input
action� Notice that � is essentially a broadcast from A to B� and B� in the
composition A 
B� 
B� of the three automata� Notice� however� that if we hide
communication� then the composition �A 
B�� 
B� would not be the same as the
composition A
B� 
B� since � would be made internal to A
B� before composing
with B�� and hence � would no longer be a broadcast to both B� and B�� This
is problematic if we want to reason about the system A 
 B� 
B� in a modular
way by �rst reasoning about A 
 B� and then reasoning about A 
B� 
 B�� We
will de�ne another operation to hide such communication actions explicitly�
The preceding discussion motivates the following de�nitions� The composi�

tion S �
Q

i�I Si of a countable collection of strongly compatible action signa�
tures fSigi�I is de�ned to be the action signature with

� in�S� � �i�I in�Si���i�Iout�Si��

� out �S� � �i�Iout�Si�� and

� int�S� � �i�Iint�Si��

The composition A �
Q

i�I Ai of a countable collection of strongly compatible
automata fAigi�I is the automaton de�ned as follows�

�

� sig�A� �
Q

i�I sig�Ai��

� states�A� �
Q

i�I states�Ai��

� start�A� �
Q

i�I start�Ai��

� steps�A� is the set of triples ��s�� �� �s�� such that� for all i � I� if � �
acts�Ai� then ��s��i�� �� �s��i�� � steps�Ai�� and if � �� acts�Ai� then �s��i� �
�s��i�� and

�Here start�A and states�A are de�ned in terms of the ordinary Cartesian product� while
sig�A is de�ned in terms of the composition of actions signatures just de�ned� Also� we use
the notation �s�i� to denote the ith component of the state vector �s�
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� part�A� � �i�Ipart�Ai��

When I is the �nite set f�� ���� ng� we often denote
Q

i�I Ai by A� 
 
 
 
 
An�
Notice that since the automata Ai are input�enabled� so is their composition�

The partition of the composition�s locally�controlled actions is formed by taking
the union of the components� partitions �that is� each equivalence class of each
component becomes an equivalence class of the composition�� For example�
since CM���s partition has one class fS�H�Ag and CUST���s partition has one
class f�� �g� the partition of CM��
CUST�� has two classes fS�H�Ag and f�� �g�
This corresponds to our intuition that this partition identi�es the primitive
components �e�g�� CM�� and CUST��� of the system modeled by an automaton�
Again� we ignore this partition until we de�ne fair computation in the next
section�
Three basic results relate the executions� schedules� and behaviors of a com�

position to those of the composition�s components� The �rst says� for example�
that an execution of a composition induces executions of the component au�
tomata� Given an execution � � �s����s� � � � of A� let �jAi be the sequence
obtained by deleting �j �sj when �j is not an action of Ai and replacing the
remaining �sj by �sj �i��

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� If � � execs�A� then �jAi � execs�Ai� for every i � I�

Moreover� the same result holds if execs�� is replaced by it �nexecs�� � scheds���
�nscheds��� behs��� or �nbehs���

Certain converses of the preceding proposition are also true� The following
proposition says that executions of component automata can often be pasted
together to form an execution of the composition�

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I

Ai� Suppose �i is an execution of Ai for every i � I� and
suppose � is a sequence of actions in acts�A� such that �jAi � sched ��i� for
every i � I� Then there is an execution � of A such that � � sched ��� and
�i � �jAi for every i � I� Moreover� the same result holds when acts�� and
sched�� are replaced by ext�� and beh��� respectively�

As a corollary� schedules and behaviors of component automata can also be
pasted together to form schedules and behaviors of the composition�

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� Let � be a sequence of actions in acts�A�� If �jAi �

scheds�Ai� for every i � I� then � � scheds�A�� Moreover� the same result holds
when acts�� and scheds�� are replaced by ext�� and behs��� respectively�

As promised� we now de�ne an operation that �hides� actions of an automaton
by converting them to internal actions� We begin with a hiding operation for
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action signatures� if S is an action signature and � � acts�S�� then hide�S � S�

where in�S�� � in�S� � �� out�S�� � out�S� � � and int�S�� � int�S� � ��
We now de�ne a hiding operation for automata� if A is an automaton and
� � acts�A�� then hide�A is the automaton A� obtained from A by replacing
sig�A� with sig�A�� � hide�sig���A��

��� Fairness

Consider CUST�� a particularly greedy version of CUST�� in which all actions
have the precondition �true�� that is� the customer does not wait for a candy bar
before pressing a button again� One behavior of the composition CM��
CUST�
is the in�nite sequence ������� in which the customer repeatedly pushes button
� without giving the candy machine a chance to dispense a candy bar� Clearly
the only time the candy machine can do its job is when it is treated fairly�
that is� when it is given a chance to respond to its input� For this reason� we
are in general only interested in the executions of a composition in which all
components are treated fairly� While what it means for a component to be
treated fairly may vary from context to context� it seems that any reasonable
de�nition should have the property that in�nitely often the component is given
the opportunity to perform one of its locally�controlled actions �cf� �F��� In this
section we de�ne such a notion of fairness�
As we have mentioned� the partition of an automaton�s locally�controlled ac�

