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ABSTRACT

CSV is a popular Open Data format widely used in a vari-
ety of domains for its simplicity and effectiveness in storing
and disseminating data. Unfortunately, data published in
this format often does not conform to strict specifications,
making automated data extraction from CSV files a painful
task. While table discovery from HTML pages or spread-
sheets has been studied extensively, extracting tables from
CSV files still poses a considerable challenge due to their
loosely defined format and limited embedded metadata.

In this work we lay out the challenges of discovering tables
in CSV files, and propose Pytheas: a principled method for
automatically classifying lines in a CSV file and discovering
tables within it based on the intuition that tables main-
tain a coherency of values in each column. We evaluate our
methods over two manually annotated data sets: 2000 CSV
files sampled from four Canadian Open Data portals, and
2500 additional files sampled from Canadian, US, UK and
Australian portals. Our comparison to state-of-the-art ap-
proaches shows that Pytheas is able to successfully discover
tables with precision and recall of over 95.9% and 95.7% re-
spectively, while current approaches achieve around 89.6%
precision and 81.3% recall. Furthermore, Pytheas’s accu-
racy for correctly classifying all lines per CSV file is 95.6%,
versus a maximum of 86.9% for compared approaches. Pyth-
eas generalizes well to new data, with a table discovery F-
measure above 95% even when trained on Canadian data
and applied to data from different countries. Finally, we in-
troduce a confidence measure for table discovery and demon-
strate its value for accurately identifying potential errors.
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1. EKOS Research National opinion poll,,
Comext{z "DATES: Oct 17-20, 2019",,
3 METHOD: T/I,,
4 "SAMPLE SIZE: 1,994",,
Header{ 5. PARTY, LEAD_NAME, PROJ_SUPPORT
. LIB*, Justin Trudeau, 34
- CON, Andrew Scheer, 30
. NDP, Jagmeet Singh, 18
. GRN, Elizabeth May, 8
10. BQ, Yves-Franc¢ois Blanchet, 5
Subheader{n. NOT PREDICTED TO WIN RIDINGS,,
Data{”’ PPC, Maxime Bernier, 4
13. OTH, nd, 1

Footnotes {14' (MOE) :+/-2. 2%, B
15. ¥ Currently in government.,,

o

Body

~

Data

© %

Figure 1: Example CSV file with polling data for the Cana-
dian federal elections of 2019. Line 11 is a subheader, line 6
has a footnote mark referring to line 15, and line 13 contains
a missing data mark nd.

1. INTRODUCTION

Governments and businesses are embracing the Open Data
movement. Open Data has enormous potential to spur eco-
nomic growth and to enable more efficient, responsive, and
effective operation. Within the Open Data world, Comma
Separated Value (CSV) files are one of the most important
publishing formats [39]. These CSV files form a vast reposi-
tory of data tables that can be used for query answering |7,
10l |19} |44, 45|, text mining [56], knowledge discovery [10}
19| |56], knowledge base construction [14], knowledge aug-
mentation [4} 15|17} 50l 58], synonym finding |3, 6} [32], and
data integration |5} 35| |38} |60} 61| among other tasks [|46].
Moreover, CSV files are used extensively across domains,
from the environment, to food security, to almost every as-
pect of government |[8].

To unlock the vast potential of Open Data published as
CSV files, effective and automated methods for processing
these files are needed. Unfortunately, while the CSV for-
mat has a standard specification for serializing tables as text
(RFC4180) [53], compliance is not consistent. As a result,
basic operations like search over Open Data can be difficult
and today rely on user-provided metadata.

To illustrate the challenges, consider the simple example
CSV file in which is based on a download from
open.canada.ca. Although the file is well-formed (commas
separate values), extracting the data from this file automat-
ically is not trivial. The table body consists of data lines


open.canada.ca

(lines 6-10 and 12-13) and a single subheader line (line 11)
which indicates groupings among the rows in a table. In ad-
dition, the file contains a header (line 5), two footnotes (lines
14 and 15), and context lines that describe the contents of
the file (lines 1-4). Although not shown in Figure[] a single
CSV file may contain multiple tables, each of which may (or
may not) have additional context, header, subheader, and
footnote lines associated with the table data. The simplic-
ity and flexibility of the CSV format, which are attractive
for Open Data publishing, create challenges for Open Data
processing such as automatic identification of table bodies
and their associated headers.

Considerable success has been reported in the research lit-
erature for automatic extraction of tabular data from HTML
pages |6} |27 46|, and spreadsheets [9, |16} 28 |29, 130]. How-
ever, CSV files lack embedded metadata such as format-
ting and positional information (found in both HTML and
spreadsheets) or embedded formulas (found in spreadsheets)
that previous methods exploit for the discovery of the table
components. Moreover, current state-of-the-art methods fo-
cus on inflexible topological rules 9} 28] and machine learn-
ing approaches that ignore cell context [29].

Our Contribution: We present Pytheas: a method and
a system for discovering tables and classifying lines in CSV
files. Pytheas uses a flexible set of rules derived from a study
of files from over 100 Open Data portals . These
rules classify lines based on their cell values, as well as the
values of nearby cells. Pytheas is a supervised approach that
learns rule weights to best extract tables . Our
evaluation on 2000 user-annotated CSV files from four Cana-
dian portals (Section 4) shows that Pytheas performs table
discovery with a precision and recall of 95.9% and 95.7%, re-
spectively, while current approaches achieve around 89.6%
precision and 81.3% recall. We further show that as part of
the discovery process, Pytheas performs CSV file annotation
with an accuracy of 95.6% compared to a maximum of 86.9%
accuracy from prior approaches. An evaluation using over
2500 additional files from four countries shows that Pytheas
maintains a high table discovery F-measure (>95.7%), even
when trained on data from a single country. Finally, we pro-
pose a confidence measure and show that it can be used to
reduce labeling effort via active learning.

2. CSVFILES

We briefly introduce the W3C specification for CSV an-
notations, which we use as a guideline for our work. We
follow with a description of our study of a large and diverse
set of real CSV files and how it motivated our data model.

2.1 CSV on the Web Specification

As demonstrated in the flexibility of the CSV
format can make information extraction difficult. The W&C
CSV on the Web Working Group defined mechanisms for
interpreting a set of CSV files as relational data, includ-
ing the definition of a vocabulary for describing tables ex-
pressed as CSV and describing the relationships between
them [12]. They argue that a large fraction of data pub-
lished on the Web is tabular data in CSV files, and present
use cases and detailed publishing requirements aimed at im-
proving usability. Requirements include the ability to add
annotations that may be associated with a group of tables,
or components of a table at multiple degrees of granularity
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and support for declaring a missing value token and the rea-
son for missing values (e.g., visual layout, spanning headers,
missing or unavailable data, etc.).

Implementing the W3C requirements for CSV requires the
ability to identify accurately the main components of tabular
data (e.g., header lines, subheader lines, data lines, footnotes
and context) in files that contain one or more tables. In this
paper, we focus on the identification and annotation of these
critical components. We currently support a general model
for annotating lines and their cells, but the primitives used in
our framework can be extended to support additional W3C
specifications.

