
Mixed Transition Systems Revisited
Ou Wei∗, Arie Gurfinkel†, and Marsha Chechik∗

∗University of Toronto.{owei,chechik}@cs.toronto.edu
†Software Engineering Institute, Carnegie Mellon University. arie@sei.cmu.edu

Abstract—A variety of partial modeling formalisms, aimed
to capture and reason about abstractions, have been proposed.
Some, e.g., Kripke Modal Transition Systems (KMTSs) put strong
restrictions on necessary and possible behaviours. Some, e.g.,
Mixed Transition Systems (MixTSs), relax these restrictions. Yet
others, e.g., Generalized Kripke MTSs (GKMTSs), allow hyper-
transitions.

In this paper, we aim to understand trade-offs between these
formalisms w.r.t. their applicability to symbolic model-checking.
We establish that these formalisms have the same expressive
power while differing in succinctness. We also measure the
analyzability of these formalisms, measured as the precision of
computing compositional semantics of temporal logic formulas.
We show that the standard compositional semantics is not pre-
served between equivalent GKMTSs and MixTSs, and introduce
a novel semantics, calledreduced, which remains compositional
while being both more precise than the standard one and
preserved by the semantic equivalence.

We also present a symbolic algorithm to compute the reduced
semantics for MixTS models built via predicate abstractions and
report on our experience using it in practice.

I. I NTRODUCTION

Abstraction is the key to scaling model-checking to
industrial-sized problems. Typically, a large (or infinite)
concrete system is approximated by a smaller abstract
system via abstracting the concrete states, analyzing the
resulting abstract system, and lifting the result back to the
concrete system. The interpretation of the result depends
on the type of property being checked, and the type of
the abstraction used. The two common abstraction schemes
are over-approximation – the abstract system contains
more behaviours than the concrete one and thus preserves
universal properties, andunder-approximation– the abstract
system containsless behaviours than the concrete one and
thus preserves existential properties. Preserving arbitrary
properties (e.g., fullµ-calculus,Lµ, [15]) requires combining
over- and under-approximation into a single model [5, 16].
This is done via using two types of transitions,may and
must, representingpossible (or over-approximating), and
necessary(or under-approximating) behaviours, respectively.
We refer to such models aspartial. Temporal properties over
partial models are interpreted using the 3-valued semantics:
a property can be either true, false, orunknown.

A variety of partial modeling formalisms have been
developed, forming three separate families. The first isKripke
Modal Transition Systems(KMTSs) [14] and their equivalent
variants,Modal TSs[16], Partial Kripke Structures(PKSs) [2],
and 3-valued KSs[3]. It requires that everymust transition
is also a may transition. KMTSs were first introduced as

computational models for partial specifications of reactive
systems [16], and later adapted for model-checking [2,3,14].
The second family is Mixed Transition Systems (MixTSs) [5],
or, equivalently, Belnap TSs [12]. It places no restrictions on
the relationship betweenmay and must transitions and thus
extends KMTSs. MixTSs where introduced in [5] as abstract
models for Lµ, and have been combined with predicate
abstraction and software model-checking in [11]. The third
family is Generalized KMTSs(GKMTSs) [20], or, equiva-
lently, Abstract TSs[7] and Disjunctive MTSs[17]. It extends
MixTSs by allowing must hyper-transitions, i.e., transitions
into sets of states. Both MixTSs and KMTSs have been
used in practical symbolic model-checkers (e.g., [3, 11, 13]),
while the direct use of GKMTSs has been hampered by the
difficulty of compactly encoding hyper-transitions into BDDs.

In this paper, we compare the three families w.r.t. their suit-
ability as the “right” formalism for symbolic model-checking
of partial models. Our basis of comparison is (i) the expressive
power of the formalisms (i.e., what can be modeled, what ab-
straction can be captured) (ii) analyzability of the formalisms
(i.e., the cost and precision of evaluating temporal logic).

We show that MixTSs, KMTSs and GKMTSs are equally
expressive: for any partial modelM expressed in one formal-
ism, there exists a partial modelM ′ in the other s.t.M andM ′

approximate the same set of concrete systems. Thus, neither
hyper-transitions nor restrictions onmayandmust transitions
affect expressiveness. They do, however, affect the size ofthe
models: a GKMTS can be modeled by a MixTS of smaller
or equal size (the reduction can be exponential), and MixTSs
are more succinct than KMTSs. Dams and Namjoshi have
showed that all of the above partial models are subsumed by
tree automata [6]. Our work completes the picture by showing
the expressive equivalencebetweenthose formalisms.