tions is intended to capture some of the structure of the system the automaton
is modeling� Each class of actions is intended to represent the set of locally�
controlled actions of some system component� Notice that the locally�controlled
actions of CM�� and CUST� are fS�H�Ag and f�� �g� respectively� and that
the partition of the locally�controlled actions of CM��
CUST� has two equiv�
alence classes fS�H�Ag and f�� �g� The de�nition of automaton composition
guarantees that an equivalence class of a component automaton becomes an
equivalence class of a composition� and hence that composition retains the es�
sential structure of the system�s primitive components�� In our model� there�
fore� being fair to each component means being fair to each equivalence class of
locally�controlled actions� This motivates the following de�nition�
A fair execution of an automaton A is de�ned to be an execution � of A

such that the following conditions hold for each class C of part�A��

�� If � is �nite� then no action of C is enabled in the �nal state of ��

�� If � is in�nite� then either � contains in�nitely many events from C� or �
contains in�nitely many occurrences of states in which no action of C is
enabled�

�It might be argued that retaining this partition is a bad thing to do since it destroys some
aspects of abstraction� Notice� however� that any reasonable de�nition of fairness must lead to
some breakdown of abstraction since being fair means being fair to the primitive components
which must somehow be modeled�

��



This says that a fair execution gives fair turns to each class C of part�A�� and
therefore to each component of the system being modeled� In�nitely often the
automaton attempts to perform an action from the class C� On each attempt�
either an action of C is performed� or no action from C can be performed since
no action from C is enabled� For example� we may view a �nite fair execution as
an execution at the end of which the automaton repeatedly cycles through the
classes in round�robin order attempting to perform an action from each class�
but failing each time since no action is enabled from the �nal state� Returning
to the composition CM��
CUST�� we see that ������ is not a fair behavior
since the output action S of CM�� is enabled in every state �except the �rst�
and yet never performed� On the other hand� ��S��S��� is a fair behavior of
the composition since in�nitely often an output action of CM�� is performed
and in�nitely often an output action of CUST� is performed� Considering the
composition CM��
CUST��� notice that any �nite execution ending with the
action BECOME SATIATED is a fair execution since from the state following
this action no action of the composition is enabled� �In fact� these are precisely
the fair �nite executions of this composition��
We denote the set of fair executions of A by fairexecs�A�� We say that � is

a fair schedule of A if � is the schedule of a fair execution of A� and we denote
the set of fair schedules of A by fairscheds�A�� We say that � is a fair behavior
of A if � is the behavior of a fair execution of A� and we denote the set of
fair behaviors of A by fairbehs�A�� For example� the schedule consisting of the
single internal action BECOME SATIATED is a fair schedule of CM��
CUST���
and hence the empty schedule consisting of no actions is a fair behavior of this
composition�
We can prove the following analogues to Propositions ��� in the preceding

section�

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� If � � fairexecs�A� then �jAi � fairexecs�Ai� for every

i � I� Moreover� the same result holds if fairexecs�� is replaced by fairscheds��
or fairbehs���

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I

Ai� Suppose �i is a fair execution of Ai for every i � I� and
suppose � is a sequence of actions in acts�A� such that �jAi � sched ��i� for
every i � I� Then there is a fair execution � of A such that � � sched ��� and
�i � �jAi for every i � I� Moreover� the same result holds when acts�� and
sched�� are replaced by ext�� and beh��� respectively�

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� Let � be a sequence of actions in acts�A�� If �jAi �

fairscheds�Ai� for every i � I� then � � fairscheds�A�� Moreover� the same
result holds when acts�� and fairscheds�� are replaced by ext�� and fairbehs���
respectively�
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We state these results because analogous results often do not hold in other
models� As we will see in the following section� the fact that the fair behavior
of a composition is uniquely determined by the fair behavior of the components
makes it possible to reason about the fair behavior of a system in a modular way�
The proofs of these propositions are nearly identical to the proofs of Propositions
���� The one additional key fact needed is the fact that a component automaton
determines by itself when one of its locally�controlled actions may be performed�

��� Problem Speci�cation

We want to say that a problem speci�cation is simply a set of allowable �behav�
iors�� and that an automaton solves the speci�cation if each of its �behaviors� is
contained in this set� The automaton solves the problem in the sense that every
�behavior� it exhibits is a �behavior� allowed by the problem speci�cation �but
notice that there is no single �behavior� the automaton is required to exhibit��
The appropriate notion of �behavior� �e�g�� �nite behavior� in�nite behavior� fair
behavior� etc�� used in such a de�nition depends to some extent on the nature
of the problem speci�cation�
It is often useful to di	erentiate between two types of speci�cations since

di	erent techniques are usually used to prove that such speci�cations are satis�
�ed �La��� Safety properties are informally characterized by the fact that they
specify a property that must hold in every state of a computation� Since an
in�nite computation satis�es a safety property if and only if every �nite pre�x
of the computation does so� the notion of �behavior� most useful in this context
seems to be �nite behaviors� Liveness properties are informally characterized by
the fact that they specify events that must eventually be performed� A reliable
candy machine� for example� should satisfy the liveness condition that if a but�
ton is pushed� then a candy bar �of the correct type� is eventually dispensed�
Clearly this is a property of in�nite behaviors� and not �nite behaviors� In fact�
this is a property that can only be satis�ed by fair behaviors� since a candy
machine cannot dispense the required candy bar if it is not given the chance to
do so� The notion of �behavior� most useful in this context� therefore� seems to
be fair behaviors�
Consequently� we would like to say that a speci�cation is a set of allowable

behaviors� and that an automaton solves the speci�cation if all �nite or fair
behaviors �depending on the context� of the automaton are contained in the set�
In addition to a set of allowable behaviors� however� a problem speci�cation must
specify the required interface between a solution and its environment� That is�
we want a problem speci�cation to be a set of behaviors together with an action
signature�
We therefore de�ne a schedule module H to consist of two components�

� an action signature sig�H�� and

� a set scheds�H� of schedules�
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Each schedule in scheds�H� is a �nite or in�nite sequence of actions of H�
We denote by �nscheds �H� the set of �nite schedules of H� The behavior of
a schedule � of H is the subsequence of � consisting of external actions� and
is denoted by beh���� We say that � is a behavior of H if � is the behavior
of a schedule of H� We denote the set of behaviors of H by behs�H� and
the set of �nite behaviors of H by �nbehs �H�� We extend the de�nitions of
fair schedules and fair behaviors to schedule modules in a trivial way� letting
fairscheds�H� � scheds�H� and fairbehs�H� � behs�H�� We will use the term
module to refer to either an automaton or a schedule module�
There are several natural schedule modules that we often wish to associate

with an automaton� They correspond to the automaton�s schedules� �nite sched�
ules� fair schedules� behaviors� �nite behaviors and fair behaviors� For each
automaton A� let Scheds�A�� Finscheds�A� and Fairscheds�A� be the sched�
ule modules having action signature sig�A� and having schedules scheds�A��
�nscheds�A� and fairscheds�A�� respectively� Also� for each module M �either
an automaton or schedule module�� let Behs�M �� Finbehs�M � and Fairbehs�M �
be the schedule modules having the external action signature extsig�M � and
having schedules behs�M �� �nbehs �M � and fairbehs�M �� respectively� �Here
and elsewhere� we follow the convention of denoting sets of schedules with lower
case names and corresponding schedule modules with corresponding upper case
names��
It is convenient to de�ne two operations for schedule modules� Correspond�

ing to our composition operation for automata� we de�ne the composition of a
countable collection of strongly compatible schedule modules fHigi�I to be the
schedule module H �

Q
i�I Hi where�

� sig�H� �
Q

i�I sig�Hi��

� scheds�H� is the set of sequences � of actions of H such that �jHi is a
schedule of Hi for every i � I�

The following proposition shows how composition of schedule modules corre�
sponds to composition of automata�

Proposition 	� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� Then Scheds�A� �

Q
i�I Scheds �Ai�� Fairscheds�A� �Q

i�I Fairscheds�Ai�� Behs�A� �
Q

i�I Behs�Ai� and Fairbehs�A� �
Q

i�I Fairbehs�Ai��

Corresponding to our hiding operation for automata� we de�ne hide hide�H to
be the schedule module H � obtained fromH by replacing sig�H� with sig�H�� �
hide�sig���H��
Finally� we are ready to de�ne a problem speci�cation and what it means for

an automaton to satisfy a speci�cation� A problem is simply a schedule module
P � An automaton A solves� a problem P if A and P have the same external

�This concept is called satisfying in �LT���
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action signature and fairbehs�A� � fairbehs�P �� An automaton A implements
a problem P if A and P have the same external action signature �that is� the
same external interface� and �nbehs�A� � �nbehs�P �� Notice that if A solves P �
then A cannot be a trivial solution of P since the fact that A is input�enabled
ensures that fairbehs�A� contains a response by A to every possible sequence of
input actions� For analogous reasons� the same is true if A implements P �
Since we may want to carry out correctness proofs hierarchically in several

stages� it is convenient to state the de�nitions of �solves� and �implements� more
generally� For example� we may want to prove that one automaton solves a
problem by showing that the automaton �solves� another automaton� which in
turn �solves� another automaton� and so on� until some �nal automaton solves
the original problem� Therefore� let M and M � be modules �either automata
or schedule modules� with the same external action signature� We say that
M solves M � if fairbehs�M � � fairbehs�M �� and that M implements M � if
�nbehs�M � � �nbehs �M ���
To illustrate these de�nitions� let us consider some interesting speci�cations

of correct candy machine behavior�
Some basic requirements for a candy machine can be described by the sched�

ule module SAFE�CM� SAFE�CM has the same action signature as CM��� and
has as its set of schedules the set of sequences over the symbols ����S�H�A satis�
fying the following condition� every S is immediately preceded by a �� and every
A or H is immediately preceded by a ��
In order to show that CM�� is a safe candy machine �that is� that it im�

plements the problem described by SAFE�CM�� we must show that all �nite
behaviors of CM�� satisfy the given requirement� We proceed by induction on
the length of a behavior� using an inductive hypothesis that characterizes the
state of CM�� in terms of the preceding events� button pushed � � if the last
event in the sequence is PUSH�� button pushed � � if the last event in the
sequence is PUSH�� and button pushed � � otherwise �that is� if the sequence
is empty or the last event is a dispensation event�� The inductive step consid�
ers cases based on the �ve possible actions� For instance� if SKYBAR occurs�
its precondition implies that button pushed � � just prior to the dispensation�
thus� the immediately preceding symbol in the sequence is �� as needed� The
other cases are similar� It follows that CM�� implements SAFE�CM� and hence
that CM�� is a safe candy machine� In fact� the same proof also shows that
CM�� solves SAFE�CM�
It is also easy to see that CM�� is a safe candy machine� However� saying