2.2 Data Model

To develop our table discovery method we performed a
large scale study of 111 Open Data portals containing a total
of over 600K CSV files. We studied a representative sample
of 1798 CSV files covering all portals. Our observations are
complementary to the W3C specifications; they both inform
the design of Pytheas and confirm prior studies. We use
our observations to define a data model for annotation and
extraction of data tables and their related components.

A table in a CSV file is a contiguous range of lines divided
into several contiguous components:

1. Context (optional): Tables in CSV files may be preceded
by multiple lines with metadata like a title, provenance
information, collection methods, or data guides. Based
on our observations across portals, we assume such con-
text lines typically have values only in the first column.
Lines 14 in Figure [I| are context lines.

. Header (optional): A header is one or more consecutive
lines that describe the structure of the table columns.
Line 5 in Figure [T]is an example of a header line. We
found that while not all tables in CSV files have headers,
the majority do. We observed that in some tables the
leftmost column(s) functioned as an index while the col-
umn’s header was empty. In addition, in several portals
we observed that the last few columns of a table could
be used as comment columns. We further observed that
the first table in a file will only lack a header if the table
body starts from the first non-empty line. Finally, some
multi-line table headers are hierarchical, meaning earlier
header lines affect the interpretation of later header lines.
We discuss these in detail in Section 3.3.5]

. Table body (required): The table body consists of one
or more data lines, possibly interspersed with subheader
lines. Lines 6-13 in Figure 1| make up the table body.
Data lines are the contents of the table, indicating a row
or tuple in the relation that the table represents. Every
table must have at least one data line. We observed that
cell values do not always conform to the general structure
of the column, for example due to null-equivalent values
or annotations such as footnote indicators. For example,
in Figure lines 6-10 and 12—-13 are data lines. The first
cell of line 6 contains a footnote character and the second
cell of line 13 contains a null-equivalent value.
Subheader lines describe context for consecutive and ad-
jacent data rows, and can appear interspersed between
data lines in the table body. We observed subheaders
only in the first column of tables. In Figure [T} line 11 is
a subheader.

. Footnotes (optional): As with context, CSV tables are
occasionally followed by metadata or clarifications refer-
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Figure 2: CSV Processing Pipeline: Pytheas focuses on the
task of table discovery in CSV files.

ring to annotations in the data cells or header cells. Such
footnote sections can be comprised of multiple lines, and
often have non-empty values only in the first column.
Consecutive footnotes are often numerically or alphabet-
ically itemized, or use symbols such as ‘*’ and ‘-’.

Multiple tables: In our study we observed vertically
stacked tables in CSV files, but no horizontally stacked ta-
bles. Thus, we assume that each line can only belong to one
table. This was further confirmed when annotating CSV
files in Section Moreover, multiple tables in a file were
not always separated by blank lines, and did not always have
the same headers. Last, we saw that some CSV files do not
contain tables. In this case, we label all lines as OTHER.

Table orientation: We assume tables in CSV files are ver-
tically oriented (attributes in columns), as this is by far the
most popular format we have observed, consistent with pre-
vious research on web tables [15]. Pytheas can be extended
to support horizontally oriented tables.

Structure and values: Table structure and content con-
ventions varied by publisher, but could also vary between ta-
bles in the same file. We curated a list of common keywords
for aggregation (e.g., ‘total’), data type specifiers (e.g., ‘inte-
ger’, ‘numeric’), range expressions (e.g., ‘less than x’, ‘from
x to y’), and popular footnote keywords (e.g., ‘note’). We
also curated values often used to designate null-equivalent
values, such as ‘nil’, ‘nd’, and ‘sans objet’. These values are
used to denote missing or redacted data, and typically do
not fall into the semantic type expected in the corresponding
table column. We use these curated keywords in our fuzzy
rule approach (Section to help identify lines and cells.
In summary, we identify six distinct classes of non-empty
CSV lines: CONTEXT, HEADER, SUBHEADER, DATA, FOOT-
NOTE and OTHER. Pytheas first discovers tables, and then
automatically annotates lines with one of these six classes.

3. TABLE DISCOVERY WITH PYTHEAS

We now introduce Pytheas, our approach for discovering
tables in CSV documents such as the example in
Table discovery is one of the key steps in the CSV pro-
cessing pipeline (Figure 2)) [13]. Our techniques can also
provide building blocks for the next steps in this pipeline,
which include identification of table components and ta-
ble transformationsﬂ These steps are out of the scope of
this paper, however. We have made Pytheas available at
https://github.com/cchristodoulaki/Pytheas.

1Some approaches extend table discovery to identifying ag-
gregate rows and columns, as well as left headers |1, |9]. We
consider these to be part of the table body, and leave iden-
tifying them to later stages in the CSV processing pipeline.
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3.1 High Level Design

At the heart of Pytheas is a fuzzy rule-based framework,
that is based on the knowledge that a data line exists within
the context of a table body, and that tables organize infor-
mation in columns of values that belong to the same seman-
tic concept. Pytheas has an offline phase (i.e., training) and
an online table discovery phase (i.e., inference).

In the offline phase, we learn weights for the Pytheas rule-
set (Section . Rules use the spatial context of cells (i.e.,
the columns and lines to which they belong), and language
features of their values to understand the role of each cell.

Figure [3| gives an overview of the online table discovery
phase, detailed in Section [3:3] We first parse the CSV file
and apply the fuzzy rules to the cells and lines of the file.
We use the learned rule weights to compute, for each line,
confidence values for it belonging to provisional classes D
(for data) and N (for not data). We then use these line
confidences to identify the boundaries of each table body in
the file. Given the top boundary of a table and the remaining
lines above it, we identify header lines corresponding to the
table body, producing the table header. We repeat the table
discovery process on remaining lines to discover additional
tables, until all lines have been processed.

Pytheas has several parameters, which we define in this
section. We discuss how we set them in Section

3.2 Fuzzy Rules

Fuzzy Rule Based Classification Systems (FRBCS) are
widely accepted tools for pattern recognition and classifi-
cation [25]. They can obtain good accuracy with a rela-
tively small rule set, manage uncertainty and variation in
the data effectively, and have been successfully applied to
a wide variety of domains such as medical [49], environ-
mental and mining exploration [18], bioinformatics [21] and
finance [48] among others. Our inspection of Open Data
CSV files revealed that conventions used for table structure
have a large number of subtle variations that are difficult
to capture exhaustively. In addition, CSV tables frequently
contain outlier and null values. In this environment, the
flexibility offered by FRBCS in expressing uncertainty, as
well as taking into account the context of cells and lines, is
important for the development of an effective classifier.

The general form of a fuzzy rule is:

Rule R, : Aq = Cq, with weight wq € [0, 1] (1)
where ¢ is the rule index in a rule-set, A, is a binary predi-
cate referred to as the rule antecedent, and C, is the rule con-
sequent specifying the predicted class, and wq is the weight
given to the prediction. A rule R, says that given a condi-
tion Aq is true, wy is the weight of evidence that the pre-
dicted class is Cq.

There are several ways to assign weights to fuzzy rules [26].
Given a labeled data set, the confidence of a rule represents
the validity of a rule, and is defined as the ratio of instances
for which the rule condition was satisfied and the predicted
class was correct over the total number of instances for which
the condition was satisfied [57|. A simple approach assigns
wg = confidence(R4) [11], however, for highly imbalanced
classes a method based on the Penalized Certainty Factor
(PCF) has gained increasing acceptance [26].

