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Abstract development of approximation algorithms. For example, a
seminal work of Leighton and Rao [21], which shows that
Given an undirected multigrap&’ and a subset of ver-  for any n-node multicommodity flow problem with uni-
ticesS C V(@G), the STEINER TREE PACKING problemis  form demands the max-flow for the problem is within an
to find a largest collection of edge-disjoint trees that each O(logn) factor of the upper bound implied by the min-cut,
connectsS. This problem and its generalizations have at- leads to approximation algorithms for many different prob-
tracted considerable attention from researchers in different lems.

areas because of their wide applicability. This problemwas  The LP duality theorem and matroid theory are the two
shown to be APX-hard (no polynomial time approximation general tools in proving min-max relations (see [31]). The
scheme unless P=NP). In fact, prior to this paper, not even proof of the LP duality theorem is short, and yet many gen-
an approximation algorithm with asymptotic rati¢n) was  eral methods have been built on it to obtain approximate
known despite several attempts. min-max relations and approximation algorithms for a wide
In this work, we close this huge gap by presenting the range of problems. On the other hand, the rich results of ma-
first polynomial time constant factor approximation algo-  troid theory have not been fully exploited along this line. In
rithm for the STEINER TREE PACKING problem. The main  thjs paper, we demonstrate a natural problem which seems
theorem is an approximate min-max relation between thetg be more suitably investigated within the (discrete) struc-
maximum number of edge-disjoint trees that each connectsyre offered by matroids. We believe further investigations
S (i.e. S-treeg and the minimum size of an edge-cut that of these techniques will give new insight into other prob-
disconnects some pair of vertices$n(i.e. S-cut). Specif- lems with a similar nature.
ically, we prove that if the minimur§-cut in G has 26k
edges, therdy has at least edge-disjointS-trees; this an-
swers Kriesell's conjecture affirmatively up to a constant
multiple. The techniques that we use are purely combinato-
rial, where matroid theory is the underlying ground work.

We consider a well-studied generalization of the edge-
disjoint a, b-paths problem, namely, th8TEINER TREE
PACKING problem. Given an undirected multigragh =
(V,E) and S C V(G). We say the vertices it are
black (also known agerminal vertices) while the vertices
in V(G) — S arewhite (also known asSteinervertices);
an edge iswhite if it connects two white vertices. A%-

1. Introduction Steiner-tredS-tree) is a tree ofG that contains every vertex
in S, an.S-Steiner-cu(S-cut) is a subset of edges whose re-

A fundamental result of Menger, proved in 1927, states moval disconnects some.pair of verticesS’lnTheSTEn\fER
that for any two vertices, b € V(G) the maximum num- TREE P_A_C}QNG problem is to find a largest collection of
ber of edge-disjoin, b-paths is equal to the minimum size €dge-disjointS-trees ofG.
of an a, b-edge-cut [24]. Since then, mamgin-max rela- This problem and its generalization (where different
tionsof this type have been being discovered (see [31]), andspecified subsets of vertices have to be connected by edge-
they are some of the most powerful and beautiful results in disjoint trees) have attracted considerable attention from
combinatorics (e.g. max-flow min-cut, max-matching min- researchers in different areas. TBeEINER TREE PACK-
odd-set-cover, etc.). Furthermore, some of the most funda-ING problem has applications in routing problems arising
mental polynomial time (exact) algorithms have been de-in VLSI circuit design [17, 23, 28, 10, 11, 12, 33, 14],
signed around such relations. where an effective way of sharing different signals amongst

Like min-max relations in the development of exact al- cells in a circuit can be achieved by the use of edge-
gorithms, approximate min-max relationare vital in the disjoint Steiner trees. It also has a variety of computer net-



work applications such as multicasting [26, 3, 4, 2, 34, 9],

video-conferencing [13] and network information flow [30],

[8]. In particular, it is proven in [18] that i7 has no white
edge and7 is (k + 1)k-S-connected, ther hask edge-

where simultaneous communications can be facilitated bydisjoint S-trees. This result is improved in [8] by replac-

using edge-disjoint Steiner trees.

WhenS = V(G), the STEINER TREE PACKING prob-
lem is known as thé&SPANNING TREE PACKING problem.
Tutte [32] and Nash-Williams [25] independently proved
that a graph has edge-disjoint spanning trees if and only
if Eqc(P) > E(|P| — 1) for every partition? of V(G)
into nonempty classes, whek; (P) denotes the number
of edges connecting distinct classeshfAs a corollary of
Tutte and Nash-Williams result, evek-edge-connected

graph hask edge-disjoint spanning trees. Karger [16] ex-

ing (k + 1)k with 3k; it is based on a generalization of the
Tutte-Nash-Williams theorem to hypergraphs using matroid
theory. Recently, Kriesell [20] proves thatdf is (I + 2)k-
S-connected wheréis the maximum size of bridge (see
[20] for the definition), therG hask edge-disjointS-trees;
this result is a common generalization of the Tutte-Nash-
Williams theorem (wherd = 0) and the case where white
vertices are independent (whég: 1).

For the general case, Petingi and Rodriguez [27] prove
that if G is (2(2)IV(9=51 . k)-S-connected, thert? has

ploited this approximate min-max relation to give the best &£ edge-disjointS-trees. Kriesell [19], by using the result
known algorithm (near linear time) to compute a minimum for the case that every white vertex has an even degree,

cut of a graph. It should be pointed out that t8eAN-
NING TREE PACKING problem is best investigated within

improves this by weakening the connectivity requirement
to 2|V(G) — S| + 2k. Jain, Mahdian and Salavatipour

the structures offered by matroids (see [31]), where Ed-[15], by using ashortcuttingprocedure, prove that 7 is
mond’s matroid partition theorem yields a short proof of (|S|/4+ o(|S]))k-S-connected, thet¥ hask edge-disjoint

Tutte and Nash-Williams theorem as a corollary.
The STEINER TREE PACKING problem, however, is

S-trees; this improves an exponential connectivity bound in
terms of|S| obtained earlier by Kriesell [19]. In both pa-

NP-complete (see [6]). Therefore, under the assumptionpers [19, 15], an optimal bound @%k} on the connectivity

that NP £ co-NP, a concise min-max relation like the

Tutte-Nash-Williams theorem does not exist. Nonetheless,

requirement is obtained for the cd$g = 3.
Jain, Mahdian, Salavatipour also study a natural LP re-

Kriesell [18, 19] conjectures that the approximate min-max laxation of the STEINER TREE PACKING problem. The
corollary of the Tutte-Nash-Williams theorem does gener- FRACTIONAL STEINER TREE PACKING problem is formu-

alize to theSTEINER TREE PACKING problem. We say a
graph isk-S-connectedf every S-cut has at least edges.

