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Abstract

Given an undirected multigraphG and a subset of ver-
ticesS ⊆ V (G), theSTEINER TREE PACKING problem is
to find a largest collection of edge-disjoint trees that each
connectsS. This problem and its generalizations have at-
tracted considerable attention from researchers in different
areas because of their wide applicability. This problem was
shown to be APX-hard (no polynomial time approximation
scheme unless P=NP). In fact, prior to this paper, not even
an approximation algorithm with asymptotic ratioo(n) was
known despite several attempts.

In this work, we close this huge gap by presenting the
first polynomial time constant factor approximation algo-
rithm for theSTEINER TREE PACKING problem. The main
theorem is an approximate min-max relation between the
maximum number of edge-disjoint trees that each connects
S (i.e. S-trees) and the minimum size of an edge-cut that
disconnects some pair of vertices inS (i.e. S-cut). Specif-
ically, we prove that if the minimumS-cut in G has 26k
edges, thenG has at leastk edge-disjointS-trees; this an-
swers Kriesell’s conjecture affirmatively up to a constant
multiple. The techniques that we use are purely combinato-
rial, where matroid theory is the underlying ground work.

1. Introduction

A fundamental result of Menger, proved in 1927, states
that for any two verticesa, b ∈ V (G) the maximum num-
ber of edge-disjointa, b-paths is equal to the minimum size
of an a, b-edge-cut [24]. Since then, manymin-max rela-
tionsof this type have been being discovered (see [31]), and
they are some of the most powerful and beautiful results in
combinatorics (e.g. max-flow min-cut, max-matching min-
odd-set-cover, etc.). Furthermore, some of the most funda-
mental polynomial time (exact) algorithms have been de-
signed around such relations.

Like min-max relations in the development of exact al-
gorithms,approximate min-max relationsare vital in the

development of approximation algorithms. For example, a
seminal work of Leighton and Rao [21], which shows that
for any n-node multicommodity flow problem with uni-
form demands the max-flow for the problem is within an
O(log n) factor of the upper bound implied by the min-cut,
leads to approximation algorithms for many different prob-
lems.

The LP duality theorem and matroid theory are the two
general tools in proving min-max relations (see [31]). The
proof of the LP duality theorem is short, and yet many gen-
eral methods have been built on it to obtain approximate
min-max relations and approximation algorithms for a wide
range of problems. On the other hand, the rich results of ma-
troid theory have not been fully exploited along this line. In
this paper, we demonstrate a natural problem which seems
to be more suitably investigated within the (discrete) struc-
ture offered by matroids. We believe further investigations
of these techniques will give new insight into other prob-
lems with a similar nature.

We consider a well-studied generalization of the edge-
disjoint a, b-paths problem, namely, theSTEINER TREE

PACKING problem. Given an undirected multigraphG =
(V,E) and S ⊆ V (G). We say the vertices inS are
black (also known asterminal vertices) while the vertices
in V (G) − S are white (also known asSteinervertices);
an edge iswhite if it connects two white vertices. AnS-
Steiner-tree(S-tree) is a tree ofG that contains every vertex
in S, anS-Steiner-cut(S-cut) is a subset of edges whose re-
moval disconnects some pair of vertices inS. TheSTEINER

TREE PACKING problem is to find a largest collection of
edge-disjointS-trees ofG.

This problem and its generalization (where different
specified subsets of vertices have to be connected by edge-
disjoint trees) have attracted considerable attention from
researchers in different areas. TheSTEINER TREE PACK-
ING problem has applications in routing problems arising
in VLSI circuit design [17, 23, 28, 10, 11, 12, 33, 14],
where an effective way of sharing different signals amongst
cells in a circuit can be achieved by the use of edge-
disjoint Steiner trees. It also has a variety of computer net-



work applications such as multicasting [26, 3, 4, 2, 34, 9],
video-conferencing [13] and network information flow [30],
where simultaneous communications can be facilitated by
using edge-disjoint Steiner trees.

WhenS = V (G), the STEINER TREE PACKING prob-
lem is known as theSPANNING TREE PACKING problem.
Tutte [32] and Nash-Williams [25] independently proved
that a graph hask edge-disjoint spanning trees if and only
if EG(P) ≥ k(|P| − 1) for every partitionP of V (G)
into nonempty classes, whereEG(P) denotes the number
of edges connecting distinct classes ofP. As a corollary of
Tutte and Nash-Williams result, every2k-edge-connected
graph hask edge-disjoint spanning trees. Karger [16] ex-
ploited this approximate min-max relation to give the best
known algorithm (near linear time) to compute a minimum
cut of a graph. It should be pointed out that theSPAN-
NING TREE PACKING problem is best investigated within
the structures offered by matroids (see [31]), where Ed-
mond’s matroid partition theorem yields a short proof of
Tutte and Nash-Williams theorem as a corollary.

The STEINER TREE PACKING problem, however, is
NP-complete (see [6]). Therefore, under the assumption
that NP 6= co-NP, a concise min-max relation like the
Tutte-Nash-Williams theorem does not exist. Nonetheless,
Kriesell [18, 19] conjectures that the approximate min-max
corollary of the Tutte-Nash-Williams theorem does gener-
alize to theSTEINER TREE PACKING problem. We say a
graph isk-S-connectedif everyS-cut has at leastk edges.

Kriesell’s conjecture: [18, 19] If G is 2k-S-
connected, thenG hask edge-disjointS-trees.

The conjecture is best possible for everyk as shown by any
k-regulark-edge-connected graphG andS = V (G).

1.1. Previous Work

Prior to this work, Kriesell’s conjecture was wide open
despite several attempts. It was not known to be true even
when2k is replaced by anyo(n) · k (not even whenk = 2
[15]). Similarly, not even a polynomial timeo(n) approxi-
mation algorithm was known for theSTEINER TREEPACK-
ING problem. That is, in simple graphs, no known polyno-
mial time approximation algorithm has an asymptotic per-
formance better than the naive algorithm of simply finding
one spanning tree.

In the special case where every white vertex has an
even degree, Kriesell [19] proves that his conjecture is true.
An interesting corollary of this result is: ifG is 2k-S-
connected, then there is a collection of2k S-trees such that
every edge is used by at most 2 suchS-trees; in other words,
we have a 2-approximation algorithm if we allowhalf in-
tegral solutions. Also, the special case where there are no
white edges is considered by Kriesell [18] and Frank et al.

[8]. In particular, it is proven in [18] that ifG has no white
edge andG is (k + 1)k-S-connected, thenG hask edge-
disjoint S-trees. This result is improved in [8] by replac-
ing (k + 1)k with 3k; it is based on a generalization of the
Tutte-Nash-Williams theorem to hypergraphs using matroid
theory. Recently, Kriesell [20] proves that ifG is (l + 2)k-
S-connected wherel is the maximum size of abridge (see
[20] for the definition), thenG hask edge-disjointS-trees;
this result is a common generalization of the Tutte-Nash-
Williams theorem (whenl = 0) and the case where white
vertices are independent (whenl = 1).