As our application environment is highly biased to the D
class, we use the PCF method for assigning weights to rules.
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Figure 3: Pytheas’s table discovery pipeline. The CSV file is parsed to a 2D array of values. Signature extractors are applied
to each value and pattern extractors are applied to signatures. Values, signatures and patterns are used to compute provisional
class confidences for cells and then lines. These line confidences are processed to discover table body boundaries, and the top
boundary of the table body is used to discover the table header. Finally, all lines of the file are assigned classes.

Table 1: Signatures and their descriptions.

Signature Description

S0 Cleaned cell value.

s1 Run lengths of identical symbol sequences,
e.g., s1(Justin Trudeau) = A6 S1 A7.

S2 List of symbols in s1 (i.e., without lengths).

S3 Set of symbols in ss.

84 Case of the value as string i.e., UPPER,
lower, Title Case, snake_case,
slug-case, and camelCase.

S5 Number of characters in the value.

S6 Repetition count of the value in its column
context.

s7 Value subset conforms to range expression.

Ss Value contains aggregation keywords.

S9 Value contains footnote keywords.

S10 Value is null equivalent.

S11 Value is a number.

Thus, the weight w, of rule R, is:
wq = confidence(A, = C,) — confidence(A, = C,) (2)

3.2.1 Preliminaries

Before describing rules in our rule-set, we will define con-
cepts that are used to generate rule antecedents.

We discover the encoding and dialect of each CSV file and
read it into a matrix of values. Those values are cleaned
by removing surrounding quotes and replacing values in a
curated null-equivalent value dictionary with a new constant
that does not appear elsewhere in the file. Let v;; be the
value of a cell. We define the column context T; ; of a cell
to be a window of k cells below 4, j, and we define the line
context L; of a cell i, j to be all cells in the same line.

Cleaned values and their contexts are processed by a sig-
nature extractor replacing characters with symbols en-
coding the character type (alphabetic (&), digit (D), space
(S), and we treat each remaining punctuation character as
its own symboﬂ). For each cell i, j we compute a set of sig-
natures {sm(vi,j,T;,;)} extracted from the value v; ; and its
column context.

ZPunctuation: "#3$%&\ () * +, —./ ;; <=>?2Q[']-{|}

describes the signatures we use. For example,
signature s7 maps values to predefined regular expressions
of ranges that capture values such as “between $10,000 and
$30,000”, “over 75”7, and “Monday to Friday”.

Non-empty signatures of a cell and its context are passed
as input to the pattern extractor. For each signature type
sm we define two patterns that summarize the signatures
of a cell and of its context. The pattern P,, is computed
from the signature of the cell s (v;;,7T5,;) and the signa-
tures of its context. In other words, P,, is computed from
the signatures of T; jU{v; ;} for column rules (Section|3.2.2))
and L; U {v;;} for line rules (Section [3.2.3). The pattern
P/, is computed from context signatures only, i.e., from the
signatures of T;; or L;. Computing patterns from signa-
tures is generally straightforward. For example, the P, pat-
tern represents the common prefix of symbols for signatures
51(vi,5), ---81(Vitn,;) (Table , while P/ is the common pre-
fix for s1(vit1,5),...51(Vitr,;). When symbol counts do not
match, they are replaced with *.

3.2.2 Column Rules

We specify column-rule antecedents as boolean predicates
(conditions) over the signatures of the cell s (vs,;,T5,5), its
column context T; ;, and the corresponding patterns Py,, P,,.
Consider the second column in The column con-
text of ‘LEAD_NAME’ is ‘Justin Trudeau’, ‘Andrew
Scheer’, ‘Jagmeet Singh’ in a window of length x = 3.
The signatures of each value and the corresponding patterns
are shown in A column rule with the N consequent
may have an antecedent that translates to “Signatures from
the context [‘Justin Trudeau’, ‘Andrew Scheer’, ‘Jagmeet
Singh’[ are summarized to form a pattern that is broken once
the signature of ‘LEAD_NAME’ is added to the summary”; a
column-rule with the D consequent may translate to “A cell
and its context form a strong pattern’”.

Based on our observations described in [Section 2.2] we
have curated 27 column rules with consequence D and 22
column rules with consequence N. Table [3] summarizes the
list of rules used in Pytheas. Due to space limitations, we
briefly list a few example column rules. The full list of col-
umn and line rules is available in the GitHub page.

CR1: Cell and column context are all digits = D

CR2: Column context are all digits but cell isn’t = N

CRs3: Context prefix has three or more consecutive symbols,
but adding cell to the context breaks this pattern = N

CR4: Column context agree on case, cell case disagrees = N
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Table 2: Examples of signatures and summarizing patterns for a cell and its column context.

Signatures Patterns
Cell i,j Cells in column-context T; ; of length x =3 cell + context context only
Vi, j Vit1,j Vit2,j Vit3,j Pp, P,
‘Justin ‘Andrew ¢ Jagmeet
¢ >
LEAD_NAME Trudeau’ Scheer’ Singh’
s1 A4 1A4 A6 S1 A7 A6 S1 A6 A7 S1 A5 Ax Ax S1 Ax

s2 A A ASA ASA

S3 {A7 _} {A7 S} {A7 S}

sS4 snake case Title Case Title Case

ASA ASA

A
{A, 8} éA} {A, s}

Title Case Title Case

Table 3: Summary of rules for D and N. A full list of rules will be made available in Pytheas github page.

Group Column D Column N LineD LineN Total
SYMBOLS: rules that consider structure of a value within a context 22 13 - 4 39
CASE: rules that consider case of a value within a context 2 1 - 2 5
VALUES: rules that consider relationship of values within a context 2 - 1 10 13
LENGTH: rules that consider length of a value within a context 1 8 - - 9
KEYWORD: rules that use keywords curated from our initial sample - - 3 2 5

CRs5: Cell value repeats in the column context = D
CRe: Cell length < 30% of min cell length in context = N

For example, in column rules and will
both fire for vs 2 = ‘LEAD_NAME?, will fire for vs 3 =
‘PROJ_SUPPORT’ and will fire on the cell below vg 3.

3.2.3 Line Rules

Similarly, we specify line rules as a predicate over the
signatures of the cell values in the line and the patterns
resulting from those signatures. Line rules depend on the
context of the line L;, as opposed to the column context
T;i,;. As we show in corner cases such as header
lines and footnotes are important for accurately discovering
the boundaries of a table. We give examples of several line
rules below. Rules specifically designed to detect header
lines are marked with (H), and footnote with (F).

LR1: First value of a line has aggregation keyword = D

LR2: Null equivalent value in line = D

LR3: (H) Line consistently snake_case or camelCase = N

LR4: (H) Any value but first is aggregation keyword = N

LRs: (H) First value starts and ends with parenthesis, and
all other cells are empty = N

LRe: (H) Alphabetic value repeats at a steady interval = N

LR7: (F) First value of the line matches footnote keyword
and third value to end are empty = N

For example, in note that £LR2 will fire on line 13,
and LR3 will fire on line 5. In note that LR¢ will
fire on lines 7 + 1, and 7 + 2, and £R5 will fire on i + 3.