Kriesell's conjecture: [18, 19] If G is 2k-S-
connected, thetr hask edge-disjointS-trees.

The conjecture is best possible for evérgs shown by any
k-regulark-edge-connected graghandS = V(G).

1.1. Previous Work

Prior to this work, Kriesell's conjecture was wide open

lated in [15] by the following linear program. In the follow-
ing 7 denotes the collection of afi-trees in a graplé, and
c. is the givencapacityof the edgee.

maximize
subject to
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By using the Ellipsoid algorithm on the dual of the above
LP, Jain, Mahdian and Salavatipour [15] show that there is a
polytime a-approximation algorithm for thERACTIONAL
STEINER TREE PACKING problem if and only if there is

despite several attempts. It was not known to be true evena polytime a-approximation algorithm for théAiNIMUM

when2k is replaced by any(n) - k (not even wherk = 2
[15]). Similarly, not even a polynomial time(n) approxi-
mation algorithm was known for tHeTEINER TREE PACK-

ING problem. That is, in simple graphs, no known polyno-

STEINER TREE problem. TheMINIMUM STEINER TREE
problem is to find a minimum weigh$-tree for a given
weighted graph. Robins and Zelikovsky [29] give a 1.55 ap-
proximation algorithm for it, and Bern and Plassmann [1]

mial time approximation algorithm has an asymptotic per- show that it is APX-hard. Therefore, by using the results of
formance better than the naive algorithm of simply finding the MINIMUM STEINER TREE problem, theFRACTIONAL

one spanning tree.

STEINER TREE PACKING problem is APX-hard but can be

In the special case where every white vertex has anapproximated within a factor of 1.55 to the optimal solu-
even degree, Kriesell [19] proves that his conjecture is true.tion [15]. As a consequence, the (integr8f)EINER TREE

An interesting corollary of this result is: if7 is 2k-S-
connected, then there is a collectior2éf S-trees such that
every edge is used by at most 2 suittrees; in other words,
we have a 2-approximation algorithm if we alldvalf in-

PACKING problem is shown to be APX-hard [15].

Besides designing approximation algorithms, effort has
been put in to designing faster exact algorithms by integer
programming approaches [23, 28, 10, 11, 12, 33, 14] and

tegral solutions Also, the special case where there are no designing practical heuristic methods [26, 3, 4, 2, 34, 9, 13,
white edges is considered by Kriesell [18] and Frank et al. 30].



1.2. Our Contributions

The major contribution of this paper is the following ap-
proximate maxs-tree-packing minS-cut theorem, which
answers Kriesell's conjecture affirmatively up to a constant
multiple.

Theorem 1.1 If G is 26k-S-connected, thetw hask edge-
disjoint S-trees.

TREE PACKING problem. A hypergraptH is k-partition-
connectedf Ey(P) > k(|P| — 1) holds for every par-
tition P of V(H) into non-empty classes, whefey (P)
denotes the number of hyperedges intersecting at least two
classes. The main theorem in [8] states that a hypergraph
is k-partition-connected if and only iH can be decom-
posed intok sub-hypergraphs each of which is 1-partition-
connected. The proof is based on the observation that the
hyperforests (see [8] for the definition of a hyperforest) of

The proof of Theorem 1.1 is based on a new idea of graph@ hypergraph form the family of independent sets of a ma-

decomposition, the edge splitting lemma by Mader [22] and
aresult by Frank, Kaly and Kriesell [8] . The proof is con-
structive so ifG is 26k-S-connected, then a collection of
k edge-disjointS-trees can be constructed in polynomial
time. This implies the first polynomial time constant fac-
tor approximation algorithm for th8TEINER TREE PACK-

ING problem. In the followingAs(G) denotes the size of a
minimum S-cut in G.

Theorem 1.2 There is a polynomial time algorithm to con-

struct a collection of at leagt*<(“) | edge-disjointS-trees.

The CAPACITATED STEINER TREE PACKING problem
is a generalization of th&TEINER TREE PACKING prob-
lem where each edge has an integer capacity. which
bounds the number of trees that can ds@ghe STEINER
TREE PACKING problem is the special case whete= 1
for all e € E(G)). Notice that LP(1) is a relaxation of the
CAPACITATED STEINER TREE PACKING problem and the
optimal fractional solution to LP(1) aff is bounded above
by the minimum capacity of &-cut. By replacing each edge
e of G by ¢, multiple edges and applying Theorem 1.1 on
the resulting graph, sa§’, we obtain the first constant up-
per bound on the integrality gap of LP(1).

Corollary 1.3 The integrality gap of LP(1) is bounded
above by 51.

Applying Theorem 1.2 onG’, however, only gives a
pseudo-polynomial time approximation algorithm for the
CAPACITATED STEINER TREE PACKING problem toG.
Nonetheless, by combining the approximation algorithm
for the FRACTIONAL STEINER TREE PACKING problem in
[15] and the algorithm of Theorem 1.2, we are able to ob-
tain a polytime algorithm for th€APACITATED STEINER
TREE PACKING problem which constructs an integral solu-
tion of value at least 5 | (see Section 6), where is the
value of an optimal integral solution.