For the general case, Petingi and Rodriguez [27] prove
that if G is (2( 3

2 )|V (G)−S| · k)-S-connected, thenG has
k edge-disjointS-trees. Kriesell [19], by using the result
for the case that every white vertex has an even degree,
improves this by weakening the connectivity requirement
to 2|V (G) − S| + 2k. Jain, Mahdian and Salavatipour
[15], by using ashortcuttingprocedure, prove that ifG is
(|S|/4 + o(|S|))k-S-connected, thenG hask edge-disjoint
S-trees; this improves an exponential connectivity bound in
terms of|S| obtained earlier by Kriesell [19]. In both pa-
pers [19, 15], an optimal bound ofd 4

3ke on the connectivity
requirement is obtained for the case|S| = 3.

Jain, Mahdian, Salavatipour also study a natural LP re-
laxation of theSTEINER TREE PACKING problem. The
FRACTIONAL STEINER TREE PACKING problem is formu-
lated in [15] by the following linear program. In the follow-
ing T denotes the collection of allS-trees in a graphG, and
ce is the givencapacityof the edgee.

maximize
∑

T∈T xT

subject to ∀e ∈ E :
∑

T∈T xT ≤ ce

∀T ∈ T : xT ≥ 0
(1)

By using the Ellipsoid algorithm on the dual of the above
LP, Jain, Mahdian and Salavatipour [15] show that there is a
polytimeα-approximation algorithm for theFRACTIONAL

STEINER TREE PACKING problem if and only if there is
a polytimeα-approximation algorithm for theM INIMUM

STEINER TREE problem. TheM INIMUM STEINER TREE

problem is to find a minimum weightS-tree for a given
weighted graph. Robins and Zelikovsky [29] give a 1.55 ap-
proximation algorithm for it, and Bern and Plassmann [1]
show that it is APX-hard. Therefore, by using the results of
theM INIMUM STEINER TREE problem, theFRACTIONAL

STEINER TREE PACKING problem is APX-hard but can be
approximated within a factor of 1.55 to the optimal solu-
tion [15]. As a consequence, the (integral)STEINER TREE

PACKING problem is shown to be APX-hard [15].
Besides designing approximation algorithms, effort has

been put in to designing faster exact algorithms by integer
programming approaches [23, 28, 10, 11, 12, 33, 14] and
designing practical heuristic methods [26, 3, 4, 2, 34, 9, 13,
30].



1.2. Our Contributions

The major contribution of this paper is the following ap-
proximate max-S-tree-packing min-S-cut theorem, which
answers Kriesell’s conjecture affirmatively up to a constant
multiple.

Theorem 1.1 If G is 26k-S-connected, thenG hask edge-
disjointS-trees.

The proof of Theorem 1.1 is based on a new idea of graph
decomposition, the edge splitting lemma by Mader [22] and
a result by Frank, Kiŕaly and Kriesell [8] . The proof is con-
structive so ifG is 26k-S-connected, then a collection of
k edge-disjointS-trees can be constructed in polynomial
time. This implies the first polynomial time constant fac-
tor approximation algorithm for theSTEINER TREE PACK-
ING problem. In the following,λS(G) denotes the size of a
minimumS-cut inG.

Theorem 1.2 There is a polynomial time algorithm to con-
struct a collection of at leastbλS(G)

26 c edge-disjointS-trees.

The CAPACITATED STEINER TREE PACKING problem
is a generalization of theSTEINER TREE PACKING prob-
lem where each edgee has an integer capacityce which
bounds the number of trees that can usee (the STEINER

TREE PACKING problem is the special case wherece = 1
for all e ∈ E(G)). Notice that LP(1) is a relaxation of the
CAPACITATED STEINER TREE PACKING problem and the
optimal fractional solution to LP(1) ofG is bounded above
by the minimum capacity of aS-cut. By replacing each edge
e of G by ce multiple edges and applying Theorem 1.1 on
the resulting graph, sayG′, we obtain the first constant up-
per bound on the integrality gap of LP(1).

Corollary 1.3 The integrality gap of LP(1) is bounded
above by 51.

Applying Theorem 1.2 onG′, however, only gives a
pseudo-polynomial time approximation algorithm for the
CAPACITATED STEINER TREE PACKING problem toG.
Nonetheless, by combining the approximation algorithm
for theFRACTIONAL STEINER TREE PACKING problem in
[15] and the algorithm of Theorem 1.2, we are able to ob-
tain a polytime algorithm for theCAPACITATED STEINER

TREE PACKING problem which constructs an integral solu-
tion of value at leastb τ

26c (see Section 6), whereτ is the
value of an optimal integral solution.

2. Overview and the Setup

To understand our approach, it is illuminating to start
from the ground work. In [8], Frank, Király and Kriesell
consider a hypergraph generalization of theSPANNING

TREE PACKING problem. A hypergraphH is k-partition-
connectedif EH(P) ≥ k(|P| − 1) holds for every par-
tition P of V (H) into non-empty classes, whereEH(P)
denotes the number of hyperedges intersecting at least two
classes. The main theorem in [8] states that a hypergraph
is k-partition-connected if and only ifH can be decom-
posed intok sub-hypergraphs each of which is 1-partition-
connected. The proof is based on the observation that the
hyperforests (see [8] for the definition of a hyperforest) of
a hypergraph form the family of independent sets of a ma-
troid, and thus Edmond’s matroid partition theorem can be
applied.

Now, suppose an instance of theSTEINER TREE PACK-
ING problem whereG has no white edge is given. We can
assume every white vertex is of degree 3 inG by using
Mader’s splitting lemma (in Section 3.2). Now, we con-
struct a hypergraphH with vertex setS. For every white
vertexv, we construct a corresponding hyperedge of size 3
in H consisting of the neighbours ofv. Also, uv ∈ E(H)
if u, v ∈ S anduv ∈ E(G). By applying the above min-
max theorem on the hypergraph problem, the following re-
sult on theSTEINER TREE PACKING problem is obtained
as a corollary.

Theorem 2.1 [8] If G has no white edge and is3k-S-
connected, thenG hask edge-disjointS-trees.

We do not explicitly use matroid theory in the remain-
der of this paper. However, Theorem 2.1 plays an important
role in our proof, and it is proved by matroid theory as men-
tioned in the above paragraphs. Therefore, we say matroid
theory is the underlying groundwork of our proof.

Given an instance of theSTEINER TREE PACKING prob-
lem, our method is to reduce the general case to the above
seemingly restrictive case where there is no white edge. The
key observation is that if Theorem 1.1 holds, then it holds
with a rich combinatorial property, which we callthe exten-
sion property. The extension property (formally defined in
Section 2.1) roughly says that for any edge-partition of the
edges incident to a “small” degree vertex, the edge-partition
can be extended to edge-disjointS-trees such that each class
in the edge-partition is contained in oneS-tree.