3.3 Online Phase: Table Discovery

Once rule weights are trained, Pytheas uses them to dis-
cover tables, focusing on accurately discovering table bodies.
The Pytheas table discovery process consists of the following
steps, each described in a separate subsection.

1. Parse the CSV file into a 2D array of cells and compute
the cell signatures for each cell 7, j.

2. Compute cell class confidence: apply column rules to sig-
natures of each cell 4, j and its column context T; ;.

3. Compute line class confidence: apply line rules to each
line ¢ and line context L; and combine these with the cell
class confidence for cells in the line.

4. Find the boundaries of a table body (first and last lines).

5. Discover headers for a table.

6. Assign classes to all lines based on tables.

If there are unprocessed lines in the file after a table body
and header have been discovered we return to step @l Oc-
casionally table discovery will find two consecutive tables
adjacent to each other, with the second lacking a header. If
both have the same number of columns, we merge them.

3.3.1 Parsing and Computing Signatures

Successful processing of CSV files assumes correct pars-
ing (i.e., discovery of file encoding and CSV dialect). We
rely on the chardet Python library from Mozilla to auto-
detect encoding |31} |43, and use the standard csv Python
package for dialect detection. We inspect file content for
known structure of HTML, XML and JSON files, automat-
ically identifying and discarding falsely tagged CSV files.
We emphasize that the focus of our work is table discovery
rather than parsing (illustrated in Figure . After pars-
ing, we compute the signatures for each cell as described in

Section B.2.11

3.3.2  Computing Cell Provisional Class Confidence

Each cell belongs to both the D class, and the N class with
a different confidence respectively. We first evaluate the
column rules for each cell 4, j, as described in Section [3:2.2]
and then evaluate the evidence for each possibility. This is
depicted by step @ in Figure [4

Let u(® be the maximum weight of any column-based rule
fired with consequent ¢, and let k € [0, k] be the number of
non-empty values in the context T; ; for the cell, where x is
the size of the context. We define the cell class confidence
zz(cj) for each class ¢ € {D, N} as the maximum of the column
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Figure 4: Inferring provisional line class confidences z;

from column and line rules applied to cells in line 7.

rule weights fired for that class, adjusted with a certainty
factor between zero and one representing pattern evidence:

A7 = (1= -9*) (3)

Empty cells create uncertainty. Patterns that summarize
signatures from a small number of non-empty values will
have a lower k and thus lower cell class confidence. The
parameter v depends on the size of the context window,
k. We set v such that when there are no empty cells, the
certainty approaches one.

3.3.3 Computing Line Provisional Class Confidence

Line class inference is a multi-step process (see |[Figure 4)).
Once cell class confidences have been collected for all cells

in the line @, we apply line rules and collect rule weights
for each line rule fired @. Cell class confidences and line
rule weights are then combined to produce the confidence of
a line belonging to each class ).

We define the line class confidence zfc) as the fuzzy al-
gebraic sum [37] of all cell class confidences and line rule

weights. Let W = {wSﬁ)} be the set of weights that cor-
respond to line-based rules that have fired over a line ¢ for
class ¢ € {D, N}, then:

J M
29 =1- <H1z§f;> (H 1w£,i>> (4)
j=0 m=0

where J is the total number of fields in a line and M is the
number of line-based rules that fired.

This function has several useful properties. First, the
combined class confidence zl@ takes values between 0 and 1.
Second, the function 1 — HkK(l — xy) is an increasing func-
tion on z, i.e., the confidence that row i belongs to a class
increases when a class confidence of a cell increases. Finally,
the function also increases when more cells with class con-
fidences are observed (i.e., evidence of a line belonging to a
class increases), meaning the class confidence zl(c) of line 7 is
greater than or equal to the maximum zl(f]? since the addition
of more evidence for a class increases our class confidence.

3.3.4 Table Body Discovery

The lines i of a file are tentatively assigned a class CS; by
Pytheas, where CS; €{D,N} with a confidence z; based on
the class with the largest confidence: z; = max{2?, 2} }.

A table body consists of DATA lines and SUBHEADER lines.
The top boundary in a table body can be either a data
line or a subheader line. To discover the top boundary, we
discover the first data line (FDL), then search for a header
section and subheader lines above it. If subheaders exist
before the first data line, the top-most subheader becomes
the top boundary of the table body. To discover the bottom

Valid Sequences

. Pytheas line
le_a class symbols v,] . .
confidences First Data Line
(s, z,) 2

Confidence

FDL=3
™= (ZP+z )24z +2. D)2

Figure 5: Finding the top boundary of the table body. Pyth-
eas tentatively assigns the class with the largest confidence
to each line. Line class confidences are used to compute
matches g, between the proposed class sequence and valid
sequences in {V;}. The valid sequence with the best match
determines the index of the top boundary of the table body,
with a confidence ¢"P¥.

boundary, we search for the first line that is (a) not coherent
with existing data lines, and (b) not a subheader followed
by coherent data lines.
Inferring Top Boundary: Given confidence pairs (27, 2})
for each line i, a straightforward way to discover the top
boundary of a table body would be to choose the first line
for which confidence 2} > z!, making CS; = D. However,
on occasion, Pytheas may misclassify lines, suggesting a se-
quence of line labels which is not valid. shows an
example where lines 1 and 2 contain a two-line header, but
are tentatively classified as D and N respectively. The fol-
lowing two data lines are both tentatively classified as D.
However, using line 1 (the first line for which 2} > 2z¥) as
the first line of the table body would lead to including the
header as part of the body. Pytheas needs to figure out if
the misclassification occurred for the first line or the second.

We define a label sequence to be a sequence of class labels
Cl; € {D,N} of lines ¢ € [1,1], where ¢ is the index of lines
belonging to a table body and the lines preceding it. For
the top boundary of a table body, a valid label sequence is
comprised of zero or more lines of class N followed by zero or
more lines of class D. We denote by Y = {Vi,Va,..., Viyi}
the set of all valid label sequences of length I, where V; is
a sequence of I — (£ — 1) lines labeled N followed by ¢ — 1
lines labeled D. By definition, FDL is the first data line of
the table, so there is no point in looking for it deep into the
table body. We therefore stop the search for FDL once we
provisionally classify 6 consecutive lines as D. In the example
in Figure [5| the parameter 0 is 2, and therefore I = 4.

We define the match g¢ between a candidate valid label
sequence V; and the provisional line classification proposed
by Pytheas as:

I
ge =y miz ()
i=1

where m; = 1 if Cl; = CS;, or —1 otherwise. Pytheas
selects as the first data line FDL the Valid Sequence V; that
maximizes the match g:

FDL = argmax{g¢}
£€[1,1+41]

This maximization criterion improved the performance of
Pytheas over the naive criterion of selecting the first D line.
In Figure 5| V3 has the best match so FDL = 3.
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FDL Confidence: Intuitively, Pytheas can be confident
about boundary decisions for which (a) the lines before the
boundary confidently agree on their classification (D or N),
and (b) lines after the boundary also confidently agree on
their classification. We therefore define first data line con-

fidence ¢FPL as a function of line class confidences in the
neighborhood of the first data line:
1 FDL—« FDL+(8-1)
FOL @ Z mizi + Z miz; | (6)
atp i=FDL—1 i=FDL

where m; z; are the confidences of lines 7 in the best matching
valid sequence. Whenever possible & =  so that an equal
number of lines before and after the predicted first data line
contribute to the confidence. We use ¢"P¥ as the confidence
of the discovered table.