A semantics of temporal logic is calledcompositionalif it
is defined inductively on the syntax of the logic. We refer to
the typical compositional semantics ofLµ on partial models
asstandard(SCS). We show that GKMTSs are more precise
than MixTSs (and, hence, KMTSs), w.r.t. SCS. That is, a
GKMTS can prove/disprove more properties under SCS than
a MixTS obtained by a semantics-preserving translation. This
is significant since in practice partial models are evaluated
w.r.t. compositional semantics. We propose a novel alternative
semantics, calledreduced (RCS), which remains composi-
tional (and tractable) and is more precise than SCS. We
show that GKMTSs and MixTSs are equivalent w.r.t. RCS.
Thus, we argue that MixTSs offer a more compact and more
versatile alternative to GKMTSs, supporting efficient symbolic



compositional model checking.
To show the practical impact of the above result, we present

a symbolic algorithm to compute the reduced semantics of
MixTS models constructed using predicate abstraction. We de-
scribe our implementation and evaluate it empirically against
the standard compositional semantics.

The rest of the paper is organized as follows. Sec. II reviews
the necessary background on partial models and abstraction.
In Sec. IV, we show that KMTSs, MixTSs and GKMTSs
are equally expressive by developing semantics-preserving
translations from GKMTSs to MixTSs, and from MixTSs to
KMTSs. In Sec. V, we introduce a newreducedcompositional
semantics (RCS) forLµ. In Sec. VI, we present a symbolic
algorithm to compute RCS in the context of predicate ab-
straction, and report on our experience with this algorithmin
Sec. VII. We conclude the paper in Sec. VIII with the summary
of the paper, and comparison with related work.

II. PRELIMINARIES

In this section, we review several complete and partial
modeling formalisms, and their use for abstraction.

A. Complete and Partial Models

A statespace of apartial transition system is a tuple〈S,�S〉,
whereS is a set of states, and�S is a partial order onS.
Intuitively, s1 �S s2 means thats1 is less informative (more
partial) thans2.
Def. 1 (Partial TSs) [1, 5, 14, 20] A Generalized Kripke
Modal Transition System(GKMTS) is a tupleM = 〈〈S,�S〉,
Rmay, Rmust〉, where〈S,�S〉 is the statespace, andRmay ⊆ S×
S, Rmust⊆ S× 2S are themay and must transition relations,
respectively. AMixed TS (MixTS) is a GKMTS s.t.Rmust ⊆
S × S. A Kripke Modal TS(KMTS) is a MixTS s.t.Rmust ⊆
Rmay. A Boolean TS(BTS) is a KMTS s.t.Rmay = Rmust.
We write s

may
−−→ t for (s, t) ∈ Rmay, s

must
−−→ t, ands

must
−−→ Q

for (s, t) ∈ Rmust and (s,Q) ∈ Rmust, respectively. Intuitively,
may and must transitions represent possible and necessary
behaviours, respectively. For example, a BTS iscomplete(i.e.,
not partial) since everymaybehaviour is also amustbehaviour.

Let AP be a set of atomic propositions,Lit(AP ) be a set
of literals ofAP , andS be a statespace. Astate labelingis
a functionL : S → 2AP that assigns to each states a set of
literals that are true ins. A TSM together with a labelingL,
written 〈M,L〉, is called amodel. L is defined over literals.
Thus, if p ∈ L(s), we say thatp is true in s; if ¬p ∈ L(s)
— p is false ins; otherwise, the value ofp is unknown. We
require that a state labeling islocally consistent, i.e., at most
one of p and ¬p belongs toL(s); and monotonew.r.t. �S,
i.e., s1 �S s2 ⇒ L(s1) ⊆ L(s2).

In this paper, we use the modalµ-calculus [15] (Lµ) as our
temporal logic. It is defined as the set of all formulas satisfying
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | µZ · ϕ(Z) ,

wherep is an atomic proposition, andZ a fixpoint variable.
Furthermore,Z in µZ · ϕ(Z) must occur under the scope
of an even number of negations. Additional operations are

defined as abbreviations:ϕ∨ψ , ¬(¬ϕ∧¬ψ), �ϕ , ¬♦¬ϕ,
νZ · ϕ(Z) , ¬µZ · ¬ϕ(¬Z).

Let M = 〈M,L〉 be a model, whereM = 〈S,Rmay, Rmust〉,
andϕ be anLµ formula. An interpretation(or semantics) of
ϕ overM, denoted‖ϕ‖M, is given by a pair〈U,O〉, where
U,O ⊆ S. Intuitively, U is the set of states that satisfyϕ,
andO is the set of states that are “not known to refute”ϕ.
Thus,ϕ is true inU , false inS \ O and unknown inO \ U .
We call U andO the under- and theover-approximationof
ϕ, respectively.