The proof can be divided into two steps. Given a graph
G with l white edges, we search for a minimumS-cut inG
with a white edge, and decomposeG through the cut, re-
sulting in two graphsG1 and G2 with a total of at most
l − 1 white edges. The cut decomposition lemma (in Sec-
tion 3.1) shows that if Theorem 1.1 holds in bothG1 andG2

with the extension property, then we can always “piece” to-
gether the solutions inG1 andG2 so that Theorem 1.1 also
holds inG with the extension property. Therefore, by ap-
plying the cut decomposition step recursively, we reduce
an instance withl white edges to at mostl + 1 instances
without a white edge. By the cut decomposition lemma, if



all thosel + 1 graphs (without a white edge) satisfy Theo-
rem 1.1 with the extension property, thenG satisfies Theo-
rem 1.1 by “piecing” their solutions together. This key step
removes the difficulty of having white edges, and gives new
insight into the core of the problem. It should be mentioned
that theSTEINER TREE PACKING problem remains APX-
hard when there is no white edge (see [6]).

The second step (in Section 3.3), of course, is to prove
that Theorem 1.1 does indeed hold with the extension prop-
erty when there are no white edges. By using Mader’s split-
ting lemma, we can assume that every white vertex is of
degree 3 (in Section 3.2), and this gives us a set of “good”
paths. With a sufficiently high connectivity assumption (26k
in Theorem 1.1), by using Theorem 2.1, we show that the
extension property holds for any graph without a white edge
and with every white vertex of degree 3. This step is more
technical, but the intuition is simple - when the graph is
highly S-connected, we have much freedom to construct
the edge-disjointS-trees. And it turns out that any edge-
partition of the edges incident to a “small” degree vertex
can be extended to edge-disjointS-trees. This completes the
high level description of our approach.

2.1. The Setup

Let G be λ-S-connected, asmall vertexis a black ver-
tex of degreeλ in G. Let E(u) be the set of edges that are
incident tou, Pk(u) = {E1, . . . , Ek} is a balanced edge-
subpartitionof u if E1 ∪ E2 ∪ . . . ∪ Ek ⊆ E(u), |Ei| ≥ 2
for 1 ≤ i ≤ k, andEi∩Ej = ∅ for i 6= j. We denote the set
of neighbours ofu in Ei by NEi(u). A subgraphH spansa
subset of verticesU if U ⊆ V (H). H is aS-subgraphof G
if it is a connected subgraph ofG that spansS, H is adou-
ble S-subgraphof G if it is a S-subgraph ofG and every
vertex inS is of degree at least 2 inH.

Definition 2.2 (THE EXTENSION PROPERTY)
Given G, S ⊆ V (G), and a balanced edge-subpartition
Pk(v) = {E1, . . . , Ek} of a small vertexv. {H1, . . . ,Hk}
are k edge-disjointS-subgraphs thatextendPk(v) if for
1 ≤ i ≤ k:

(1) Ei ⊆ E(Hi);
(2) Hi − v is a (S − v)-subgraph that spansNEi(v).

Theorem 2.3 (THE EXTENSION THEOREM)
If G is 26k-S-connected, thenG has k edge-disjoint
double S-subgraphs. Furthermore, for any balanced
edge-subpartitionPk(v) of any small vertexv, G has k
edge-disjoint doubleS-subgraphs that extendPk(v).

It is clear that Theorem 2.3 implies Theorem 1.1 as we
just need the first statement. LetG, henceforth, be a coun-
terexample to Theorem 2.3 with the minimum number of
edges, and letQ = 26. Without loss of generality, we also
assume thatG is connected. Our plan, henceforth, is to show
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Figure 1. The construction of G1 and G2 from G.

thatG does not exist and thus Theorem 2.3 holds. The proof
of Theorem 2.3 is divided into three parts. First, in Section
3.1, we prove thatG has no white edge by using the cut de-
composition lemma. Then, in Section 3.2, we prove that ev-
ery white vertex ofG is of degree 3 by using Mader’s split-
ting lemma. Finally, in Section 3.3, with the use of Theo-
rem 2.1, we prove that the extension property does hold in
G and thusG does not exist.

3. Proof of the Extension Theorem

3.1. Cut Decomposition

The following lemma is the key step mentioned previ-
ously, which reduces Theorem 2.3 from the general case to
the case where there is no white edge. The cut decomposi-
tion operation will be described inside the proof.

Lemma 3.1 (THE CUT DECOMPOSITIONLEMMA )
G has no white edge.

Proof. Let e be a white edge. IfG − e is still Qk-S-
connected, then by the choice ofG, we get our desired edge-
disjoint doubleS-subgraphs inG − e and thus inG.

Cut decomposition:So, we consider the case that there
is a S-cut T = {e1, . . . , eQk} containinge. By the mini-
mality of T , there are exactly two connected components
C1 andC2 in G − T . Now we construct a new multigraph
G1 by contractingC2 to a single black vertexv1, keeping all
edges fromv1 to C1 (even if this produces multiple edges);
similarly, we construct another new multigraphG2 by con-
tractingC1 to a single black vertexv2. SoV (G1) = C1+v1,
V (G2) = C2 + v2, T ⊆ E(G1) andT ⊆ E(G2) (see Fig-
ure 1 for an illustration). LetS1 be the set of black ver-
tices inC1 plusv1 andS2 be the set of black vertices inC2

plusv2. Now we check the properties ofG1 andG2. First,
sincee is in T , by contracting a component of size at least
two (each component has at least one white vertex and one
black vertex sincee is white) to a single vertex,G1 andG2



have fewer edges thanG. Second, ifG is Qk-S-connected,
thenG1 is Qk-S1-connected andG2 is Qk-S2-connected
(since we keep multiple edges). Therefore, by the choice of
G, Theorem 2.3 holds in bothG1 andG2. Note thatv1 and
v2 are small vertices since|T | = Qk, andG1 andG2 have
a total of at mostl − 1 white edges ifG hasl white edges.

Let v ∈ C1 be a small vertex ofG and Pk(v) =
{E1, . . . , Ek} be a balanced edge-subpartition ofv.
Our goal is to show thatG has k edge-disjoint dou-
ble S-subgraphs that extendPk(v) (the case whereG
has no small vertex is similar and easier, we omit the de-
tails for brevity). And our plan is to combinek edge-disjoint
doubleS1-subgraphs inG1 that extendPk(v) andk edge-
disjoint doubleS2-subgraphs inG2 that extendRk(v2)
(Rk(v2) to be determined) to obtaink edge-disjoint dou-
ble S-subgraphs inG that extendPk(v). Since Theo-
rem 2.3 holds inG1, we can findk edge-disjoint dou-
ble S1-subgraphs{H1

1 , . . . , H1
k} of G1 that extendPk(v).