Inferring Bottom Boundary: Once the first data line
of the table body (FDL) has been inferred, we find the last
line of the table by iterating over lines ¢ starting from the
FDL downwards.

For this search, context window size k becomes the num-
ber of confirmed DATA lines from FDL to line i, and context
T;,; includes all lines in this window. The bottom boundary
is defined as the first line 7 for which the confidence for N
outweighs D, 2°; < 2", unless i is a potential subheader.
Note we explicitly skip sub-header lines, allowing them to
remain in the table body: A line 7 is a sub-header if all its
cells except the leftmost are empty and either (a) 2% < 2";
and 2%41 > 241, or (b) the cell value is found in a sub-
sequent cell in the column with an aggregation token. Note
that if a line is the bottom boundary, then all lines above it
from FDL downwards belong to the table body.

Incremental computation: When searching for the last
data line of a table body, we compute patterns P, (and P,)
incrementally to avoid quadratic runtime. Since patterns
capture the commonality of cell signatures in the context,
we can add a new cell to the context incrementally. For ex-
ample, Pj in Table|2|is ASA. If we add a cell whose signature
s2 is AS then the updated Pj will become AS. Thus, given the
pattern P,, (or Py,) computed for the current context Tj ;
(meaning it includes confirmed data lines from FDL to i—1),
we can incrementally update P, for the context Tjy1,; by
adding line ¢ to the context. Pytheas’s runtime is therefore
linear in the number of lines and columns, which we verify
empirically in Section

3.3.5 Table Header Discovery

Informed by our observations in Section[2.2] we consider a
valid header to be one in which all columns have unique, non-
empty header values, with the following exceptions: if the
data table spans only two columns, the first column can be
empty (without a header); if it spans three or four columns,
the first one or two columns can be empty; otherwise, the
first and/or last one or two columns can be left empty.

A multi-line header section is a contiguous range of lines
that, when merged together, form a valid header. To merge
line ¢ with the h lines below it, we prepend each non-empty
value to the cells below and to the right. shows
how the merge process works. We prepend v; ; to the values
in all the cells in the columns j to £ — 1 in lines ¢ + 1 to
i 4+ h, where £ is the column of the next non-empty cell in
line 7. Multi-line headers may include header metadata at
the bottom, defined as lines where all values are enclosed
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Figure 6: Example of merging hierarchical multi-line head-
ers. The top line is merged with the lines below. The last
line is header metadata and is therefore not merged.

in parenthesis or where all but the first columns are empty.
Such metadata lines are considered part of the header, but
are not merged and checked for validity.

To find the header, we scan lines backwards, starting from
the table body towards the beginning of the file or the end
of the previous table, and ignoring empty lines, for a maxi-
mum of A\ non-empty lines. Once a valid header (single line
or merged multi-line range) is found, we end the scan. Con-
secutive header lines adjacent to the top boundary of the
table for which only the first cell is not empty are added to
the list of subheaders, and the top boundary is adjusted.

If no valid header was found, we relax the uniqueness con-
straint and search for a single line with non-empty values in
all columns. To avoid misclassifying footnote lines as header,
we only allow this relaxation for the first table in the file:
we observed that files rarely have context lines but no table
headers. It is also possible that no header is found at all.

3.3.6 Line Classification

Once table discovery is finished, we assign classes to all
lines in the file. If no tables were discovered, then all lines
are labeled OTHER. Lines belonging to discovered table com-
ponents (i.e., header and body) are assigned classes HEADER,
DATA and SUBHEADER. Next, non-data lines adjacent to the
table bottom boundary are classified as FOOTNOTE and re-
maining lines are classified as CONTEXT.

4. EXPERIMENTAL EVALUATION

We implemented Pytheas and other state-of-the-art meth-
ods using Python [47]. We evaluate Pytheas against alterna-
tive methods for table extraction using two large manually-
annotated data sets of CSV files.

4.1 Annotated Ground Truth Data Sets

To train and evaluate our models, we construct two ground
truth data sets. The Canadian2K data set is comprised of
2000 files from CSV resources from Canadian Open Data
portals. We use it to evaluate line classification and table
discovery performance. The International data set con-
tains 2511 files from Canada (491 files across 2 portals, no
overlap with Canadian2K), Australia (797 files across 3 por-
tals), the UK (839 files across 5 portals) and the USA (384
files from one portal). We use the International data set to
evaluate how well the Pytheas rule-set generalizes.

For every file in the ground truth sample, we detect file
encoding and discover the delimiter (if one exists). We man-
ually identify table components and boundary lines of all ta-
bles, and label lines accordingly (see Section. We opted
to annotate a larger number of files, rather than annotating



complete files, and thus limited our annotation efforts to the
first 100 lines per file.

We successfully annotated 1965 valid CSV files from the
Canadian2K data set, yielding 2046 tables. The remaining
35 files were corrupt, their encoding could not be discovered,
or they were not genuine CSV files (e.g., HTML, JSON,
etc.); we discarded these files to ensure that our ground
truth data set contained only valid CSV files.

Our annotation efforts confirmed the main observation
from our initial study: a large variety of conventions are
used in practice, even within the same portal. Ten anno-
tated tables in the Canadian2K data set lacked a header
line, but the majority of tables started their data from the
second line of the file. Approximately 8% of the tables an-
notated were accompanied by footnotes. Finally, seven an-
notated CSV files did not contain tabular data (e.g., cover
sheets exported from spreadsheets in CSV).

We also found some notable differences between countries.
For example, Canadian data is often bilingual; footnotes of-
ten use one column for English and one for French. In con-
trast, formatting of UK files is less consistent, with multiple
tables and footnotes in the same file following different con-
ventions. Finally, unlike the other countries, most files from
the USA portal (over 91%) do not include header lines.

4.2 Experimental Setup

We evaluate performance using 10-fold cross validation.
Annotated files are randomly shuffled and then partitioned
into ten folds to perform ten experiments. Each experiment
assigns a different fold as a test set and trains the model on
the remaining nine; we average over the performance of all
experiments.

Our measures for evaluating performance of our classifiers
are precision and recall , which are
common measures used to describe table extraction perfor-
mance in the literature |[59]. Given instances returned by a
method®| (e.g., lines classified as DATA by the method, or ta-
bles extracted), precision estimates the probability that the
method is correct (e.g., the lines were truly DATA, or that
the tables extracted indeed matched annotated tables):

number instances correctly evaluated

(7)

precision =

number of instances returned

Given the total number of instances in the data set (e.g., the
number of DATA lines), recall is the percentage of all cases a
method can correctly evaluate:

number instances correctly evaluated
recall =

8
total number of instances (8)
Finally, F-measure is defined as the harmonic mean of pre-

cision P and recall R: F-measure = QE,iER.

4.2.1 Baseline Approaches

We compare Pytheas to the heuristic approach introduced
by Mitlohner et al. [36], which to our knowledge is the only
other approach designed specifically for discovering tables in
CSV files. Additionally, we compare Pytheas to two state-
of-the-art approaches for table extraction from spreadsheets

3Traditionally, recall and precision are often used for in-
formation retrieval and classification tasks. We extend the
definition for tasks such as table discovery.