2. Overview and the Setup

To understand our approach, it is illuminating to start
from the ground work. In [8], Frank, Kaly and Kriesell
consider a hypergraph generalization of tBBANNING

troid, and thus Edmond’s matroid partition theorem can be
applied.

Now, suppose an instance of tBEEINER TREE PACK-
ING problem wherg has no white edge is given. We can
assume every white vertex is of degree 3@dnby using
Mader’s splitting lemma (in Section 3.2). Now, we con-
struct a hypergrapli/ with vertex setS. For every white
vertexv, we construct a corresponding hyperedge of size 3
in H consisting of the neighbours of Also, uwv € E(H)
if u,v € S anduv € E(G). By applying the above min-
max theorem on the hypergraph problem, the following re-
sult on theSTEINER TREE PACKING problem is obtained
as a corollary.

Theorem 2.1 [8] If G has no white edge and i8k-S-
connected, thet¥ hask edge-disjointS-trees.

We do not explicitly use matroid theory in the remain-
der of this paper. However, Theorem 2.1 plays an important
role in our proof, and it is proved by matroid theory as men-
tioned in the above paragraphs. Therefore, we say matroid
theory is the underlying groundwork of our proof.

Given an instance of thBTEINER TREE PACKING prob-
lem, our method is to reduce the general case to the above
seemingly restrictive case where there is no white edge. The
key observation is that if Theorem 1.1 holds, then it holds
with a rich combinatorial property, which we cétie exten-
sion property The extension property (formally defined in
Section 2.1) roughly says that for any edge-partition of the
edges incident to a “small” degree vertex, the edge-partition
can be extended to edge-disjoffiitrees such that each class
in the edge-partition is contained in ofetree.

The proof can be divided into two steps. Given a graph
G with [ white edges, we search for a minimwfrcut in G
with a white edge, and decompoé&ethrough the cut, re-
sulting in two graphs=; and G5 with a total of at most
I — 1 white edges. The cut decomposition lemma (in Sec-
tion 3.1) shows that if Theorem 1.1 holds in bath andG,
with the extension property, then we can always “piece” to-
gether the solutions i, andG, so that Theorem 1.1 also
holds in G with the extension property. Therefore, by ap-
plying the cut decomposition step recursively, we reduce
an instance with white edges to at modt+ 1 instances
without a white edge. By the cut decomposition lemma, if



all thosel + 1 graphs (without a white edge) satisfy Theo-
rem 1.1 with the extension property, théhsatisfies Theo-
rem 1.1 by “piecing” their solutions together. This key step G
removes the difficulty of having white edges, and gives new
insight into the core of the problem. It should be mentioned
that theSTEINER TREE PACKING problem remains APX-
hard when there is no white edge (see [6]).

The second step (in Section 3.3), of course, is to prove
that Theorem 1.1 does indeed hold with the extension prop-
erty when there are no white edges. By using Mader’s split-
ting lemma, we can assume that every white vertex is of
degree 3 (in Section 3.2), and this gives us a set of “good”
paths. With a sufficiently high connectivity assumpti@6X
in Theorem 1.1), by using Theorem 2.1, we show that the
extension property holds for any graph without a white edge
and with every white vertex of degree 3. This step is more thatG does not exist and thus Theorem 2.3 holds. The proof
technical, but the intuition is simple - when the graph is of Theorem 2.3 is divided into three parts. First, in Section
highly S-connected, we have much freedom to construct 3.1, we prove thag has no white edge by using the cut de-
the edge-disjointS-trees. And it turns out that any edge- composition lemma. Then, in Section 3.2, we prove that ev-
partition of the edges incident to a “small” degree vertex ery white vertex of7 is of degree 3 by using Mader’s split-
can be extended to edge-disjofittrees. This completes the ting lemma. Finally, in Section 3.3, with the use of Theo-
high level description of our approach. rem 2.1, we prove that the extension property does hold in

G and thugj does not exist.

G, G,

Figure 1. The construction of G and G» from G.

2.1. The Setup

3. Proof of the Extension Theorem
Let G be \-S-connected, amall vertexis a black ver-

tex of degree\ in G. Let E(u) be the set of edges thatare 3.1. Cut Decomposition

incident tou, Py (u) = {E1,..., Ex} is abalanced edge-

subpartitionof w if £y UFE; U ...UE, C E(u), |E;| > 2 The following lemma is the key step mentioned previ-
forl <i < k,andE;NE; = (fori # j. We denote the set  ously, which reduces Theorem 2.3 from the general case to
of neighbours ofs in E; by Ng, (u). A subgraphH spansa the case where there is no white edge. The cut decomposi-
subset of vertice® if U C V(H). H is aS-subgraphof G tion operation will be described inside the proof.

if it is a connected subgraph ¢f that spanss, H is adou-
ble S-subgraphof G if it is a S-subgraph oG and every
vertex inS is of degree at least 2 ifl.

Lemma 3.1 (THE CuT DECOMPOSITIONLEMMA)
G has no white edge.

Proof. Let ¢ be a white edge. IF — ¢ is still Qk-S-
connected, then by the choice@fwe get our desired edge-
disjoint doubleS-subgraphs iF — e and thus ing.