that CM�� and CM�� are safe candy machines is not really saying enough�
since the same is also true for CM��� CM���s �nite behaviors are just the �nite
sequences of ��s and ��s� which trivially satisfy the required condition� Although
CM�� is a safe candy machine� it is not a very interesting one� Therefore� we
give a stronger speci�cation below� In order to do this� we need an additional
de�nition�
Since an automaton cannot block input actions� in discussing correct candy
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machine behavior it is helpful to consider certain �well�formedness� conditions
on the interaction between the machine and its environment� For example� we
may want to restrict attention to interactions in which push and dispensation
events alternate strictly� De�ne a sequence of candy machine actions to be well�
formed if it consists of alternating input and output �push and dispensation�
actions� starting with an input action� Notice that CM�� has behaviors� in fact
fair behaviors� that are not well�formed� For example� ��S��S��� is a non�well�
formed fair behavior of CM��� This is because CM�� does not have the power
to insure that its environment satis�es the well�formedness condition�
A stronger set of requirements than SAFE�CM can be described by the

schedule module LIVE�CM� LIVE�CM has the same action signature as CM���
Its set of sequences are those that are safe candy machine sequences and that
in addition satisfy the following condition� �If the sequence is well�formed� then
every � event is followed by a later S event� and every � event is followed by
a later H or A event��	 That is� every request for a candy bar is eventually
satis�ed by a candy bar of the correct type�
Let us consider which of our candy machines are live candy machines� that

is� which candy machines solve LIVE�CM� CM�� is not a live candy machine
because it has fair behaviors� such as the sequence consisting of the single event
�� that do not satisfy this condition� �This sequence satis�es the well�formedness
hypothesis� but does not satisfy the liveness conclusion�� On the other hand�
CM�� is a live candy machine� which we can prove as follows� Suppose not� then
there is a fair behavior of CM�� that is well�formed and that contains a push
event that is not followed by any later dispensation event of the correct type�
By well�formedness and the fact that CM�� is a safe candy machine� the only
possibility is that the sequence is �nite and ends with the given push event� Say�
for example� that the push event is PUSH�� Then by the state characterization
given above� the state after the given schedule has button pushed � �� Then
the SKYBAR dispensation action is enabled in this state� But the de�nition of
a fair execution implies that no action of CM�� can be enabled in the �nal state�
which yields a contradiction� CM�� is also a live candy machine� even though
it has less nondeterminism than CM��� The proof is similar to that for CM���
Notice that while CM�� and CM�� both solve LIVE�CM� neither implements

LIVE�CM since there are �nite behaviors of both machines ending with the
push of a button that are not contained in LIVE�CM� Conversely� while it can
be shown that CUST�� implements CUST��� CUST�� does not solve CUST��
since there are fair behaviors of CUST��� such as the empty sequence� that are
not fair behaviors of CUST��� In general� given an automaton A and a problem
P � it is not the case that if A solves P then A implements P � nor is it the case
that if A implements P then A solves P �
One might ask the technical question whether it might be reasonable to

eliminate the well�formedness hypothesis in the live candy machine behavior

�This can be formalized in terms of temporal logic�
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speci�cation� If we did this� then we would arrive at a stronger speci�cation
for a live candy machine� one that requires that the machine must always issue
candy sometime after each push� regardless of whether the pushes happen in a
well�formed manner� While this might be a reasonable requirement for a candy
machine� CM�� does not satisfy it� For consider the �non�well�formed� behavior
��H��H��H��� of CM��� This contains � events that are not followed by S
events� However� it is a fair behavior of CM�� since in�nitely often an action
from the single class fS�A�Hg of part�CM � �� is performed� Consequently�
CM�� does not satisfy the proposed stronger speci�cation�
As we have seen� there are many ways to argue that an automaton A solves

a problem P � We now turn our attention to two more general techniques�

�
�
� Proof Techniques� Modular Decomposition

One common technique for reasoning about the behavior of an automaton is
modular decomposition� in which we reason about the behavior of a composition
by reasoning about the behavior of the component automata individually�
It is often the case that an automaton behaves correctly only in the context

of certain restrictions on its input� These restrictions may be guaranteed in the
context of the composition with other automata comprising the remainder of
the system� or may be restrictions de�ned by a problem statement describing
conditions under which a solution is required to behave correctly� �Recall� for
example� the well�formedness conditions de�ned earlier for candy machines�� A
useful notion for discussing such restrictions is that of a module �preserving� a
property of behaviors� as long as the environment does not violate this property�
neither does the module�
In practice� this notion is of most interest when the property is pre�x�closed�

and when the property does not concern the module�s internal actions� A set
of sequences P is said to be pre�x�closed if � � P whenever both � is a pre�x
of � and � � P� For example� the set of well�formed sequences de�ned for
candy machines is pre�x�closed� A module M �either an automaton or schedule
module� is said to be pre�x�closed provided that �nbehs�M � is pre�x�closed� For
example� the schedule module SAFE�CM is pre�x�closed� and every automaton
is pre�x�closed� Let M be a pre�x�closed module and let P be a nonempty�
pre�x�closed set of sequences of actions from a set � satisfying �	 int�M � � ��
We say that M preserves P if ��j� � P whenever �j� � P� � � out �M �� and
��jM � �nbehs �M ��
It is not hard to see� for example� that in this sense the candy machine CM�

� preserves well�formedness� although the customer may press a button twice
without waiting for a candy bar to be dispensed� the candy machine dispenses
a candy bar only if a button has been pressed since the last candy bar was
dispensed� In general� if a module preserves a property P� then the module
is not the �rst to violate P� as long as the environment only provides inputs
such that the cumulative behavior satis�es P� the module will only perform
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outputs such that the cumulative behavior satis�es P� This de�nition� however�
deserves closer inspection� First� notice that we consider only sequences � with
the property that ��jM � �nbehs�M �� This implies that we consider only
sequences � that contain no internal actions of M � Second� notice that we
require sequences � to satisfy only �j� � P rather than the stronger property
� � P� Suppose� for example� that P is a property of the actions � at one of
two interfaces to the module M � In this case� it may be that for no � � P and
� � out�M � is it the case that ��jM � �nbehs �M �� since all �nite behaviors of
M containing outputs include activity at both interfaces toM � By considering �
satisfying only �j� � P� we consider all sequences determining �nite behaviors
of M that� at the interface concerning P� do not violate the property P�
One can prove that a composition preserves a property by showing that each

of the component automata preserves the property�

Proposition �� Let fAigi�I be a strongly compatible collection of automata
and let A �

Q
i�I Ai� If Ai preserves P for every i � I� then A preserves P�

For example� since CM�� and CUST�� both preserve well�formedness� the com�
position CM��
CUST�� does so as well�
In fact� we can prove a slightly stronger result� An automaton is said to be

closed if it has no input actions� In other words� it models a closed system that
does not interact with its environment�

Proposition �� Let A be a closed automaton� Let P be a set of sequences over
�� If A preserves P� then �nbehs �A�j� � P�

In the special case that � is the set of external actions of A� the conclusion
of this proposition reduces to the fact that �nbehs �A� � P� The proof of the
proposition depends on the fact that � does not contain any ofA�s input actions�
and hence that if the property P is violated then it is not an input action of A
committing the violation� In fact� this proposition follows as a corollary from the
following slightly more general statement� If A preserves P and in�A� 	� � ��
then �nbehs�A�j� � P�
Combining Propositions � and �� we have the following technique for proving

that an automaton implements a problem�

Corollary �� Let fAigi�I be a strongly compatible collection of automata
with the property that A �

Q
i�I Ai is a closed automaton� Let P be a problem

with the external action signature of A� If Ai preserves �nbehs �P � for all i � I�
then A implements P �

That is� if we can prove that each component Ai preserves the external be�
havior required by the problem P � then we will have shown that the composition
A preserves the desired external behavior� and since A has no input actions that
could be responsible for violating the behavior required by P � it follows that all
�nite behaviors of A are behaviors of P �
A similar technique follows from the following proposition�
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Proposition ��� Let fAigi�I be a collection of strongly compatible automata�
and let fPigi�I be a collection of problems� If Ai solves Pi for every i� thenQ

i�I Ai solves
Q

i�I Pi�

This says we can prove that the composition of the automata fAigi�I solves a
problem by proving that each component Ai solves a problem Pi and then prov�
ing that the composition of the problems fPigi�I solves the original problem�
For example� consider proving that every fair behavior of the composition of
CM�� and CUST�� is an in�nite well�formed sequence of actions in which each
dispensation action dispenses an appropriate candy� Let LIVE�CUST be the
schedule module whose signature is the same as CUST���s� and whose sched�
ules are exactly those in which �i� the customer is not the �rst to violate well�
formedness� and �ii� if the sequence is well�formed� then it is either in�nite or else
�nite and ending with a push event� Then it is easy to see that CUST�� solves
LIVE�CUST� We have already argued that CM�� solves the schedule module
LIVE�CM described earlier� So it su�ces to prove that every behavior of the
composition of LIVE�CUST and LIVE�CM is an in�nite well�formed sequence
of actions in which each dispensation action dispenses an appropriate candy�
This is not di�cult to show� well�formedness holds because neither component
is the �rst to violate it� appropriate responses follow from the speci�cation of
LIVE�CM� and the sequence is in�nite because neither component stops at its
own turn�

�
�
� Proof Techniques� Hierarchical Decomposition

A second common technique for proving that an automaton solves a problem is
hierarchical decomposition in which we prove that the given automaton solves a
second� that the second solves a third� and so on until the �nal automaton solves
the given problem� One way of proving that one automaton A solves another
automaton B is to establish a relationship between the states of A and B and
use this relationship to argue that the fair behaviors of A are fair behaviors
of B� One helpful such relationship is a possibilities mapping� which we now
de�ne�
We de�ne an extended step of an automaton A to be a triple of the form