SP_CRF [9] and TIRS |28, |29} 130]. We implement all fea-
tures that can be extracted from CSV files (unlike, e.g., fea-
tures that use embedded formatting metadata). We now
describe these approaches and our implementations.

CSV Heuristics [36]|: Mitlohner et al. propose a heuris-
tic to approximately isolate headers based on data types of
cells as well as the assumption that there are at most two
header lines in each file. Lines at the beginning of the file
that have zero or one delimiter are considered to be comment
lines; multiple tables in a file are found if they have different
number of delimiters. We implemented the heuristic-based
approach to table detection as described in their paper [36].

SP_CRF [9]: Chen and Cafarella propose automatic
extraction of relational data from spreadsheets using linear-
chain Conditional Random Fields (CRFs). We extend their
work to infer tables from the classified lines. We imple-
ment the boolean content-based features described in |9 |45],
omitting layout features that are not supported by CSV. We
apply a linear-chain Conditional Random Field line classi-
fier using the CRFsuite Python library [41]. Each line is
represented by a set of features.

Random Forests and TIRS |28} |29, |30]: Koci et al.
focus on the problem of recognizing tables in spreadsheets
that may contain multiple tables, stacked vertically or hor-
izontally. They first use a Random Forest (RF) model to
classify cells [29], which is followed by TIRS: a topological
approach that captures the layout of tables 28| [30] based on
cell classes. We implemented those cell-based features de-
scribed in [29] that can be extracted from CSV files and used
scikit-learn [42]| for the Random Forest implementation.
We implemented the TIRS algorithm as described [30], other
than leaving out the heuristics and cell features that do not
apply to CSV files, and limiting table search to vertically
stacked tables to match our data model.

TIRS matches headers and data sections by applying rules
on their relative positions in the file. This requires creating
and evaluating composite regions: regions of discontiguous
areas sharing the same label. We found that when the under-
lying cell classifier creates many discontiguous areas, TIRS’s
runtime grows exponentially since it evaluates a power set
of all possible combinations. In our data, we observed TIRS
evaluating at least 23° such combinations in one file, mak-
ing computation infeasible. We therefore limited composite
region evaluation to the largest 15 areas. For header areas,
we further require that they overlap by at least one line.

4.2.2  Pytheas Parameter Tuning

Pytheas’s parameter values remain fixed throughout all
experiments on both Canadian2K and International data.
We undersample the DATA class from each annotated file by
sampling only two data lines per annotated table. In in-
ference, we limit the input to Pytheas to the 25 leftmost
columns in the file. We set the maximum context size s
to 6 by tuning on a 10% subset of the Canadian2K data.
Once k is set, we set v such that the certainty factor in
approaches 1 for £ = x: 7=0.3. We set the
FDL stopping criteria 6 to 2. For the FDL confidence we
set parameters max(a) = max(3) = 4 to account for pos-
sible misclassification of lines in the neighborhood of the
table border ). We set the maximum non-empty
header lines A to 5 based on our observation of header sizes
from the original sample of CSV files (see [Section 2.2)).
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Figure 7: Table discovery performance and 95% confidence intervals on the Canadian2K data set.

Table 4: Comparison of average line classification performance on the Canadian2K dataset. For each method, we report

average and 95% confidence interval for Precision (P) and Recall (R).

‘-’ indicates the label is unsupported by the method.

Pytheas TIRS SP_CRF Heuristics
Class P R P R P R P R
DATA 99.93+0.02 99.90+0.02 99.92+0.01 91.94+0.59 99.274+0.11  99.80£0.09 99.03£0.13  99.8940.01
L(top only) 97.37+0.36 97.184+0.76 93.7240.64 85.01+£1.52 86.89+1.40 84.914+2.09 67.94+1.78 80.99+1.55
L(bottom only) 98.68+0.33 98.48+0.56 91.88+0.65 83.31+1.30 95.994+0.58 93.71+1.39 80.11£1.60 95.524+1.12
HEADER 95.13+0.94 98.091+0.56 86.29+3.02 85.76+£1.28 88.214+1.98 82.04+1.67 74.15+1.87 82.63+1.86
SUBHEADER 88.141+3.34 88.72+1.98 - - 50.00£16.67 0.0 £0.0 - -
CONTEXT 82.94+4.03 92.811+1.99 5.984+1.00 74.35+4.19 67.01£6.28 50.14+4.22 - -
FOOTNOTE 91.64+6.51 88.681+3.76 - - 76.07+£9.34  47.29+5.85 - -
OTHER 90.0 +10.0 60.08+£16.30 0.304+0.18 80.08+13.28 31.474+14.98 55.00£15.29 90.0 +£10.0 50.08+16.64

4.2.3 Training

We cross-validate across files: each of the ten folds in our
cross-validation experiment uses 90% of the files in the an-
notated ground truth as the training set, and the remaining
files as the test set. In the training phase of Pytheas we con-
sider only the first table of each annotated file in the training
set, taking into account all lines preceding the data section
(context and header lines) of the first table and it’s first few
data lines (effectively under-sampling the DATA class to en-
sure a balanced training set). We then trained the Pytheas
fuzzy rule-set to assign weights to each rule. For TIRS, we
use all cell annotations from the first table in each file under-
sampling the DATA class with up to three data lines to train
a Random Forest model for classifying cells (as in ) For
SP_CRF, we train on the line-label sequence of all labeled
lines from each file (as in [9]).

4.3 Discovery Performance

We evaluate Pytheas and competing state-of-the-art meth-
ods on three tasks using the Canadian2k data set: table
discovery, line classification, and file annotation. We then
evaluate generalizability using the International data set.

4.3.1 Table Discovery

We consider two sub-tasks for table discovery: identifying
the table body (data and subheader lines), and identifying
the combination of body and headers. We use both preci-
sion and recall as metrics for correctness in table discovery.
We define precision of table discovery as the ratio of tables
where the data section was correctly discovered to the num-
ber of tables returned by the method. We define recall as the
number of tables where the data section was correctly dis-
covered over the number of tables that have been labeled in
the ground truth. Since discovered tables might be used for
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further data analysis, our metrics for correctness are strict:
even small errors (such as a single missed line in a large
table) mean the entire table was not discovered correctly.

compares table discovery performance, showing
averages and 95% confidence intervals across the 10 folds.
Pytheas outperforms other methods in both recall and pre-
cision, and the difference is statistically significant. As we
later show, much of this difference comes from Pytheas’s su-
perior identification of table boundaries. Pytheas first finds
the table body, followed by the header discovery process, and
finally uses these discovered boundaries to assign classes to
lines and their cells. In contrast, baseline approaches pri-
oritize line classification, which is then further processed to
discover tables and their respective components.

Pytheas’s misclassifications generally fall into two cate-
gories: very narrow tables whose data cells are similar to
non-data cells, and tables shorter than the context s that
are stacked vertically with no separation.

