CSC 2410F - Introduction to Graph Theory

Assignment #3 Due: Nov. 21, 2002

NB. Read the policy on "grading scheme" in the course outline. All work must be your own; reference all sources.

- 1. The following sequential algorithm is knows as Sequential Colouring with Bichromatic Interchange:
 - **Step 0:** Order the vertices as v_1, v_2, \dots, v_n so that $d(v_i) \geq d(v_{i+1})$.
 - **Step 1:** Assign colour 1 to v_1 .
 - Step 2: $\underline{\text{for }} i \underline{\text{ from }} 2 \underline{\text{ to }} n \underline{\text{ do}}$

Let G_i be the subgraph of G induced on $\{v_1, \dots, v_i\}$. Also let c_1, c_2, \dots, c_p be the colours present in the neighbourhood of v_i in G_i . For any two such colours c_j and c_k , we let $C_{j,k}$ denote a connected component in the subgraph of G_i induced on the vertices that have either of these two colours.

If there are colours c_j and c_k such that no connected component $C_{j,k}$ contains a neighbour of v_i that has been coloured j as well as a neighbour of v_i that has been coloured k, then we can remove the colour c_k from the neighbourhood of v_i by the following interchange procedure. For each component $C_{j,k}$ that contains a neighbour of v_i that has been coloured c_k interchange the colours c_j and c_k .

- Step 2.1: Repeat this interchange procedure until no other pair of colours can be interchanged.
- **Step 2.2:** Colour v_i with the smallest colour that is not present among the neighbours of v_i in G_i .
- (a) Show that the algorithm properly colours the vertices of a bipartite graph with at most two colours.
- (b) Consider the graph $H_p(V_p, E_p)$ where

 $V_p = \{x_i, y_i, z_i | 1 \le i \le p\}$

 $E_p = \{x_i y_j, x_i z_j, y_i z_j | i, j \le p, i \ne j\}.$

Use H_p to show that the above algorithm performs badly on non-bipartite graphs.

OVER

- 2. Let G be a graph with degree sequence (d_1, d_2, \dots, d_n) and let \overline{G} have degree sequence $(d'_1, d'_2, \dots, d'_n)$ where $d_1 \leq d_2 \leq \dots \leq d_n$ and $d'_1 \leq d'_2 \leq \dots \leq d'_n$.
 - (a) Show that if $d_j \geq d'_j, \forall j \leq n/2$, then G has a Hamiltonian path.
 - (b) Deduce that every self-complementary graph has a Hamiltonian path.
- 3. This question is from West's book (# 7.2.10). He defines a trail to be a walk in which no edge appears more than once. A walk is an alternating list of vertices and edges in a graph such that each vertex belongs to the edge before and the edge after it. A walk is closed if the last vertex is the same as the first. Note that, contrary to what's written in the Garey-Johnson book, the problem of determining whether a line graph is Hamiltonian is NP-complete.
 - (a) Find a 2-connected non-Eulerian graph whose line graph is Hamiltonian.
 - (b) Prove that L(G) is Hamiltonian iff G has a closed trail that contains at least one endpoint of each edge.
- 4. Show that every graph with n vertices and m edges contains an independent set of size at least $\lceil \frac{n^2}{2m+n} \rceil$ and this bound is tight.
 - Note that the best proof I know for this is algorithmic.
- 5. Given two perfect graphs G(V, E) and H(W, F) where each contains a complete subgraph on k vertices, K_G and K_H respectively. We form the clique bonding of G and H by identifying the vertices of K_G and K_H .
 - (a) Show from first principles (i.e. just use the definition of perfect graphs) that the clique bonding of G and H is perfect.
 - (b) Is there any other subgraph bonding that preserves perfection? I.e. either show that there exists a graph X (that is not a clique) such that X-bonding preserves perfection or show that for all X that is not a clique there is a pair of perfect graphs G and H such that the X-bonding of G and H is not perfect.