The semantics ofLµ is calledcompositionalif it is inductive
on the syntax of the logic. We refer to the commonly used
compositional semantics asstandard(SCS). In the definition,
we use the following notation. Lete = 〈U,O〉. We writeU(e)
andO(e) to denoteU andO, respectively. We use operators⊓
and∼ defined as follows:∼〈U,O〉 , 〈O,U〉, and〈U1, O1〉 ⊓
〈U2, O2〉 , 〈U1 ∩ U2, O1 ∩O2〉.
Def. 2 (SCS) [1, 5, 12, 14, 20]. LetM = 〈M,LM 〉 be a
model,M = 〈S,Rmay, Rmust〉, V ar a set of fixpoint variables,
andσ : V ar → 2S×2S. Thestandard compositional semantics
(SCS)of ϕ ∈ Lµ is:

||p||Mc,σ , 〈{s | p ∈ LM (s)}, {s | ¬p /∈ LM (s)}〉

||¬ϕ||Mc,σ , ∼||ϕ||Mc,σ ||Z||Mc,σ , σ(Z)

||ϕ ∧ ψ||Mc,σ , ||ϕ||Mc,σ ⊓ ||ψ||Mc,σ

||♦ϕ||Mc,σ , 〈preU(U(||ϕ||Mc,σ)), preO(O(||ϕ||Mc,σ))〉

||µZ · ϕ||Mc,σ , 〈lfp⊑
(

λQ · U(||ϕ||M
c,σ[Z 7→Q])

)

,

lfp⊑
(

λQ · O(||ϕ||Mc,σ[Z 7→Q])
)

〉

whereZ ∈ V ar, lfp is the least fixpoint, and thepre-image
operatorspreU and preO are defined as follows:

preU(Q) ,

{

{s | ∃t ∈ Q · s
must
−−→ t} if M is a MixTS

{s | ∃U ⊆ Q · s
must
−−→ U} if M is a GKMTS

preO(Q) , {s | ∃t ∈ Q · s
may
−−→ t}

B. Partial Models and Abstraction

A concretestatespaceC is a set of states. Anabstract
statespace approximatingC is a set of statesS together with
a soundnessrelation ρ : C × S, where (c, s) ∈ ρ means
that s ρ-approximatesc. ρ induces aconcretizationfunction
γ(s) , {c | (c, s) ∈ ρ}, and anapproximationordering
�a⊆ S×S defined ass �a t ⇔ γ(s) ⊇ γ(t). That is,γ(s) is
the set of all concrete states approximated bys, ands �a t if
s is less precise(more approximate) thant. For a setQ ⊆ S,
we defineγ(Q) , ∪s∈Qγ(s). Following [4], we require that
� be an partial order, and thatS satisfy “the existence of a
best approximation”:

∀c ∈ C · ∃s ∈ S · (ρ(c, s)∧∀s′ ∈ S · ρ(c, s′) ⇒ γ(s′) ⊇ γ(s))

We use anabstraction function α : C → S to map each
concrete element to its best approximation. The image ofα is
denoted byα[S] , {α(c) | c ∈ C}.

In our examples, we often use the abstract domain of
predicate abstraction. LetP = {p1, . . . , pn} be a set ofn
predicates. A conjunction of literals ofP is called amonomial;
a monomial in which each variablepi appears once (either
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positively or negatively) is called aminterm. We write Mon(P )
and MT(P ) for the set of all monomials and minterms ofP ,
respectively. The domain of predicate abstraction is the set
Mon(P ). The soundness relationρP is defined s.t.(c, s) ∈ ρP

iff c satisfies all predicates ins, i.e., c |= s; the abstraction
αP (c) , (

∧

c|=pi
pi) ∧ (

∧

c 6|=pi
¬pi); αP [Mon(P )] = MT(P );

and the approximation ordering is reverse implication.
The approximation relation is extended from a statespace to

transition systems using the concept ofmixed simulation.
Def. 3 (Mixed Sim.) [5] Let M1 = 〈S1, R

may
1 , Rmust

1 〉 and
M2 = 〈S2, R

may
2 , Rmust

2 〉 be two MixTSs.H ⊆ S1 × S2 is a
mixed simulationbetweenM1 andM2 if for any (s1, s2) ∈ H ,
the following two conditions hold:

∃t1 ∈ S1 · s1
may
−−→ t1 ⇒ ∃t2 ∈ S2 · s2

may
−−→ t2 ∧ (t1, t2) ∈ H

∃t2 ∈ S2 · s2
must
−−→ t2 ⇒ ∃t1 ∈ S1 · s1

must
−−→ t1 ∧ (t1, t2) ∈ H

In this case, we sayM2 H-simulatesM1, writtenM2 �H M1.
Intuitively, M2 simulatesM1 wheneverM2 is less precise
about its behaviour thanM1. This definition generalizes to
GKMTSs (c.f., [20]).

