CSC 2410F - Introduction to Graph Theory

Assignment #1 Due: Oct. 10, 2002

NB. Read the policy on "grading scheme" in the course outline. All work must be your own; reference all sources.

- 1. Consider the following two definitions of "similar" vertices:
 - (a) x is similar to y iff there is an automorphism of G mapping x onto y. (Note that this is the standard definition.)
 - (b) x is similar to y iff there is an automorphism of G interchanging x and y. (i.e. the automorphism maps x onto y and y onto x.)

Prove or disprove that for undirected graphs, the definitions are equivalent. Note that as shown by the directed cycle on 3 vertices, the definitions are NOT equivalent for digraphs. Recall that an automorphism is an isomorphism of a graph with itself.

2. Define an n^2 node graph G_n as follows:

To each vertex associate an ordered pair in $\{1, 2, \dots, n\} * \{1, 2, \dots, n\}$. Place an edge between node $\langle x, y \rangle$ and node $\langle x', y' \rangle$ iff x = y' or y = x'.

Show that G_n contains every n-node forest as an induced subgraph.

3. Show that if G and \overline{G} are connected, then G (and thus \overline{G} too) contains an induced copy of P_4 .

Note that it may be easier to prove the contra-positive, namely, if G has no induced P_4 , then at least one of G, \overline{G} is disconnected.

- 4. Suppose you're given a cograph G as represented by its cotree T_G .
 - (a) Present a linear time algorithm that determines the number of cliques of maximum size in G.
 - (b) Prove that your algorithm is correct.
 - (c) Briefly justify the claim that it operates in linear time.
- 5. Show that the following problem is isomorphism-complete:

Given graphs G_1 and G_2 , is $G_1 \cong c(G_2)$?

Recall that $c(G_2)$ is the centre of G_2 .

Hint: In class we saw a graph where the centre is $\overline{K_2}$. Generalize this construction.