�s�� �� s�� where s� and s are states of A� � is a �nite sequence of actions of A�
and there is an execution fragment of A having s� as its �rst state� s as its last
state� and � as its schedule� �This execution fragment might consist of only a
single state� in the case that � is the empty sequence�� Suppose A and B are
automata with the same external action signature� and suppose f is a mapping
from states�A� to the power set of states�B�� That is� if s is a state of A then
f�s� is a set of states of B� The mapping f is said to be a possibilities mapping
from A to B provided the following conditions hold�

�� For every start state s� of A� there is a start state t� of B such that
t� � f�s���
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�� If s� is a reachable state of A� t� � f�s�� is a reachable state of B� and
�s�� �� s� is a step of A� then there is an extended step �t�� �� t� of B such
that

�a� �jext�B� � �jext�A�� and

�b� t � f�s��

It is easy to show� for example� that there is a possibilities mapping f from
CUST�� to CUST�� that maps each state s of CUST�� to the singleton set
containing the state of CUST�� that only contains the �waiting� variable of s�
The existence of a possibilities mapping from A to B� together with addi�

tional results relating the fair behaviors of A and B� can be used to prove that
A solves B� Some such additional results are given in �LT�� and �WLL�� For ex�
ample� using our possibilities mapping from CUST�� to CUST�� we can prove
that CUST�� actually solves CUST��� A straightforward proof can be based
directly on the de�nition of fair execution and the fact that for every state s of
CUST��� some output action is enabled in s for CUST�� exactly if some output
action is enabled in the single state in f�s� for CUST���
In cases in which we are only interested in �nite behaviors and not fair

behaviors� the following simple result is often useful�

Proposition ��� Suppose that A and B are automata with the same exter�
nal action signature� If there is a possibilities mapping from A to B� then A

implements B�

So� for example� the existence of the possibilities mapping f from CUST��
to CUST�� implies that CUST�� implements CUST���

� Choosing a Ring Leader

In this section we sketch a more sophisticated example than the candy machines
studied in the previous section� the election of a leader in a ring of processors�
This example exhibits much more interesting concurrent activity than the candy
machine example� It shows how one can use the model to reason about inter�
esting concurrent algorithms� and suggests how the model can be used to carry
out complexity analysis and prove lower bound and impossibility results�
We assume a ring of n processors� each starting with a unique identi�er

chosen from a universal totally ordered identi�er set I� Each processor can
communicate with each of its neighbors in the ring� using a pair of one�way
channels� The processors do not know the size of the ring� nor the speci�c
subset of I that is actually being used as identi�ers� The object is for the
processors to choose a unique leader from among themselves� This problem has
been widely studied in the area of distributed algorithms�
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Each processor and each communication channel is modeled as an I�O au�
tomaton� Each channel automaton has input actions of the form SEND�M� and
output actions of the form RECEIVE�M��
 Its state is a multiset� consisting of
those messages that have been sent but not yet received� initially� the multiset
is empty� The transition relation is as follows�

SEND�M�
E	ect� messages � messages � fMg

RECEIVE�M�
Precondition� M � messages
E	ect� messages � messages � fMg

The partition puts all output actions �all RECEIVE actions� in the same equiv�
alence class� this has the e	ect of hypothesizing that if there is a message to be
delivered� then some message is eventually delivered�
Each processor is also modeled as an I�O automaton� having SEND output

actions and RECEIVE input actions� In addition� it has a LEADER output
action by which it can announce that it has been chosen as the leader processor�
It may also have internal actions�
A collection of channel and processor automata is composed into a single

system automaton� and then the hiding operator is used to produce a new
system automaton in which the only external actions are LEADER actions� The
problem to be solved by the system can be described by the schedule module
whose external action signature has no input actions and only LEADER output
actions� and whose set of schedules consists of the set of sequences of length
exactly �� That is� in a correct behavior� exactly one LEADER event occurs�
We now describe a particular algorithm for solving this problem� based on

that of LeLann �Le� and Chang and Roberts �CR�� Each processor sends its
identi�er clockwise around the ring� When a processor receives an identi�er� if
the identi�er is less than its own� the processor discards the received identi�er�
If it is greater than its own� the processor passes the received identi�er clockwise�
If it is equal to its own� the processor performs a LEADER output action�
In more detail� the state of a processor with identi�er i has a variable �pend�

ing� which holds a subset of I� initially fig� It also has a variable �leader�status��
which takes on values from f�unknown�� �elected�� �announced�g and has initial
value �unknown�� The actions are de�ned as follows�

�Since the model uses a global naming scheme� the actual action names would have to be
subscripted with information identifying the particular channel�
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RECEIVE�j�� j � I

E	ect� if j � i then pending � pending � fjg
if j � i then leader�status � �elected�

SEND�j�� j � I

Precondition� j � pending
E	ect� pending � pending � fjg

LEADER
Precondition� leader�status � �elected�
E	ect� leader�status � �announced�

The partition puts all output actions in the same equivalence class� It is not hard
to carry out a correctness proof of this algorithm using the model� The safety
proof �that is� that no more than one LEADER event ever occurs� involves
proving an invariant assertion relating the identi�ers that appear in di	erent
places in the ring� both as processor id�s and in messages� More speci�cally� it
must be shown that if i 	 j� then a processor with identi�er i� a processor with
identi�er j� and a message containing identi�er i cannot appear in that order�
reading clockwise around the ring�
In order to prove liveness �that is� that some LEADER event eventually

occurs�� another invariant is used� expressing conservation of the message cor�
responding to the maximum identi�er� Then a �variant function� is de�ned�
describing the progress that has been made toward election of a leader� for each
state� the value of the variant function in that state is the sum of the distances
of all id�s back to their originating processors� measured in a clockwise direc�
tion� At every point where the value of the variant function is nonzero� any
action that occurs �other than the LEADER action� can be shown to decrease
its value� Furthermore� at every point where the value of the variant function
is nonzero� some action is enabled� Thus� the function value eventually reaches
zero� and hence a LEADER event eventually occurs�
The model can be used to carry out complexity analysis� For any execution

of the algorithm� the number of SEND or RECEIVE events can be used as a
measure of the amount of communication� it is not hard to prove that �n� is
a worst�case upper bound on this number� Also� for any execution� time can
be measured as follows� Assign a �real time� to each event� as large as possible�
subject to the requirement that for each class of the partition� the time between
successive �turns� for that class is at most �� Then the di	erence between the
real time assigned to the LEADER event and the start time can be taken as a
time measure for the entire execution� Since �n� is a worst�case upper bound
on the number of SEND and RECEIVE events� it is not hard to see that �n� �
is a worst�case upper bound for this time measure��

The given algorithm is not optimal in its communication requirements� for

�The standard analysis of this algorithm attains an O�n upper bound� by assuming all
messages are delivered within time � regardless of the congestion of the message channels� We
do not assume this� and so obtain a quadratic bound�
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example� �P� contains an algorithm with an O�n logn� upper bound� The algo�
rithm in �P� can also be formalized and analyzed using our model� Also� �Bu�
proves an !�nlogn� lower bound on the worst�case amount of communication�
this result also is describable in our model�

� Other Applications

The model has been used to describe and reason about many di	erent kinds of
algorithms� both in systems applications and in the algorithms research litera�
ture� In this section� we describe some of these uses�

��� Network Resource Allocation

Our �rst use of the model was for describing network resource allocation algo�
rithms� �LT�� presents a network arbiter design and proves its correctness using
I�O automata� The algorithm is based on a resource performing a treewalk of
a spanning tree of the network graph� The conditions proved include safety
properties �mutual exclusion� and liveness properties �no lockout��
The correctness proof is done in three levels of abstraction� The problem

de�nition is presented as a high�level schedule module� in which inputs are
requests and returns and outputs are grants� all for a particular resource� The
intermediate level is a description of the algorithm in terms of graph theory�
formalized as an automaton together with a restricted set of executions� Finally�
the complete distributed algorithm is described as a composition of automata
at the lowest level� It is shown that each level solves the level above it� and thus
that the distributed algorithm solves the arbiter problem�
Most of the interesting reasoning about the algorithm is done at the interme�

diate level� in terms of graphs� This reasoning is close to the intuitive reasoning
one would normally use to understand and explain the algorithm� The inter�
esting work involves showing that the intermediate level solves the high�level
problem statement� Showing that the lowest level solves the intermediate level
is a long but straightforward case analysis�
�LT�� also contains an analysis of the time complexity of the algorithm�

demonstrating an O�n� worst�case upper bound� where n is the number of nodes
in the network� and an O�d� worst�case upper bound when requests do not
overlap� where d is the diameter of the network� The time analysis proof follows
the proof of �no lockout� very closely� suggesting that there may be a more
general correspondence between liveness proofs and proofs of upper bounds on
time�
We have also used the model to study other network resource allocation al�

gorithms� For example� in �LW�� we give an algorithm for the �Drinking Philoso�
phers� problem� in this problem� users request sets of resources by name� with
the same user possibly requesting di	erent sets of resources each time it makes
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a request� �CM�� contains an algorithm for this problem� constructed by modi�
fying a particular Dining Philosophers algorithm� Our algorithm� based on the
one in �CM��� is described as a composition of automata that solve the Din�
ing Philosophers problem and automata that carry out additional bookkeeping�
Our use of composition allows us to use any Dining Philosophers algorithm as
a �subroutine�� some choices can be shown to yield better time performance for
the resulting Drinking Philosophers algorithm than is yielded by the algorithm
of �CM���

��� Synchronizers

In �A�� Awerbuch describes a synchronizer algorithm � a distributed algorithm
designed to convert programs written for synchronous networks into versions
that can be used in asynchronous networks� In this algorithm� the network
nodes are partitioned into clusters� and di	erent strategies are used to synchro�
nize within clusters and among clusters� The algorithm is clever� but complex�
and is presented without formal proof� In �FLS�� we provide a new presenta�
tion and a proof for Awerbuch�s algorithm� The algorithm is decomposed into
separate automata for intercluster and intracluster synchronization� The inter�
cluster synchronizer is further decomposed into a piece executing at each node�
In fact� Awerbuch�s actual program for each node is described as the composi�
tion of two automata� one participating in intercluster and one in intracluster
synchronization�

��� Communication

In �WLL�� we present a correctness proof for the intricate distributed minimum
spanning tree algorithm of �GHS�� The techniques used are based on the hi�
erarchical structure used in �LT��� However� instead of a linear hierarchy of
algorithms� we use a lattice of algorithms� The complete algorithm has several
di	erent projections onto higher level �subalgorithms�� where each subalgorithm
represents one task performed by the main algorithm� The proof involves show�
ing that the subalgorithms all solve the minimum spanning tree problem and
that the full algorithm �solves� all of the subalgorithms� In showing the latter�
we make use of many properties of the separate subalgorithms� We develop the
basic theory needed for lattice�structured proofs� some work on a similar theory
appears in �LaS��
Another proof of the correctness of the algorithm of �GHS� appears in �CG��

This proof uses techniques closely related to the notion of communication�closed
layers �EF�� and is based on a model which is essentially the same as the I�O
automaton model�
More recently� we have used I�O automata to characterize correct behavior

for physical channels and data links �LMF�� We prove that certain types of data
link behavior can be implemented in terms of certain types of physical channels�
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while other types cannot� Preliminary results show that interesting data link
behavior seems to require at least some stable storage �whereas previous work
shows that a single stable bit at each end su�ces�� Also� under certain technical
assumptions� the data link protocol must use unbounded size headers to achieve
reasonable behavior� in case the underlying physical channels are not FIFO�

��� Concurrency Control

We have been using the model as the formal foundation for a new theory of
atomic transactions� Transactions arose originally in database systems� but
are now used as a basic construct for general data�oriented distributed pro�
gramming� Use of transactions in general�purpose languages has required their
extension to allow nesting� nested transactions permit more concurrency than
single�level transactions� and permit localized handling of failures�
In �LM�� we use I�O automata to model nested transactions� state the cor�

rectness conditions that they must satisfy� describe an exclusive locking algo�
rithm for nested transactions� and carry out a correctness proof� In later papers�
we extend this treatment to more general locking algorithms and timestamp�
based algorithms� We also prove correctness of algorithms for management of
�orphan� transactions � transactions that continue to execute even though some
ancestor in the transaction nesting structure has been aborted� We are able to
use I�O automata to decompose the orphan algorithms so that concurrency
control and recovery are handled by one module� and orphan management is
handled by another� Correctness properties for the two kinds of modules are
proved separately� and then combined to yield correctness properties for the
complete algorithm�
We have had similar success in describing correctness of algorithms for repli�

cated data management� We are able to decompose certain replicated data
algorithms into modules that handle concurrency control and recovery at the
level of individual data replicas and modules that implement the data replication
algorithm� A book �LMWF� is now in progress� describing this theory�
Although the model has proved to be a very usable tool for describing these

results� its full power has not yet been used in this work� In particular� only
�nite executions have so far been considered� and only safety properties have
been proved�

��� Shared Atomic Objects

A topic of recent research interest has been the study of wait�free implementabil�
ity of concurrently�accessible atomic objects in terms of other atomic objects�
An object is said to be atomic� roughly speaking� if it responds to concurrent
invocations of operations as if the operations were executed indivisibly at some
time between the invocation and response times� So far� most of the work has
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focused on read�write registers for use by various numbers of readers and writers�
Many of the algorithms are very complex and di�cult to understand precisely�
The paper �La��� which initiated this research area� contains an interesting

formal model based on partial orderings of operations� However� most of the
subsequent papers do not use Lamport�s model� but instead include their own
models and de�nitions� The multiplicity of models has contributed to making
the papers very di�cult to read�
In �Bl�� Bloom uses the I�O automaton model as the basis for stating correct�

ness conditions for atomic read�write registers� for describing a new algorithm
�which implements ��writer n�reader registers from ��writer n ��reader regis�
ters� and for proving the algorithm correct� He describes the solution as a
composition of automata for each of the reader and writer protocols and au�
tomata for the ��writer registers used in the implementation� The combination
is shown to implement the desired ��writer register� The work is rigorous and
clear� we hope that a similar presentation will help clarify some of the other
algorithms�
New work by Scha	er �S� uses the I�O automaton model to point out errors in

a published register algorithm� modify the algorithm� and prove the correctness
of the modi�ed algorithm� New work by Herlihy on impossibility results for
atomic object implementations �He� also uses the I�O automaton model�

��	 Data
ow

In �LS�� we formulate the semantics of data
ow networks in terms of I�O au�
tomata� We de�ne the notion of �determinacy� �that is� that the sequence of
output actions is uniquely de�ned by the sequence of input actions�� a notion
that is considered important in data
ow computation� We state a theorem that
expresses Kahn�s main result about data
ow networks �K� � that the semantics
of networks of determinate components can be uniquely de�ned using the least
�xed point operator applied to certain equations involving behavior of the in�
dividual components� We then prove a theorem showing the equivalence of our
operational semantics and Kahn�s �xed�point semantics� In fact� the work of
�LS� generalizes Kahn�s work since the determinate I�O automata used in �LS�
to model processes compute all continuous stream functions whereas Kahn�s
processes compute a more restricted class of functions�

��� Real�Time Computing

Finally� some recent work �TMM� suggests some ways in which time can be
introduced into the I�O automaton model� Based on these de�nitions� Lynch
has suggested �Ly� some preliminary ideas on how the I�O automaton model
can be used to model and reason about real�time computing�
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