Definition 2.2 (THE EXTENSION PROPERTY)
GivenG, S C V(G), and a balanced edge-subpartition
Pr(v) = {E1,...,E;} of asmall vertew. {Hy, ..., Hy}

are k edge-disjointS-subgraphs thaextend Py (v) if for Cut decomposition: So, we consider the case that there
1<i<k: isaS-cutT = {eq,...,eqr} containinge. By the mini-
(1) E; C E(H;); mality of 7', there are exactly two connected components
(2) H; —visa(S — v)-subgraph that span¥g, (v). C1 andCs in G — T. Now we construct a new multigraph

G, by contracting’s to a single black vertey; , keeping all
edges fromy; to C; (even if this produces multiple edges);
similarly, we construct another new multigraph by con-
tractingC, to a single black vertex,. SoV (G;) = C; 4y,
V(Gg) =Cy+1vy, T C E(Gl) andT C E(Gg) (see Flg-
ure 1 for an illustration). LetS; be the set of black ver-
It is clear that Theorem 2.3 implies Theorem 1.1 as we tices inC; plusv; andSs be the set of black vertices itk
just need the first statement. L&t henceforth, be a coun-  pluswvy. Now we check the properties 6f; andGs. First,
terexample to Theorem 2.3 with the minimum number of sincee is in T, by contracting a component of size at least
edges, and lef) = 26. Without loss of generality, we also two (each component has at least one white vertex and one
assume thaf is connected. Our plan, henceforth, is to show black vertex since is white) to a single vertexGz; andG,

Theorem 2.3 (THE EXTENSION THEOREM)

If G is 26k-S-connected, thenz has k edge-disjoint
double S-subgraphs. Furthermore, for any balanced
edge-subpartitiorP, (v) of any small vertexw, G has k
edge-disjoint doubl&-subgraphs that exter@ (v).



have fewer edges than Second, ifG is Qk-S-connected,
then G, is Qk-Si-connected andrs is Qk-S2-connected

(since we keep multiple edges). Therefore, by the choice of

G, Theorem 2.3 holds in botf¥; andG». Note thatv; and
vy are small vertices sindd’| = Qk, andG; andG» have
a total of at most — 1 white edges iG hasl white edges.

Let v € C; be a small vertex ol and Py(v) =
{F1,...,Ex} be a balanced edge-subpartition of
Our goal is to show thag has k edge-disjoint dou-
ble S-subgraphs that exten®,(v) (the case wherer
has no small vertex is similar and easier, we omit the de-
tails for brevity). And our plan is to combireedge-disjoint
doubleS;-subgraphs irz; that extendP(v) andk edge-
disjoint double Ss-subgraphs inG, that extendR (vs)
(R (v2) to be determined) to obtaih edge-disjoint dou-
ble S-subgraphs inG that extend?P(v). Since Theo-
rem 2.3 holds inG;, we can findk edge-disjoint dou-
ble S;-subgraphg H{, ..., Hl} of Gy that extendPy(v).
Let F; be the set of edges i/} that are incident to
v1. Sincew; is a black vertex inG; and H} is a dou-
ble S;-subgraph, we havgF;| > 2. Also, F; N F; =
fori # j since H} and H are edge-disjoint foi # j.
Therefore,Ry(v1) = {Fi,...,F} is a balanced edge-
subpartition ofv; in G;. Note that since; andvs, are inci-
dent to the same set of edgBsR, (v2) = {F1, ..., Fi}is
also a balanced edge-subpartitionugfin G». Since The-
orem 2.3 holds inG,, there arek edge-disjoint dou-
ble So-subgraph§ HZ, ..., H} of G, that extendR, (ve).
We define a subgrapl/; of G, by setting E(H;) to be
the union of E(H}) and E(H?) with the exception that
an edge ofl" in G; (or in G3) becomes inH; the corre-
sponding edge irG. We shall show thaf{Hy,..., Hy}
are k edge-disjoint doubleS-subgraphs ofG that ex-
tendPy(v).

First, notice that7! and H? use exactly the same edges
in T, H} andH; are edge-disjoint fof # j, and H? and
Hf are edge-disjoint foi # j, so H, and H; are edge-
disjoint fori £ j. Now we shall show thatl; — v spans
Ng, (v). Letu € Ng,(v). If u € C4, thenu is spanned by
H};if u € Cy, thenu € N, (v2) by our construction, sa
is spanned byi?. Therefore H; — v spansVg, (v). Also, it
follows from our construction thatl; — v spansS — v. So,
to show thatH; — v is a(S — v)-subgraph ofj that spans
Ng, (v), it remains to show thall; — v is a connected sub-
graph ofG. For anya, b € V(H;) — v, we consider the fol-
lowing three cases:

1. a,beCh.
If @ andb are connected ik} — v without usingvy,
then they are connected ih; — v. So, we consider the
case that they are connectedAf} — v usingv; (see
Figure 2 for an illustration). Let; andes be the edges
incident tov; in a path that connects andb. Since

Figure 2. If a,b € C1 is connected in  H} by a path
through wv; in G1, they are connected in  H; through Cs.

e1,e2 € E(H}!)NT, by our constructiorgy, ez € Fj.
Let u; andus be the endpoints of; andes in Cy, so
u1,uz € N, (v2). Recall that? — vs is a(Sa — va)-
subgraph ofG2 — v, that spansVg, (v2), so there is
a path inH? — v, betweenu; andu,. By combining
the edges in the, v;-path inH! — v, the edges in the
u1, ug-path inH} — v9 and the edges in thg , b-path
in H}! —v, we geta path from tobin H; —v. As are-
sult,a andb are connected i; — v.

2.a€Cq,beCs.
SinceH} —vis a(S; —v)-subgraph of7; —v, there is
aa,vi-path inH}! —v. Lete be the edge incident to
in the a, v;-path. Sincee € E(H}) N T, by our con-
struction,e € F;. Let u be the endpoint ot in Cs.
SinceH? — v is a(Sy — ve)-subgraph o3 — vy that
spansiVr, (v2), there is au, b-path inH? — vy. There-
fore, there is a, b-path in H; — v by combining the
edges in the, v;-path and the edges in thgb-path.

3. a,beCs.
Recall thatH? — vy is a(Sy — v2)-subgraph of7y —
v, SOa andb are connected if/? — v, and thus in
Hi — V.