Let Fi be the set of edges inH1
i that are incident to

v1. Sincev1 is a black vertex inG1 and H1
i is a dou-

ble S1-subgraph, we have|Fi| ≥ 2. Also, Fi ∩ Fj = ∅
for i 6= j sinceH1

i andH1
j are edge-disjoint fori 6= j.

Therefore,Rk(v1) = {F1, . . . , Fk} is a balanced edge-
subpartition ofv1 in G1. Note that sincev1 andv2 are inci-
dent to the same set of edgesT ,Rk(v2) = {F1, . . . , Fk} is
also a balanced edge-subpartition ofv2 in G2. Since The-
orem 2.3 holds inG2, there arek edge-disjoint dou-
bleS2-subgraphs{H2

1 , . . . , H2
k} of G2 that extendRk(v2).

We define a subgraphHi of G, by settingE(Hi) to be
the union ofE(H1

i ) and E(H2
i ) with the exception that

an edge ofT in G1 (or in G2) becomes inHi the corre-
sponding edge inG. We shall show that{H1, . . . ,Hk}
are k edge-disjoint doubleS-subgraphs ofG that ex-
tendPk(v).

First, notice thatH1
i andH2

i use exactly the same edges
in T , H1

i andH1
j are edge-disjoint fori 6= j, andH2

i and
H2

j are edge-disjoint fori 6= j, so Hi andHj are edge-
disjoint for i 6= j. Now we shall show thatHi − v spans
NEi(v). Let u ∈ NEi(v). If u ∈ C1, thenu is spanned by
H1

i ; if u ∈ C2, thenu ∈ NFi(v2) by our construction, sou
is spanned byH2

i . Therefore,Hi−v spansNEi(v). Also, it
follows from our construction thatHi − v spansS − v. So,
to show thatHi − v is a(S − v)-subgraph ofG that spans
NEi(v), it remains to show thatHi − v is a connected sub-
graph ofG. For anya, b ∈ V (Hi)− v, we consider the fol-
lowing three cases:

1. a, b ∈ C1.
If a andb are connected inH1

i − v without usingv1,
then they are connected inHi− v. So, we consider the
case that they are connected inH1

i − v usingv1 (see
Figure 2 for an illustration). Lete1 ande2 be the edges
incident tov1 in a path that connectsa and b. Since
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Figure 2. If a, b ∈ C1 is connected in H1
i by a path

through v1 in G1, they are connected in Hi through C2.

e1, e2 ∈ E(H1
i ) ∩ T , by our construction,e1, e2 ∈ Fi.

Let u1 andu2 be the endpoints ofe1 ande2 in C2, so
u1, u2 ∈ NFi

(v2). Recall thatH2
i − v2 is a(S2 − v2)-

subgraph ofG2 − v2 that spansNFi(v2), so there is
a path inH2

i − v2 betweenu1 andu2. By combining
the edges in thea, v1-path inH1

i − v, the edges in the
u1, u2-path inH2

i − v2 and the edges in thev1, b-path
in H1

i −v, we get a path froma to b in Hi−v. As a re-
sult,a andb are connected inHi − v.

2. a ∈ C1, b ∈ C2.
SinceH1

i −v is a(S1−v)-subgraph ofG1−v, there is
aa, v1-path inH1

i − v. Let e be the edge incident tov1

in thea, v1-path. Sincee ∈ E(H1
i ) ∩ T , by our con-

struction,e ∈ Fi. Let u be the endpoint ofe in C2.
SinceH2

i − v2 is a(S2−v2)-subgraph ofG2− v2 that
spansNFi(v2), there is au, b-path inH2

i − v2. There-
fore, there is aa, b-path inHi − v by combining the
edges in thea, v1-path and the edges in theu, b-path.

3. a, b ∈ C2.
Recall thatH2

i − v2 is a(S2 − v2)-subgraph ofG2 −
v2, soa andb are connected inH2

i − v2 and thus in
Hi − v.

Therefore,Hi − v is a (S − v)-subgraph that spans
NEi(v) (the second property of Definition 2.2 holds). By
our construction,Ei ⊆ E(Hi) (the first property of Defini-
tion 2.2 holds) which also implies thatHi is aS-subgraph
of G. Furthermore, sinceu1 is of degree at least 2 inH1

i for
any u1 ∈ S1 andu2 is of degree at least 2 inH2

i for any
u2 ∈ S2, u is of degree at least 2 inHi for any u ∈ S.
Therefore,Hi is a doubleS-subgraph ofG. As a result,
{H1, . . . , Hk} are k edge-disjoint doubleS-subgraphs of
G that extendPk(v). Sincev andPk(v) are picked arbi-
trarily, this shows that Theorem 2.3 holds inG, a contradic-
tion. Therefore,G has no white edge and this completes the
proof.



3.2. Edge Splitting

A basic tool in the proof of Theorem 2.3 is Mader’s split-
ting lemma, which is proven to be useful in many edge-
connectivity problems. LetG be a graph,e1 = xy, e2 = xz
be two edges,y 6= z. The operation of obtainingG(e1, e2)
from G by deletinge1 ande2 and then adding exactly one
new edge betweeny andz (multiple edges betweeny andz
may be produced) is said to besplitting atx. This splitting
at x is calledsuitable, if the number of edge-disjointa, b-
paths inG(e1, e2) is at least the number of edge-disjoint
a, b-paths inG for every paira, b ∈ V (G) − x. Note that
if we perform a suitable splitting at a white vertex, it does
not decrease theS-connectivity. The splitting lemma pro-
vides a sufficient condition for the existence of a suitable
splitting at a certain vertexx:

Lemma 3.2 (MADER’ S SPLITTING LEMMA ) [22] Let x
be a vertex of a graphG. Suppose thatx is not a cut ver-
tex and thatx is incident with at least 4 edges and adja-
cent to at least 2 vertices. Then there exists a suitable split-
ting ofG at x.

Lemma 3.3 There is no white cut vertex inG.

Proof. Supposew is a white cut vertex inG. Let
{C1, . . . , Cl} be the connected components ofG−w where
l ≥ 2. ConsiderGi = G[Ci ∪ {w}] for 1 ≤ i ≤ l. Sup-
pose all the black vertices are in one component, sayC1.
SinceG is Qk-S-connected,G1 is alsoQk-S-connected
andG1 has fewer edges thanG. So, by the choice ofG, The-
orem 2.3 holds inG1. But this implies that Theorem 2.3
also holds inG, a contradiction.