4.3.2  Line Classification

To better understand Pytheas’ performance, we compare
performance of line classification across the four approaches.
We measure classification performance for lines for each of
the classes in our data model: HEADER, DATA, SUBHEADER,
CONTEXT, FOOTNOTE and OTHER. We also separately eval-
uate the performance of classifying boundary lines (top and
bottom data lines of a table), to investigate how table dis-
covery performance depends on boundary identification.

lists the performance over the 10-fold cross val-
idation experiments. Pytheas outperforms competing ap-
proaches on almost all component classification tasks. Specif-
ically, Pytheas uses table discovery to assign class labels to
lines in a file, and then line classification to assign class la-
bels to cells per line. CSV files are highly biased to the
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Figure 8: Table discovery performance (Body and Header)
averaged over all portals in each country in the International
data set. Models are trained on Canadian2K data set.

DATA class, making that an easy classification task. Even a
small change in classification performance of the DATA class,
particularly when it comes to the table body boundaries,
propagates to drastic changes in performance for all other
classes. This bias towards the DATA class makes it partic-
ularly difficult to infer that a given CSV file contains no
tables (OTHER class). Pytheas performs well even in this
extreme case, while TIRS and SP_CRF achieve very low
performance. Interestingly, for this corner case, the heuris-
tic method outperforms the other methods.

For data lines at table boundaries (top and bottom), we
see substantial drops in performance for all methods other
than Pytheas, comparable to the difference in table discov-
ery performance in [Figure 7] Despite very high performance
in data line classification across all methods, it is the table
body boundary lines that are important. We conclude the
gap in performance of table discovery is due to the impor-
tance we place on table body boundary classification; the
context-aware rules in Pytheas are more successful at detect-
ing table boundaries. Finally, Pytheas sometimes struggles
to differentiate between footnotes and context of consecu-
tive tables, leading to lower performance on the CONTEXT
and FOOTNOTE classes. Nonetheless, Pytheas outperforms
SP_CRF (the only other method that supports both coN-
TEXT and FOOTNOTE) by a wide margin for these classes.

4.3.3 File Annotation

We consider a CSV file correctly annotated when all lines
in the file have been correctly classified. We define accuracy
of CSV file annotation as the number of files for which all
lines were correctly classified divided by the total number
of files processed. Pytheas on average annotates CSV files
with 95.63% accuracy, compared to 86.43% for SP_ CRF,
82.61% for TIRS and 78.74% for the heuristics method.

4.3.4  Ability to Generalize to New Data Sets

We evaluate table discovery performance on the Interna-
tional data set. This data set was not used in Pytheas devel-
opment: it was annotated after freezing all rules, algorithms,
and parameter values.

Figure [§] shows performance of Pytheas and baseline ap-
proaches when trained on the Canadian2K data set and
tested on the International data set. We observe that the
Pytheas rule set is general enough to be trained on data from
one country, and applied to data published by other coun-
tries. Pytheas maintains high table discovery performance,
despite different characteristics of each country’s files. This
is evident particularly when applied to files from the US por-
tal catalog.data.govl the majority of which do not contain
header lines. shows cross-validation performance
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Figure 9: Table discovery performance (Body and Header)
with 5-fold cross-validation for different countries in the In-
ternational data set.
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Figure 10: Table discovery precision when growing the train-
ing set using active learning (uncertainty sampling) and ran-
dom sampling. Vertical lines show the training set size at
which a method first reaches its final precision (precision
when using the entire set of files). Pytheas’s confidence
measure is more effective at growing the training set, outper-
forming random sampling and reaching the plateau faster.

when trained and tested on data from the same country.
Pytheas continues to achieve competitive table discovery
performance compared to state-of-the-art methods designed
for spreadsheets. It is interesting to note that TIRS does
not perform well in environments where data tables do not
have a header, such as files from |catalog.data.gov, even
when trained on the same data.

4.4 Table Discovery Confidence

Unlike TIRS and the heuristic method, Pytheas provides
a confidence measure for identified tables (we use the FDL
confidence, Eq. |§| in Section . We demonstrate the
effectiveness of the confidence measure with an active learn-
ing experiment. The key idea behind active learning is that
a machine learning algorithm can achieve greater accuracy
with fewer labeled training instances if it can actively choose
the training data from which it learns, as opposed to random
selection of training data , which reduces the manual ef-
fort needed to label new data sets.

shows the results using the Pytheas confidence
measure to efficiently build a training set with uncertainty
sampling. We shuffled the ground truth data set, randomly
selected 400 files to set aside for validation, and used the
remaining files as a pool of training data. We initialize our
model by training over 10 randomly selected files from the
pool of labeled data, and incrementally grow the training
set 10 files at a time from the remaining labeled data us-
ing either (a) random sampling or (b) uncertainty sampling,
where files are selected from the pool based on which files
the current model is least certain about.
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Figure 11: Single core inference time for varied file sizes,
normalized to the number of columns in the file.

We observe that Pytheas’s confidence measure is appro-
priate for active learning: Pytheas reaches the plateau in
precision using only 240 labeled files if a training set is built
using uncertainty sampling, while a random sampling ap-
proach would require 1040 files. This result represents a
significant reduction in the manual effort required to label
a data set for training.

While Pytheas performs table discovery (for both body
and header) with an average precision of over 96%, some
applications that use discovered tables may require input
with even higher precision. We find that the majority of
discovered tables have a very high confidence, meaning high
precision sampling still results in a large proportion of the
discovered tables (figure omitted for lack of space). Choos-
ing to disregard tables with confidence < 0.95 ignores only
5% of the data, with the filtered sample’s precision at 98.5%.

4.5 Runtime

We measured Pytheas training and inference time on an
Intel Xeon E5-4640 CPU running at 2.40 GHz. We process
one file per core, and report total runtimes in core-hours.
Pytheas used up to 1.8GB of RAM per file processed.

Training: We measured training time over the entire set
of 157,420 annotated lines in the Canadian2K file data set.
Pytheas takes 9.18 core-hours to train over the entire train-
ing set, resulting in 0.21 sec per line. For comparison, TIRS
took 0.14 sec per line, while SP_ CRF took 0.04 sec per line.
Note the limiting factor for training was manual annotation,
which was orders of magnitude more expensive.

Inference: [Figure I1|shows that inference runtime is linear
for Pytheas and compared methods. Pytheas processes files
with 0.021 sec per column per line, SP _CRF with 0.005 sec
per column per line, and TIRS with 0.011 sec per column
per line. This confirms that the incremental computation
described in Section B.3.4]is effective.

4.6 Evaluating Rules

We ran an ablation study on Canadian2K to evaluate the
effect of different rules. We grouped similar rules based on
what they look at and whether they are line or column rules
(see Table |3). Figure plots table discovery performance
as we remove successive groups of rules, starting with col-
umn rules (C), and followed by line rules (L). Both column
and line rules have substantial contributions to performance.
Column rules that evaluate structure consistency or case
consistency have a large impact on performance since they
help differentiate headers from data, and when removed, ta-
ble discovery dropped by 9 and 49 percentage points respec-
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and Header discovery in Canadian2K data set when sequen-
tially removing groups of rules.