Therefore,H; — v is a (S — v)-subgraph that spans
Ng, (v) (the second property of Definition 2.2 holds). By
our constructionf; C E(H;) (the first property of Defini-
tion 2.2 holds) which also implies thaf; is a S-subgraph
of G. Furthermore, since; is of degree at least 2 iH} for
anyu; € S; andus is of degree at least 2 if/? for any
us € S, u is of degree at least 2 ifif; for anyu € S.
Therefore,H; is a doubleS-subgraph ofG. As a result,
{H,,...,Hy} are k edge-disjoint double5-subgraphs of
G that extendP(v). Sincev and Py (v) are picked arbi-
trarily, this shows that Theorem 2.3 holdsgna contradic-
tion. Thereforeg has no white edge and this completes the
proof.



3.2. Edge Splitting

A basic tool in the proof of Theorem 2.3 is Mader’s split-
ting lemma, which is proven to be useful in many edge-
connectivity problems. Le¥ be a graphg; = zy, e2 = 22
be two edgesy # z. The operation of obtaining (e, e2)
from G by deletinge; ande, and then adding exactly one
new edge betweepandz (multiple edges betweepandz
may be produced) is said to kelitting atx. This splitting
at z is calledsuitable if the number of edge-disjoint, b-
paths inG(ey, eq) is at least the number of edge-disjoint
a, b-paths inG for every paira,b € V(G) — z. Note that
if we perform a suitable splitting at a white vertex, it does
not decrease th8-connectivity. The splitting lemma pro-
vides a sufficient condition for the existence of a suitable
splitting at a certain vertex:

Lemma 3.2 (MADER'S SPLITTING LEMMA) [22] Let x

be a vertex of a grapli-. Suppose that is not a cut ver-

tex and thatz is incident with at least 4 edges and adja-
cent to at least 2 vertices. Then there exists a suitable split-
ting of G at x.

Lemma 3.3 There is no white cut vertex .

Proof. Supposew is a white cut vertex ing. Let
{C1,...,C;} be the connected componentgof w where

[ > 2. ConsiderG; = G[C; U {w}] for 1 < i < I. Sup-
pose all the black vertices are in one component,Gay
Since G is Qk-S-connectedG; is also Qk-S-connected
andG has fewer edges thar. So, by the choice af, The-
orem 2.3 holds inG;. But this implies that Theorem 2.3
also holds ing, a contradiction.

So we assume that at least two componenés-efv have
black vertices. LefS; be the black vertices it/;. For any
a € S;, sinceg is Qk-S-connected, it ha@k edge-disjoint
paths to a vertek € S; for somej # i. Sincew is a cut ver-
tex, those&)k edge-disjoint, b-paths must all pass through
w. As a result, there ar@k edge-disjointa, w-paths inG
for anya € S;. This implies that eacly; is Qk-(S; + w)-
connected. By the choice ¢f, eachG; hask edge-disjoint
double(.S; +w)-subgraphs. By combining tho€ .S; +w)-
subgraphs of eaci';, we obtaink edge-disjoint double-
subgraphs ofj. Similarly, we can construdt edge-disjoint
double S-subgraphs of; that extend any balanced edge-
subpartitionP;, (v) of any small vertex (if any); a contra-
diction. Therefore, by the choice ¢f, G has no white cut
vertex. i

Lemma 3.4 Every white vertex i is incident with exactly
three edges and adjacent to exactly three vertices.

Proof. Suppose a white vertex is adjacent to only one
vertexu. Sinceg is Qk-S-connectedg — w is still Qk-S-
connected. By the choice ¢f Theorem 2.3 holds i — w.
Sinceu is not a small vertex, Theorem 2.3 also holdgjin

a contradiction. So we can assume thais adjacent to at
least two vertices.

Suppose a white vertex is incident with only two
edges, by the previous argument, is adjacent to two
vertices{y, z}. Sinceg is Qk-S-connected andv ¢ S,

G — w + yz is Qk-S-connected and it has one fewer edge
thang. By the choice ofj, Theorem 2.3 holds iG —w+yz.
For anyk edge-disjoint doubl&-subgraphgd Hy, ..., Hy }

of G — w + yz, if yz is in H;, we can construct! from
H; by replacingyz with {wy,wz} so thatH is a double
S-subgraph ofG. Note the remaining doubl§-subgraphs
in G — w + yz are also doubl&-subgraphs irgj. SoG has

k edge-disjoint doubl&-subgraphs. Similarly, if the exten-
sion property holds i — w + yz, then the extension prop-
erty holds inG. But this implies that Theorem 2.3 holds in
G, a contradiction. So we can further assume thé inci-
dent with more than two edges.

Suppose a white vertex is incident with at least four
edges. By the previous argument,is adjacent to at least
two vertices. And by Lemma 3.3y is not a cut vertex.
Therefore, by Lemma 3.2, there exists a suitable split-
ting of G at w, say the resulting graph i&*. Sinceg is
Qk-S-connected and the splitting is suitable is Qk-S-
connected and has one fewer edge tiaBy the choice of
G, Theorem 2.3 holds i6"*. By a similar argument as in the
previous paragraph, it follows that Theorem 2.3 also holds
in G; a contradiction. Therefore, the only possibility left is
whenw is incident with exactly three edges.

Supposew is incident with three edges but adjacent to
only two vertices{y, z} so that there are two edges, e,
betweenw andy. Sinceg is Qk-S-connectedw ¢ S and
w is incident with exactly three edges and adjacent only to
{y, z}, it follows thatG — e; is Qk-S-connected ang is
not a small vertex. By the choice ¢f Theorem 2.3 holds
in G — e;. Sincey is not a small vertex, Theorem 2.3 also
holds inG, a contradiction. As a result, every white vertex
w of G must be incident with exactly 3 edges and adjacent
to exactly 3 vertices; this completes the proof. i

3.3. The Extension Property

Now we are ready to prove Theorem 2.3. The case
when | S| 2 follows from Menger’s theorem. Hence-
forth, we assume thatS| > 3; Let v be a small ver-
tex, andPy(v) = {Ei,...,E;} be a balanced edge-
subpartition ofv. Our goal, henceforth, is to show th@t
hask edge-disjoint doubl&-subgraphs that exterfd, (v).