So we assume that at least two components ofG−w have
black vertices. LetSi be the black vertices inGi. For any
a ∈ Si, sinceG is Qk-S-connected, it hasQk edge-disjoint
paths to a vertexb ∈ Sj for somej 6= i. Sincew is a cut ver-
tex, thoseQk edge-disjointa, b-paths must all pass through
w. As a result, there areQk edge-disjointa,w-paths inG
for anya ∈ Si. This implies that eachGi is Qk-(Si + w)-
connected. By the choice ofG, eachGi hask edge-disjoint
double(Si+w)-subgraphs. By combining thosek (Si+w)-
subgraphs of eachGi, we obtaink edge-disjoint doubleS-
subgraphs ofG. Similarly, we can constructk edge-disjoint
doubleS-subgraphs ofG that extend any balanced edge-
subpartitionPk(v) of any small vertexv (if any); a contra-
diction. Therefore, by the choice ofG, G has no white cut
vertex.

Lemma 3.4 Every white vertex inG is incident with exactly
three edges and adjacent to exactly three vertices.

Proof. Suppose a white vertexw is adjacent to only one
vertexu. SinceG is Qk-S-connected,G − w is still Qk-S-
connected. By the choice ofG, Theorem 2.3 holds inG−w.
Sinceu is not a small vertex, Theorem 2.3 also holds inG,

a contradiction. So we can assume thatw is adjacent to at
least two vertices.

Suppose a white vertexw is incident with only two
edges, by the previous argument,w is adjacent to two
vertices{y, z}. SinceG is Qk-S-connected andw /∈ S,
G − w + yz is Qk-S-connected and it has one fewer edge
thanG. By the choice ofG, Theorem 2.3 holds inG−w+yz.
For anyk edge-disjoint doubleS-subgraphs{H1, . . . ,Hk}
of G − w + yz, if yz is in Hi, we can constructH ′

i from
Hi by replacingyz with {wy,wz} so thatH ′

i is a double
S-subgraph ofG. Note the remaining doubleS-subgraphs
in G − w + yz are also doubleS-subgraphs inG. SoG has
k edge-disjoint doubleS-subgraphs. Similarly, if the exten-
sion property holds inG −w + yz, then the extension prop-
erty holds inG. But this implies that Theorem 2.3 holds in
G, a contradiction. So we can further assume thatw is inci-
dent with more than two edges.

Suppose a white vertexw is incident with at least four
edges. By the previous argument,w is adjacent to at least
two vertices. And by Lemma 3.3,w is not a cut vertex.
Therefore, by Lemma 3.2, there exists a suitable split-
ting of G at w, say the resulting graph isG∗. SinceG is
Qk-S-connected and the splitting is suitable,G∗ is Qk-S-
connected and has one fewer edge thanG. By the choice of
G, Theorem 2.3 holds inG∗. By a similar argument as in the
previous paragraph, it follows that Theorem 2.3 also holds
in G; a contradiction. Therefore, the only possibility left is
whenw is incident with exactly three edges.

Supposew is incident with three edges but adjacent to
only two vertices{y, z} so that there are two edgese1, e2

betweenw andy. SinceG is Qk-S-connected,w /∈ S and
w is incident with exactly three edges and adjacent only to
{y, z}, it follows thatG − e1 is Qk-S-connected andy is
not a small vertex. By the choice ofG, Theorem 2.3 holds
in G − e1. Sincey is not a small vertex, Theorem 2.3 also
holds inG, a contradiction. As a result, every white vertex
w of G must be incident with exactly 3 edges and adjacent
to exactly 3 vertices; this completes the proof.

3.3. The Extension Property

Now we are ready to prove Theorem 2.3. The case
when |S| = 2 follows from Menger’s theorem. Hence-
forth, we assume that|S| ≥ 3; Let v be a small ver-
tex, andPk(v) = {E1, . . . , Ek} be a balanced edge-
subpartition ofv. Our goal, henceforth, is to show thatG
hask edge-disjoint doubleS-subgraphs that extendPk(v).
Let W = {w1, . . . , wα} be the set of white neighbours
of v and B = {b1, . . . , bγ} be the set of black neigh-
bours ofv. By Lemma 3.4, eachwi is incident with exactly
three edges and adjacent to exactly three vertices, so we let
NG(wi) = {v, xi, yi} and call{xi, yi} a couple. Sincewi

is a white vertex, by Lemma 3.1,xi andyi are black ver-
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Figure 3. The paths in dotted lines are paths in P ′(u).

tices. For each black neighbourbi of v, theweightof bi, de-
noted byc(bi), is the number of multiple edges betweenv
andbi.

Consider a black vertexu 6= v. Since G is Qk-S-
connected, by Menger’s theorem, there areQk edge-
disjoint paths, denoted byP (u) = {P1(u), . . . , PQk(u)},
from u to v. Note that sincev is a small vertex, each
path in P (u) uses exactly one edge inE(v). We as-
sumevwi is in the pathPi(u) for 1 ≤ i ≤ α. Since
wi is of degree 3 by Lemma 3.4,Pi(u) contains ex-
actly one ofwixi or wiyi, andPj(u) does not containwixi

or wiyi for j 6= i.
Let G′ beG − v − W . ConsiderPi(u) induced inG′,

denoted byP ′i (u) (see Figure 3 for an illustration). Let
P ′(u) = {P ′1(u), . . . , P ′Qk(u)}, notice thatP ′(u) contains
edge-disjoint paths inG′. For 1 ≤ i ≤ α, P ′i (u) is a path
from u to eitherxi or yi in G′. Also, for each black neigh-
bour bj of v, there arec(bj) edge-disjoint paths inP ′(u)
from u to bj in G′.

Let Z be a minimum(S−v)-cut ofG′ and{C1, . . . , Cl}
be the connected components ofG′ − Z. We letSi andBi

be the set of black vertices and the set of black neighbours
of v in Ci, respectively. Also,c(Bi) denotes the sum of the
weights of vertices inBi andXi denotes the collection of
couples with both vertices inCi. By the minimality ofZ,
each edgee in Z connects two vertices in different com-
ponents, and we call it acrossing edge. Similarly, a cou-
ple{xi, yi} is acrossing coupleif xi andyi are in different
components, and we denote the collection of crossing cou-
ples byXC .

Now we give an outline of our proof of Theorem 2.3
whenG has no white edge and every white vertex is of de-
gree 3 and adjacent to exactly 3 vertices. We present the
lemmata following the outline.

Outline: First, we show in Lemma 3.5 that ifG′ is 6k-

(S − v)-connected, then we can constructk edge-disjoint
doubleS-subgraphs ofG that extendPk(v) by using The-
orem 2.1. Hence, by the choice ofG, we can assumeG′

has a(S − v)-cut Z so that|Z| < 6k. Then, we show in
Lemma 3.6 thatG′ − Z has exactly 2 connected compo-
nentsC1 andC2, and in Lemma 3.7 that there are at least
Qk − 2|Z| crossing couples. Consider any two black ver-
ticesu1, u2 ∈ Ci, by using the paths inP ′(u1) andP ′(u2)
and the above facts (i.e. Lemma 3.5 and Lemma 3.7), we
show in Lemma 3.9 that there are at least7k edge-disjoint
paths fromu1 to u2 in Ci. We further reserve at mostk
edges in each component to be used later. As a result, each
componentCi is6k-Si-connected and thus there arek edge-
disjoint doubleSi-subgraphs inCi by Theorem 2.1. Finally,
by exploiting the property thatPk(v) is a balanced edge-
subpartition, we show in Lemma 3.10 that we can use the
crossing edges inZ and the reserved edges to connect the
Si-subgraphs to formk edge-disjoint doubleS-subgraphs
of G that extendPk(v), a contradiction. This concludes the
outline.