9. —10%

2 lll

°=
§ =100 || ..—
= 01 2 3 45
g Lines in header
= 102

0=

i mill

w =

100 i

10! 102 103 10*

Llnes [|og] 2" table FDL [log]

Figure 13: Statistics from one Canadian portal. Left: Dis-
tribution of file length for all CSV files in the portal. Top
right: header sizes of discovered tables. Bottom right: loca-
tion of the second table in files with more than one table. We
set the confidence threshold for discovering tables to 0.99.

tively. Even in the absence of column rules, line rules can
discover well-structured tables by separating header lines
from the more common data lines.

We further analyze the coverage and confidence of indi-
vidual rules. The coverage of a rule is the proportion of cells
or lines in the training data on which the rule fires, while
confidence tells us how correct a rule is (Section [3.2). No-
tably, 89% of rules have coverage above 1% of their class
proportion, a common threshold for rule coverage , sug-
gesting they apply broadly. The few rules with low coverage
have high confidence. To evaluate overfitting to the training
set, we look at the deviation of rule confidence as calculated
over training and test data sets in a 10-fold cross-validation
experiment. Except for two rules, the deviation is 5% or
lower across all folds. The two rules that show evidence for
overfitting do not produce positive weights on this data set,
and therefore will not be evaluated during inference.

We conclude that the majority of rules are not specific
to a small subset of data, but are broadly applicable, and
that the vast majority of rules do not overfit to the training
set. When rare overfitting happens, it does not harm per-
formance due to low rule confidence. This is consistent with
our generalizability study over International data.

4.7 Table Statistics of a Large Portal

To show the robustness of Pytheas, we applied it to all
23,646 CSV files from the largest Canadian portal that we
examined, open.canada.cal Figure |13| (left) shows the dis-
tribution of file lengths from this portal. At the time of
writing, Pytheas has processed all 22,256 files having up to


open.canada.ca

181,110 lines per file. We report several interesting statistics
from this set.

Of these files, 141 were automatically skipped due to in-
correct encoding or invalid (non-CSV) file format. The files
used 14 different encodings and 5 different delimiters. Fig-
ure summarizes our findings. The majority of files had
only one table, but Pytheas discovered up to 226 tables in
one file. In total, 25268 tables were extracted from 22,013
files, and 90% of these tables were discovered with > 99%
confidence. Of the high-confidence tables, the widest table
discovered had 1787 columns. In addition, 3879 tables had
preceding context, with up to 60 context lines for one table,
and 1379 tables had footnotes. When a second table existed
it was usually found near the beginning of the file (bottom
right of Figure . The maximum depth at which we found
a second table was line 6690. This can be used to optimize
processing of very long files by assuming a file will only have
one table if we have not seen another in the first 10K lines.
We leave such optimizations for future work.

5. RELATED WORK

We categorize related work to those that focus on table
discovery, and those that focus on parsing CSV files.

Table discovery: Table discovery is a challenging problem
across content types including HTML |6] 27} 46|, spread-
sheets 9, |16} 30|, documents and images [52], plain text [22}
23,140, 45|, and CSV [13,36]. Mitlohner et al. [36] analyzed
the characteristics of 105K Open Data CSV resources and
pointed out that accurate detection of attribute header lines
is challenging due to differences in syntactic descriptions of
CSV files. They developed heuristics for annotating CSV
files and extracting tables from them, but do not present an
evaluation of their methods. We find that these heuristics do
not apply to many cases in our data set. Koci et al. |29 [30]
use Random Forests to classify CSV cells, and a graph repre-
sentation to capture complex table layouts. Their approach
is similar to past methods used to discover relative place-
ment of document images [34]. They present experimental
results on spreadsheets from three published corpora, but
did not require exact match between the ground truth and
the discovered tables.

Pinto et al. [45] first introduced the idea of using Condi-
tional Random Fields (CRFs) for the problem of line classi-
fication in plain text documents that contain tables. Adelfio
and Samet [1] followed up on this work with a method for ex-
tracting the components of tabular data from spreadsheets
and HTML tables found on the Web. Chen and Cafarella
[9] also used CRFs for discovering tables in spreadsheets.
They focus on a common structure of tables in spreadsheets
called Data Frames (i.e., tables with a rectangular region of
values where only numeric data is located, and regions on
the top and/or on the left for attribute headers).

Other works also use the intuition that values in attributes
of relational tables exhibit a coherency in structure and se-
mantics |24} |54} [56]. Most recently Chu et al. [10] use co-
herency to address the problem of transforming HTML lists
into multi-column relational tables. They formulate it as
an optimization problem, minimizing the pairwise syntactic
and semantic distance of potential tuples. This is orthogo-
nal to our work, as their input is a table body and the goal
is to align line values to optimize coherency across columns.

Pytheas differs from existing approaches in several ways.
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First, existing approaches developed for table discovery in
HTML pages or spreadsheets leverage the rich feature set
that cannot be generated from CSV files, such as spanning
cells, formulas, table styling, and text format. For example,
TIRS |28l |30] relies on a cell classifier [29] which in turn
leverages cell style, formula, and font metadata. These are
not present in CSV files, which impacts TIRS’s ability to
discover tables from CSV files, as shown in Section On
the other hand, TIRS supports horizontally stacked tables,
which we have not observed in CSV files. Second, Pytheas’s
line classifier takes into account the cell’s context: the co-
herency among the cells in the same line or column. This
context may be several lines below a cell, which is particu-
larly important in sparse tables. Third, existing approaches
do not focus on the accuracy of identification of the bound-
ary data lines, which are crucial for accurate table discovery.
Finally, Pytheas recovers easily from type inconsistencies in
table columns (outlier values are common in CSV tables),
as its pattern based fuzzy-rules allow for “soft” typing.

CSV parsing and annotation: CSV formatting stan-
dards are not followed consistently, leading to much work
on properly parsing CSV files. Dohmen et al. [13]| turn
CSV parsing into a ranking problem with a quality-oriented
multi-hypothesis parsing approach. Pytheas is complemen-
tary to their work, as they do not place emphasis on table
discovery. Ge et al. |20] propose a parser that determines
field and record boundaries in arbitrary chunks of CSV data,
and detects ill-formed CSV data. Van den Burg et al. [55]
developed a consistency measure such that if a file is parsed
with the correct parameters the measure indicates higher
consistency. Arenas et al. |2| describe a framework for in-
teractively annotating CSV data that takes into account the
W3C recommendations for a model for CSV data and the
requirements for annotations for CSV data.

6. CONCLUSIONS

While current approaches for automatic table discovery
focus on spreadsheet and HTML files, CSV files pose a dif-
ferent challenge due to their lack of rich embedded meta-
data such as cell formatting, table styling, and formulas. In-
formed by our observations from a diverse collection of CSV
files drawn from over 100 Open Data portals, we designed
Pytheas, a fuzzy rule-based approach for table discovery in
CSV files. During an offline training phase, Pytheas learns
weights for its rule set. These weighted rules are applied
in the online inference phase to classify lines, and the line
classes with confidences drive the discovery of table bound-
aries and headers, and confidence of table discovery.

Using two manually annotated data sets with a total of
4500 Open Data CSV files, we show Pytheas’s table-focused
design outperforms alternative state-of-the-art approaches
in table discovery as well as line classification tasks. We
also show that Pytheas generalizes well across countries and
to new sources of data. Finally, we show that Pytheas’s
confidence measure can be used to support active learning
thereby reducing labeling effort.
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