Let W = {ws,...,w,} be the set of white neighbours

of v and B = {b1,...,b,} be the set of black neigh-
bours ofv. By Lemma 3.4, eachy; is incident with exactly
three edges and adjacent to exactly three vertices, so we let
Ng(wi) = {v,z;,y;} and call{z;, y;} acouple Sincew;

is a white vertex, by Lemma 3.%; andy; are black ver-



Figure 3. The paths in dotted lines are pathsin P’ (u).

tices. For each black neighbolyrof v, theweightof b;, de-
noted byc(b;), is the number of multiple edges between
andb;.

Consider a black vertexx # wv. Since§ is Qk-S-
connected, by Menger's theorem, there a&p& edge-
disjoint paths, denoted b¥(v) = {Pi(u),..., Por(u)},
from u to v. Note that sincev is a small vertex, each
path in P(u) uses exactly one edge iR(v). We as-
sumewvw; is in the pathP;(u) for 1 < ¢ < a. Since
w; is of degree 3 by Lemma 3.4P;(u) contains ex-
actly one ofw;z; or w;y;, andP;(u) does not contaimw;z;
or w;y; fij 7é 1.

Let G’ beG — v — W. ConsiderP;(u) induced inG’,
denoted byP!(u) (see Figure 3 for an illustration). Let
P'(u) = {P](u),..., P, (u)}, notice thatP’ (u) contains
edge-disjoint paths i&". Forl < i < «, P/(u) is a path
from u to eitherz; or y; in G’. Also, for each black neigh-
bourb; of v, there arec(b;) edge-disjoint paths itP’ ()
fromu tob; in G'.

Let Z be a minimum(S —v)-cut of G’ and{C4, ..., C;}
be the connected components(@f— Z. We let.S; and B;

(S — v)-connected, then we can constricedge-disjoint
doubleS-subgraphs of that extendP(v) by using The-
orem 2.1. Hence, by the choice 6f we can assumé&’

has a(S — v)-cut Z so that|Z] < 6k. Then, we show in
Lemma 3.6 that?’ — Z has exactly 2 connected compo-
nentsC; andCs, and in Lemma 3.7 that there are at least
Qk — 2|Z| crossing couples. Consider any two black ver-
ticesuy, us € C;, by using the paths i’ (u;) and P’ (us)

and the above facts (i.e. Lemma 3.5 and Lemma 3.7), we
show in Lemma 3.9 that there are at leastedge-disjoint
paths fromu; to uy in C;. We further reserve at mogt
edges in each component to be used later. As a result, each
component’; is 6k-S;-connected and thus there @redge-
disjoint doubleS;-subgraphs ir’; by Theorem 2.1. Finally,

by exploiting the property thaP,(v) is a balanced edge-
subpartition, we show in Lemma 3.10 that we can use the
crossing edges i¥ and the reserved edges to connect the
S;-subgraphs to fornk edge-disjoint doubl&-subgraphs

of G that extendP,(v), a contradiction. This concludes the
outline.

Lemma 3.5 G’ is at most(6k — 1)-(S — v)-connected.

Proof. If G’ is 6k-(S — v)-connected, then there are
2k edge-disjoint (S — wv)-subgraphs {H{,...,H}
in G’ by Theorem 2.1. Notice that since the union
of two edge-disjoint (S — v)-subgraphs is a dou-
ble (S — wv)-subgraph (since|S| > 3), by setting
H! = Hy,_, U Hy, {H{,...,H,} are k edge-
disjoint double (S — v) subgraphs ofG’. Now, let
H, = HZI U {Ubj|1]bj € Ei} ] {ij,wjxj|ij € Ei}. So,
E; C H;,andH; — v is a(S — v)-subgraph that spans
Ng, (v). Also, sinceH] is a double(S — v)-subgraph of
G’ and |E;| > 2, H; is a doubleS-subgraph ofG. By
Definition 2.2, {Hy,...,H} are k edge-disjoint dou-
ble S-subgraphs ofj that extendP(v), a contradiction.

Lemma 3.6 G’ — Z has 2 connected components.

Proof. We need to show thaf’ has at most 2 connected

be the set of black vertices and the set of black neigthUrSComponents' then the statement that Z has 2 connected

of v in C;, respectively. Also¢(B;) denotes the sum of the
weights of vertices inB; and X; denotes the collection of
couples with both vertices iv;. By the minimality of Z,
each edge: in Z connects two vertices in different com-
ponents, and we call it arossing edgeSimilarly, a cou-
ple{z;,y;} is acrossing coupléf x; andy; are in different

components follows from the minimality &f. Notice that
from our construction of?’ from G, the set of neighbours
of every white vertex that remained (# is the same as in

G. Sinceg is connected, no componentd@ contains only
white vertices. Therefore, it suffices to show that there are
at most two components id’ that contain black vertices.

components, and we denote the collection of crossing cou-  consider any two black vertices;, us # v. In G, if

ples byXc¢.

v has a black neighbour, then in G’ there is a path in

Now we give an outline of our proof of Theorem 2.3 pr(;) from u; to b and a path inP’ (us) from us to b. So
gree 3 and adjacent to exactly 3 vertices. We present thesg supposes has only white neighbours i. Consider

lemmata following the outline.
Outline: First, we show in Lemma 3.5 that @ is 6k-

G" = G'+{w;x;,w;y; } for an arbitraryi, then the union of
the edges irP!(u,), the edges irP/ (uz) and{w;z;, w;y; }



contains au;, ug-path inG”. Therefore, any two black ver-  ends in the same endpoint of a crossing couplea@mdb
tices are in the same componentifi and thusG"” is con- have at leastX¢| — €, — €, common paths ;.

nected. Notice thab; is a degree 2 vertex i&”, therefore On the other hand, iy, P’(a) hasc(Bs) + | X2| edge-