Lemma 3.5 G′ is at most(6k − 1)-(S − v)-connected.

Proof. If G′ is 6k-(S − v)-connected, then there are
2k edge-disjoint (S − v)-subgraphs {H ′′

1 , . . . ,H ′′
2k}

in G′ by Theorem 2.1. Notice that since the union
of two edge-disjoint (S − v)-subgraphs is a dou-
ble (S − v)-subgraph (since|S| ≥ 3), by setting
H ′

i = H ′′
2i−1 ∪ H ′′

2i, {H ′
1, . . . , H

′
k} are k edge-

disjoint double (S − v) subgraphs ofG′. Now, let
Hi = H ′

i ∪ {vbj |vbj ∈ Ei} ∪ {vwj , wjxj |vwj ∈ Ei}. So,
Ei ⊆ Hi, andHi − v is a (S − v)-subgraph that spans
NEi(v). Also, sinceH ′

i is a double(S − v)-subgraph of
G′ and |Ei| ≥ 2, Hi is a doubleS-subgraph ofG. By
Definition 2.2, {H1, . . . , Hk} are k edge-disjoint dou-
ble S-subgraphs ofG that extendPk(v), a contradiction.

Lemma 3.6 G′ − Z has 2 connected components.

Proof. We need to show thatG′ has at most 2 connected
components, then the statement thatG′−Z has 2 connected
components follows from the minimality ofZ. Notice that
from our construction ofG′ from G, the set of neighbours
of every white vertex that remained inG′ is the same as in
G. SinceG is connected, no component inG′ contains only
white vertices. Therefore, it suffices to show that there are
at most two components inG′ that contain black vertices.

Consider any two black verticesu1, u2 6= v. In G, if
v has a black neighbourb, then in G′ there is a path in
P ′(u1) from u1 to b and a path inP ′(u2) from u2 to b. So
u1 andu2 are connected inG′ and thusG′ is connected.
So supposev has only white neighbours inG. Consider
G′′ = G′+{wixi, wiyi} for an arbitraryi, then the union of
the edges inP ′i (u1), the edges inP ′i (u2) and{wixi, wiyi}



contains au1, u2-path inG′′. Therefore, any two black ver-
tices are in the same component inG′′ and thusG′′ is con-
nected. Notice thatwi is a degree 2 vertex inG′′, therefore
G′ = G′′−wi has at most 2 connected components. As pre-
viously mentioned, by the minimality ofZ, G′ − Z has 2
connected components.

Lemma 3.7 There are at leastQk−2|Z| crossing couples,
that is,|XC | ≥ Qk − 2|Z|.
Proof. Let u1 be a black vertex inC1. In G′, u1 has at least
c(B2)+|X2| edge-disjoint paths inP ′(u1) toC2. SinceZ is
an edge-cut inG′, it follows thatc(B2)+ |X2| ≤ |Z|. Simi-
larly, we havec(B1)+|X1| ≤ |Z|. By Lemma 3.6, there are
only two components inG′ − Z. So,Qk = |XC |+ |X1|+
|X2|+ c(B1) + c(B2), and we have|XC | ≥ Qk − 2|Z|.

Now, we plan to use the paths inP ′(a) andP ′(b) for any
two black verticesa, b in the same component ofG′ −Z to
establish the connectivity of each component ofG′ − Z.
We sayv1 andv2 haveλ common pathsif there areλ edge-
disjoint paths starting fromv1, λ edge-disjoint paths start-
ing from v2, and an one-to-one mapping of the paths from
v1 to the paths fromv2 so that each pair of paths in the map-
ping ends in the same vertex. The following lemma gives a
lower bound on the number of edge-disjoint paths between
two vertices based on the number of their common paths,
which will be used in Lemma 3.9 to prove that eachCi is
7k-Si-connected.

Lemma 3.8 If v1 andv2 have2λ + 1 common paths inG,
then there existλ + 1 edge-disjoint paths fromv1 to v2 in
G.

Proof. Suppose not, by Menger’s theorem, there is an edge-
cutsetT of size at mostλ that disconnectsv1 andv2 in G.
Since |T | ≤ λ, at leastλ + 1 paths starting fromv1 re-
main in G − T ; and the same holds forv2. So,v1 andv2

have at least(λ + 1) + (λ + 1) − (2λ + 1) = 1 common
path inG− T . This implies thatv1 andv2 are connected in
G− T , a contradiction.

Lemma 3.9 Each connected componentCi of G′ − Z is
7k-Si-connected.

Proof. Leta, b be two black vertices inCi wherei ∈ {1, 2}.
In G′, P ′(a) has one path to each couple. Assume that,
among those|XC | paths inP ′(a) to crossing couples,εa

paths use edges inZ; and εb is defined similarly. Then,
in G′ − Z, a has|XC | − εa edge-disjoint paths such that
each starts froma and ends in a different crossing couple.
Similarly, in G′ − Z, b has|XC | − εb edge-disjoint paths
such that each starts fromb and ends in a different cross-
ing couple. Therefore, inG′ − Z, a and b have at least
(|XC |−εa)+(|XC |−εb)−|XC | = |XC |−εa−εb pairs of
paths that each pair of paths ends in the same crossing cou-
ple. Sincea, b are in the same component, each such pair

ends in the same endpoint of a crossing couple. So,a andb
have at least|XC | − εa − εb common paths inCi.

On the other hand, inG′, P ′(a) hasc(B2) + |X2| edge-
disjoint paths toC2. Also, as mentioned in the previous
paragraph,P ′(a) hasεa edge-disjoint paths to crossing cou-
ples that use edges inZ. Notice that thesec(B2)+ |X2|+εa

paths are edge-disjoint. SinceZ is an edge-cut,Z has
at least one edge in each such path. So,a has at least
c(B2) + |X2| + εa edge-disjoint paths such that each path
starts froma and ends in a different crossing edge inZ,
note that they are also edge-disjoint from the paths men-
tioned in the previous paragraph by definition. Similarly,
P ′(b) hasc(B2) + |X2| + εb edge-disjoint paths such that
each path starts fromb and ends in a different crossing edge
in Z. Therefore,a andb have at least(c(B2)+ |X2|+ εa)+
(c(B2)+ |X2|+εb)−|Z| = 2c(B2)+2|X2|+εa +εb−|Z|
pairs of paths such that each pair of paths ends in the same
crossing edge inZ. Sincea andb are in the same compo-
nent, each such pair ends in the same endpoint of a crossing
edge. So,a andb have at least2c(B2)+2|X2|+εa+εb−|Z|
more common paths inCi.

As a result, by the previous two paragraphs,a andb have
at least2c(B2) + 2|X2|+ |XC | − |Z| common paths inCi.
Recall thatc(B2)+ |X2|+ |XC | = Qk− c(B1)−|X1| and
c(B1) + |X1| ≤ |Z| (see the proof in Lemma 3.7), soa and
b have at leastQk + c(B2) + |X2| − 2|Z| ≥ Qk − 2|Z| >
(Q − 12)k (|Z| < 6k by Lemma 3.5) common paths in
Ci. Therefore, by Lemma 3.8, there are at least(Q/2− 6)k
edge-disjointa, b-paths inCi. SinceQ = 26, this implies
thatCi is 7k-Si-connected.

Lemma 3.10 G has k edge-disjoint doubleS-subgraphs
{H1,H2, . . . , Hk} that extendPk(v).

Proof. We pick arbitrarilymin{k, |Z|} edges inZ and call
them theconnecting edges. For each connecting edgee with
a white endpointw in Ci, we remove one edgee′ in Ci

which is incident withw (by Lemma 3.1, the other end-
point of e′ must be black), and we calle′ a reserve edge.
Let the resulting component beC ′i. Since we remove at
most k edges andCi is 7k-Si-connected by Lemma 3.9,
eachC ′i is 6k-Si-connected. By Theorem 2.1, there are
2k edge-disjointSi-subgraphs inC ′i. So there arek edge-
disjoint doubleSi-subgraphs{Hi

1, . . . ,H
i
k} in eachC ′i for

i ∈ {1, 2} except when|Si| = 1 for which we will con-
sider separately later.

Now we setHj = H1
j ∪ H2

j ∪ {vbi|vbi ∈ Ej} ∪
{vwi, wixi, wiyi|vwi ∈ Ej} for 1 ≤ j ≤ k. Notice that
Ej ⊆ E(Hj) andHj−v spansNEj (v) for 1 ≤ j ≤ k. Sup-
pose there is a crossing couple{xi, yi} such thatvwi ∈ Ej ,
thenHj is also connected and thus is aS-subgraph ofG
thatEj ⊆ E(Hj) andHj − v is a (S − v)-subgraph that
spansNEj (v). Let’s assume that{vw1, . . . , vw|XC |} be the
set of edges such that the corresponding couples are cross-



ing. By Lemma 3.7,|XC | ≥ Qk − 2|Z|. SincePk(v) is
a balanced edge-subpartition,|Ei| ≥ 2 for 1 ≤ i ≤ k.
So, there are at mostmin{k, |Z|} classes ofPk(v) with no
edges in{vw1, . . . , vwQk−2|Z|}. Hence there are at most
min{k, |Z|} of Hj ’s, say{H1, . . . ,Hmin{k,|Z|}}, are not
connected by the crossing couples. Now, by adding each
connecting edge and its reserve edge (if any) to a differ-
ent Hj that has not been connected by a crossing couple,
{H1, . . . , Hk} arek edge-disjointS-subgraphs ofG that ex-
tendPk(v).

The only property left to be checked is ifHi is a double
edge-disjointS-subgraph for1 ≤ i ≤ k. Suppose|S1| ≥ 2,
then every vertexu ∈ S1 has degree at least 2 in everyHi

sinceu has degree at least 2 in everyH1
i . The subtle case is

|S1| = 1, sayS1 = {x}, where eachH1
i is trivial. Note that

x is in every crossing couple in this case. Let{H1, . . . , Hl}
be theS-subgraphs thatx is a degree 1 vertex in them. Sup-
pose{{x, y1}, {x, y2}, . . . , {x, yc}} are crossing couples
such that{{vw1, xw1, y1w1}, . . . , {vwc, xwc, ycwc}} ⊆
E(Hj) and{vw1, vw2, . . . , vwc} ⊆ Ej and c > 2, then
we can delete{xw3, . . . , xwc} from Hj and do not affect
the properties ofHj that are required in the preceding para-
graph. We repeat this procedure until there are at leastl
edges, say{xw1, . . . , xwl}, that are not used in anyHj .
Then we can add each such edge to a differentS-subgraph
in {H1, . . . , Hl} so thatx is of degree at least 2 in each
of {H1, . . . , Hk}. We do the same “switching” procedure if
|S2| = 1. Since there are at leastQk−2|Z| > (Q−12)k =
14k crossing couples and there are only 2 components in
G′ − Z, the “switching” procedure is guaranteed to suc-
ceed. After all,{H1, . . . , Hk} are k edge-disjoint double
S-subgraphs ofG that extendPk(v).

Lemma 3.10 finishes the proof of Theorem 2.3 by show-
ing that the minimum counterexampleG does not exist.

4. Algorithmic Aspects and Generalization

The algorithm consists of two parts: The first step trans-
forms the input graphG with l white edges to at mostl + 1
graphs{G1, . . . , Gl+1} such that each has no white edge,
and every white vertex is of degree 3 and adjacent to exactly
three black vertices. And the second step extends a balanced
edge-subpartition of a small vertex inGi to k edge-disjoint
doubleSi-subgraphs for each1 ≤ i ≤ l + 1 and com-
bines their solutions (whereSi is the set of black vertices in
Gi). Theorem 2.1 can be solved by Edmond’s matroid par-
tition algorithm [7, 8]. The remaining steps can also be im-
plemented in polynomial time, this justifies Theorem 1.2.
Now, we use our algorithm and also the algorithm for the
FRACTIONAL STEINER TREE PACKING problem to give
a polytime approximation algorithm for theCAPACITATED

STEINER TREE PACKING problem.

Theorem 4.1 There is a polytime algorithm for theCA-
PACITATED STEINER TREE PACKING to construct an in-
tegral solution of value at leastb τ

26c, whereτ is the value
of an optimal integral solution.

Proof. Given an instance of theCAPACITATED STEINER

TREE PACKING problem, letτ∗, τ be the value of an op-
timal fractional, integral solution, respectively. We first
use the approximation algorithm for theFRACTIONAL

STEINER TREE PACKING problem [15] to obtain a frac-
tional solution of valueβ such that1.55β ≥ τ∗. One feature
of the above algorithm is that there are at most a polyno-
mial number of trees in the fractional solution withxT > 0,
say{x1, . . . , xp(n)}. Suppose

∑p(n)
i=1 bxic ≥ 1.55

26

∑p(n)
i=1 xi,

then
∑p(n)

i=1 bxic ≥ 1.55
26

∑p(n)
i=1 xi = 1.55

26 β ≥ 1
26τ∗ ≥ 1

26τ .
So,{bx1c, . . . , bxp(n)c} is an integral solution which is at
least τ

26 , and we are done.