G’ = G"” —w; has at most 2 connected components. As pre- disjoint paths toC,. Also, as mentioned in the previous
viously mentioned, by the minimality of, G’ — Z has 2 paragraphP’(a) hase, edge-disjoint paths to crossing cou-
connected components. ] ples that use edges il Notice that these(Bs) +|X3|+ €,
paths are edge-disjoint. Sincé is an edge-cutZ has

at least one edge in each such path. &das at least
¢(Bg) + | X2| + €, edge-disjoint paths such that each path
Proof. Letu, be a black vertex i’;. InG’, u; has atleast  starts froma and ends in a different crossing edgedn
c(B2)+|X2| edge-disjoint paths if’ (u1 ) to Cz. SinceZ is note that they are also edge-disjoint from the paths men-

Lemma 3.7 There are at leask — 2| Z| crossing couples,
thatis,| X¢| > Qk — 2|Z].

an edge-cut i, it follows thatc(Bz) + | X2| < |Z]. Simi- tioned in the previous paragraph by definition. Similarly,
larly, we haver(B;)+|X1| < |Z|. By Lemma 3.6, thereare  P/(b) hasc(B;) + | X»| + €, edge-disjoint paths such that
only two components i’ — Z. S0,Qk = | X¢| + | X1| + each path starts fromand ends in a different crossing edge

| Xo| + ¢(By) + ¢(Bz), and we havéX¢| > Qk —2|Z|. 11 in Z. Thereforea andb have at leastc(Bs) + | Xa| +€,) +
(c(B2)+ ‘X2| +e,)—|Z] = 2C(BQ)+2|X2‘ +eqt+e€p— ‘Z‘

pairs of paths such that each pair of paths ends in the same
crossing edge it¥. Sincea andb are in the same compo-
nent, each such pair ends in the same endpoint of a crossing
edge. Sog andb have atleas2c(Bs)+2| Xa|+€,+€,— | Z|

more common paths i@;.

As a result, by the previous two paragraphandb have
atleastc(Bz) + 2| X2| + | X¢| — |Z| common paths ;.
Recall that(BQ) + |X2‘ + ‘Xc‘ =Qk— C(B1) — ‘X1| and
c(B1) + | X1] < |Z| (see the proof in Lemma 3.7), aand
'b have at leask + c¢(Bz) + [X2| — 2|Z] > Qk — 2|Z| >
(Q — 12)k (|Z] < 6k by Lemma 3.5) common paths in
C;. Therefore, by Lemma 3.8, there are at l€@$t2 — 6)k
Lemma 3.8 If v; andwv, have2\ + 1 common paths id, edge-disjointa, b-paths inC;. Since@ = 26, this implies
then there exish + 1 edge-disjoint paths from; to v- in thatC; is 7k-S;-connected.

G.
Lemma 3.10 G has k edge-disjoint doubleS-subgraphs
Proof. Suppose not, by Menger's theorem, there isanedge-{ i, g, ..., H,} that extendP(v).

cutsetT” of size at most\ that disconnects; andv, in G.

Since|T| < A, at least\ + 1 paths starting from; re- Proof. We pick arbitrarilymin{k, | Z|} edges inZ and call
main in G — T; and the same holds far. So,v; andv, them theconnecting edgeg-or each connecting edgavith
have at least\ + 1) + (A +1) — (2A + 1) = 1 common a white endpointw in C;, we remove one edge in C;
path inG — T. This implies that; andv, are connected in ~ which is incident withw (by Lemma 3.1, the other end-
G — T, a contradiction. | point of ¢’ must be black), and we call areserve edge
Let the resulting component b&;. Since we remove at
most k£ edges and’; is Tk-S;-connected by Lemma 3.9,
eachC] is 6k-S;-connected. By Theorem 2.1, there are
Proof. Leta, b be two black vertices i¥; wherei € {1,2}. 2k edge-disjointS;-subgraphs irC;. So there aré edge-
In G’, P'(a) has one path to each couple. Assume that, disjoint doubleS;-subgraphg H1, ..., H;} in eachC! for
among thoseéX | paths inP’(a) to crossing couples;, i € {1,2} except whenS;| = 1 for which we will con-
paths use edges i#; and ¢, is defined similarly. Then, sider separately later.

in G’ — Z, a has|X¢| — €, edge-disjoint paths such that Now we setH; = Hj U H} U {vb;jvb; € E;} U
each starts frona and ends in a different crossing couple. {vw;, w;x;, w;y;|lvw; € E;} for 1 < j < k. Notice that
Similarly, in G — Z, b has|X¢| — €, edge-disjoint paths ~ E; C E(H;) andH; —v spansVg, (v) for 1 < j < k. Sup-
such that each starts frotnand ends in a different cross- pose there is a crossing cougle;, y; } such thavw, € E;,
ing couple. Therefore, i’ — Z, a and b have at least then H; is also connected and thus isSasubgraph ofG
(I Xc| =€)+ (| Xel—e) — | Xe| = | Xc| — €. — € pairs of thatE; C E(H;) andH; — v is a(S — v)-subgraph that
paths that each pair of paths ends in the same crossing couspansVg;, (v). Let's assume thgvws, . . ., vw| x|} be the
ple. Sincea, b are in the same component, each such pair set of edges such that the corresponding couples are cross-

Now, we plan to use the paths i (a) and P’ (b) for any
two black vertices:, b in the same component 6f — Z to
establish the connectivity of each component@f— Z.
We sayv; andvs haveA common pathd there are) edge-
disjoint paths starting from;, A edge-disjoint paths start-
ing from v, and an one-to-one mapping of the paths from
vy to the paths fromy, so that each pair of paths in the map-
ping ends in the same vertex. The following lemma gives a
lower bound on the number of edge-disjoint paths between
two vertices based on the number of their common paths
which will be used in Lemma 3.9 to prove that eachis
7k-S;-connected.