Otherwise,
∑p(n)

i=1 xi > 26
1.55

∑p(n)
i=1 bxic. Then,( 26

1.55 −
1)

∑p(n)
i=1 bxic <

∑p(n)
i=1 (xi − bxic) ≤ p(n), which im-

plies
∑p(n)

i=1 bxic < 1.55
26−1.55p(n). So, β =

∑p(n)
i=1 xi =∑p(n)

i=1 bxic +
∑p(n)

i=1 (xi − bxic) < 1.55
26−1.55p(n) + p(n) =

26
26−1.55p(n). Therefore,τ∗ < 1.55×26

26−1.55p(n). Note that in
any solution, the capacity of each edge is used by at most
a value ofτ∗; if ce > τ∗, then the excess capacityce − τ∗

will never be used. Now, to find an integral solution, we re-
place every edgee of G by min{ce, bτ∗c} multiple edges
and call the resulting graphG′. Notice that the total num-
ber of edges inG′ is bounded by a polynomial ofn and the
value of an optimal solution inG′ is the same as inG. So,
we can apply the algorithm in Theorem 1.2 to obtainb τ

26c
edge-disjointS-trees ofG′ in polynomial time, which cor-
respond to an integral solution ofG which is at leastb τ

26c.
Therefore, in either case, the integral solution constructed is
at leastb τ

26c.

5. Concluding Remarks

Packing and covering problems are amongst the most
fundamental problems in combinatorial optimization. In the
past two decades, the LP approach has yielded significant
progress on designing approximation algorithms for cov-
ering problems, where some prominent examples are the
sparsest cut problem, the multicut problem and the mul-
tiway cut problem. On the other hand, the LP approach
on (integral) packing problem has not been as successful.
For example, the approximability of some very well-studied
problems including the (half-)integral maximum multicom-
modity flow problem and the edge-disjoint paths problem
remain wide open. In this paper, we use a combinatorial ap-
proach to give the first constant factor approximation for a
natural integral packing problem. This suggests that combi-
natorial approaches may be more natural to integral packing



problems. We believe further investigations of these tech-
niques will give new insight into other open problems.
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[8] A. Fránk, T. Kiŕaly, M. Kriesell. On decomposing a hyper-
graph intok connected sub-hypergraphs,Discrete Applied
Mathematics, 131, pp.373-383, 2003.

[9] N. Garg, R. Khandekar, K. Kunal, V. Pandit. Bandwidth
maximization in multicasting.11th Annual European Sym-
posium on Algorithms (ESA), 2003.

[10] M. Grötschel, A. Martin, R. Weismantel. Packing Steiner
trees: a cutting plane algorithm and computational results.
Mathematical Programming, 72, pp.125-145, 1996.

[11] M. Grötschel, A. Martin, R. Weismantel. Packing Steiner
trees: separation algorithms.SIAM J. Discrete Math., 9,
pp.233-257, 1996.

[12] M. Grötschel, A. Martin, R. Weismantel. The Steiner tree
packing problem in VLSI-design.Mathematical Program-
ming, 78, pp.265-281, 1997.

[13] M. Hosseini, N.D. Georganas. Design of a multi-sender 3D
videoconferencing application over an end system multi-
cast protocol.Proceedings of the eleventh ACM international
conference on Multimedia, pp.480-489, 2003.

[14] G.W. Jeong, K. Lee, S. Park, K. Park. A branch-and-price al-
gorithm for the Steiner tree packing problem.Computers and
Operations Research, 29, pp.221-241, 2002.

[15] K. Jain, M. Mahdian, M.R. Salavatipour. Packing Steiner
trees.Proceedings of the fourteenth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA), pp.266-274, 2003.

[16] D. Karger. Minimum cuts in near-linear time.Journal of the
ACM (JACM), 47, pp.46-76, 2000.

[17] B. Korte, H.J. Pr̈omel, A. Steger. Steiner trees in VLSI-
layout. Paths, Flows, and VLSI-layout, Springer-Verlag,
pp.185-214, 1990.

[18] M. Kriesell. Local spanning trees in graphs and hypergraph
decomposition with resepct to edge-connectivity.Technical
Report 257, University of Hannover, 1999.

[19] M. Kriesell. Edge-disjoint trees containing some given ver-
tices in a graph.J. Combin. Theory, Series B, 88, pp.53-63,
2003.

[20] M. Kriesell. Disjoint Steiner trees in graphs without large
bridges.manuscript, 2004.

[21] T. Leighton, S. Rao. Multicommodity max-flow min-cut the-
orems and their use in designing approximation algorithms.
Journal of the ACM (JACM), 46, pp.787-832, 1999.

[22] W. Mader. A reduction method for edge-connectivity in
graphs.Ann. Discrete Math., 3, pp.145-164, 1978.

[23] A. Martin, and R. Weismantel. Packing paths and Steiner
trees: routing of electronic circuits.CWI Quarterly, 6,
pp.185-204, 1993.

[24] K. Menger. Zur allgemeinen Kurventheorie.Fund. Math.,
10, pp.95-115, 1927.

[25] C.St.J.A. Nash-Williams. Edge disjoint spanning trees of fi-
nite graphs.J. London Math. Soc., 36, pp.445-450, 1961.

[26] Y. Ofek, B. Yener. Reliable concurrent multicast from bursty
sources.IEEE Journal of Selected Areas in Communications,
15, pp.434-444, 1997.

[27] L. Petingi, J. Rodriguez. Bounds on the maximum number
of edge-disjoint Steiner trees of a graph.Congressus Numer-
antium, 145, pp.43-52, 2000.

[28] W.R. Pulleyblank. Two Steiner tree packing problems.Pro-
ceedings of the twenty-seventh annual ACM Symposium on
Theory of computing (STOC), pp.383-387, 1995.

[29] G. Robins, A. Zelikovsky. Improved Steiner tree approxi-
mation in graphs.Proceedings of the tenth annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp.770-
779, 2000.

[30] P. Sanders, S. Egner, L. Tolhuizen. Polynomial time algo-
rithms for network information flow.Proceedings of the fif-
teenth annual ACM symposium on Parallel algorithms and
architectures, pp.286-294, 2003.

[31] A. Schrijver. Combinatorial Optimization - Polyhedra and
Efficiency.Springer-Verlag, Berlin, 2003.

[32] W.T. Tutte. On the problem of decomposing a graph into
n connected factors.J. London Math. Soc., 36, pp.221-230,
1961.

[33] E. Uchoa and M. Poggi de Aragão. Vertex-disjoint packing
of two Steiner trees: polyhedra and branch-and-cut.Mathe-
matical Programming, 90, pp.537-557, 2001.

[34] C.F. Wang, C.T. Liang, R.H. Jan. Heuristic algorithms for
packing of multiple-group multicasting.Computers and Op-
erations Research, 29, pp.905-924, 2002.