Lemma 3.9 Each connected componefit of G’ — Z is
7k-S;-connected.



ing. By Lemma 3.7|X¢| > Qk — 2|Z|. SincePy(v) is Theorem 4.1 There is a polytime algorithm for th€a-

a balanced edge-subpartitioy;| > 2 for 1 < i < k. PACITATED STEINER TREE PACKING to construct an in-
So, there are at mostin{k, | Z|} classes ofP;(v) with no tegral solution of value at leasts; |, wherer is the value
edges in{vw, ..., vwgr_2yz }. Hence there are at most of an optimal integral solution.

min{k, |Z|} of Hy's, say{H\,..., Hyin{k,|z|}}, are not ) )

connected by the crossing couples. Now, by adding eachProof. Given an instance of th€APACITATED STEINER
connecting edge and its reserve edge (if any) to a differ- | REE PACKING problem, letr*, 7 be the value of an op-
ent H; that has not been connected by a crossing couple,“mal fractional, integral solution, respectively. We first

{H,,..., H,} arek edge-disjointS-subgraphs of that ex- use the approximation algorithm for thERACTIONAL
tend Py (v). STEINER TREE PACKING problem [15] to obtain a frac-
The only property left to be checked isif; is a double tional solution of valued such thafl.553 > 7*. One feature
edge-disjointS-subgraph fol < i < k. Supposés; | > 2 of the above algorithm is that there are at most a polyno-
then every vertex. € S; has d_egrge at least 2 in ev_e‘by mial number of trees in the fract(io)nal solution wiztm( )> 0,
p(n 1.55 p(n
sinceu has degree at least 2 in eveif} . The subtle case is say{xlr, . () }- SUPPOS@id Lzi] = 56 220207 @i
S1| = 1, sayS; = {x}, where eactl! is trivial. Note that ~ then>_?(") ;| > 155 ng) 7 = 1283 2_%7* > %-T.
x is in every crossing couple in this case. K&f;, ..., H;} So,{|z1],..., [zpm)]} is an integral solution which is at
be theS-subgraphs that is a degree 1 vertex in them. Sup- leasts;, and we are done.
pOSﬁ{ﬁx,?l{},{m,yg},...,{}x,yc}}{ are crossing ;?uples Otherwise,zfgi) x> 25 fiq) ;). Then, (;25 —
such that VW1, TW1, Y1W1ig, .-« VW, TWe, YcWe - 1 P(”) . l)(”) . _ . < whi h im-
E(H;) and {vwy,vws, ...,vw.} € E; ande > 2, then ) lzlp(Lf)lJ = 21211.(53531 Lzs)) < pln) p(n)c
we can deletqzws, ..., zw.} from H; and do not affect ~ Pli€S iz @] < gp=resp(n). 0,8 = YTV @i =

the properties ofi; that are required in the preceding para- SO )+ S0P (2 — ) < sz p(n) + p(n) =

graph. We repeat this procedure until there are at Ieast 525 p(n). Therefore,r* < L25X25,(p) Note that in
edges, saf{zws,...,zw; }, that are not used in anf;. any solution, the capacity of each edge is used by at most
Then we can add each such edge to a diffefestibgraph  a value ofr*; if ¢, > 7*, then the excess capacity — 7*

in {Hy,...,H;} so thatz is of degree at least 2 in each will never be used. Now, to find an integral solution, we re-
of {H,,..., H}. We do the same “switching” procedure if place every edge of G' by min{c., | 7*|} multiple edges

|S2| = 1. Since there are atlea@tk — 2| Z| > (Q —12)k = and call the resulting grapf’. Notice that the total num-

14k crossing couples and there are only 2 components inber of edges i’ is bounded by a polynomial of and the

G’ — Z, the “switching” procedure is guaranteed to suc- value of an optimal solution iG" is the same as ifi". So,
ceed. After all,{H,..., Hy} arek edge-disjoint double  we can apply the algorithm in Theorem 1.2 to obti |
S-subgraphs of that extendP,(v). ] edge-disjointS-trees ofG’ in polynomial time, which cor-
respond to an integral solution 6f which is at least 7 |.
Therefore, in either case, the integral solution constructed is
at least| 7 |. i

Lemma 3.10 finishes the proof of Theorem 2.3 by show-
ing that the minimum counterexampedoes not exist.

4. Algorithmic Aspects and Generalization 5. Concluding Remarks
The algorithm consists of two parts: The first step trans- ) )

forms the input graplé with [ white edges to at most+ 1 Packing and covering problems are amongst the most
graphs{Gy, ...,G,,1} such that each has no white edge, fundamental problems in combinatorial opt|_m|zat|oq. Iq Fhe
and every white vertex is of degree 3 and adjacent to exactlyPast two decades, the LP approach has yielded significant
three black vertices. And the second step extends a balanceBro9ress on designing approximation algorithms for cov-
edge-subpartition of a small vertex @ to k edge-disjoint ~ €ring problems, where some prominent examples are the
double S;-subgraphs for each < i < [ + 1 and com- s_parsest cut problem, the multicut problem and the mul-
bines their solutions (whers; is the set of black verticesin ~ tiway cut problem. On the other hand, the LP approach
G,). Theorem 2.1 can be solved by Edmond’s matroid par- ©" (integral) packing prgblem_has not been as succegsful.
tition algorithm [7, 8]. The remaining steps can also be im- FOr €xample, the approximability of some very well-studied
plemented in polynomial time, this justifies Theorem 1.2, Problemsincluding the (half-)integral maximum multicom-
Now, we use our algorithm and also the algorithm for the Modity flow problem and the edge-disjoint paths problem
FRACTIONAL STEINER TREE PACKING problem to give remain wide open. In this paper, we use a combinatorial ap-

a polytime approximation algorithm for tH@APACITATED proach to give the first constant factor approximation for a
STEINER TREE PACKING problem. natural integral packing problem. This suggests that combi-

natorial approaches may be more natural to integral packing



problems. We believe further investigations of these tech-[15]
nigues will give new insight into other open problems.
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