Let C andS be a concrete and abstract statespaces, respec-
tively, andρ ⊆ C ×S be the soundness relation. A partial TS
M overS approximatesa BTSB overC (or, equivalentlyB
refinesM ) iff M ρ-simulatesB, M �ρ B. LetLM andLB be
state-labellings forS andC, respectively.LM approximates
LB, denotedLM �ρ LB, iff ρ(c, s) ⇒ LM (s) ⊆ LB(c). A
partial modelM = 〈M,LM 〉 approximatesa concrete model
B = 〈B,LB〉 (or, equivalently,B refinesM) iff M �ρ B,
andLM �ρ LB.
Theorem 1 [5] Let B = 〈B,LB〉 be a concrete model that
refines a partial modelM = 〈M,LM 〉, andϕ ∈ Lµ. Then,
γ(U(‖ϕ‖Mc )) ⊆ U(‖ϕ‖Bc ), andO(‖ϕ‖Bc ) ⊆ γ(O(‖ϕ‖Mc )).
That is, if ϕ is true (false) at a statea of M, then it is true
(false) at all statesγ(a) of B.

Let C[M] be the set of all concrete refinements ofM.
Intuitively, C[M] is the semantic meaning ofM. An interpre-
tation ofLµ based on the semantic meaning of a partial model
was introduced in [2] asthorough semantics. It is defined as
follows: ‖ϕ‖Mt = 〈U,O〉 iff a ∈ U ⇔ ∀B ∈ C[M] · γ(a) ⊆
U(‖ϕ‖Bc ), anda 6∈ O ⇔ ∀B ∈ C[M] · γ(a) ⊆ U(‖¬ϕ‖Bc ).

To compare different interpretations ofLµ, we introduce
two ordering relations on2S × 2S . Let e1 = 〈U1, O1〉 and
e2 = 〈U2, O2〉. We say thate1 is less informativethan e2,
written e1 �i e2 iff U1 ⊆ U2 andO2 ⊆ O1. We say that
e1 is semantically less precisethan e2, written e1 �a e2, iff
γ(U1) ⊆ γ(U2) andγ(O1) ⊆ γ(O2).

III. C ONSISTENCY

A. Two definitions of consistency

A consistency of a partial model can be defined in two
ways: either based on satisfaction of temporal logic formulas
(logical consistency), or based on possible concrete refine-
ments (semantic consistency). Here, we formally define the
two notions.

A model〈M,L〉 is logically consistentif for everyϕ ∈ Lµ,
U(‖ϕ‖c) ⊆ O(‖ϕ‖c). That is, the value ofϕ in a states ∈ S,

(a) (b)

a12

c1

c1

c1

c3

c2

a1

{p,¬q} a3

{¬p,¬q}

c3

c1

c2

a1

{p,¬q}

a12

{p}

a3

{¬p,¬q}

{p}

Fig. 1. (a) A semantically inconsistent KMTSA1 whereγ(a1) = {c1},
γ(a12) = {c1, c2} and γ(a3) = {c3}. (b) A monotone KMTSA2

equivalent toA1.

denoted‖ϕ‖c(s), can be defined using 3-valued logic:

‖ϕ‖c(s) =











t if s ∈ U(‖ϕ‖c)

f if s /∈ O(‖ϕ‖c)

m otherwise

Def. 4 A transition systemM is logically consistentif 〈M,L〉
is logically consistent for every (consistent) labeling function
L.

Let C[M ] denote the set of all concrete refinements ofM .
A modelM is semantically consistentif C[M ] is not empty.
Def. 5 A transition systemM is semantically consistentif
〈M,L〉 is semantically consistent for every (consistent) la-
beling functionL.

There is an obvious relationship between the two notions
of consistency.
Theorem 2 If an abstract transition systemM is semantically
consistent, then it is logically consistent.
The converse of Theorem 2 is not true in general. Filling this
gap is the subject of the rest of this section.

B. Checking for consistency

It is of practical interest of ensure semantic consistency for
partial models, e.g., to ensure a specification given by a partial
model is implementable in model-based software development.
Surprisingly, we found that such conditions have not been
precisely defined before. For example, one may think that the
conditionRmust⊆ Rmay is sufficient to ensure that KMTSs are
semantically consistent. However, although this does guarantee
that every KMTS is logically consistent, it does not ensure
semantic consistency. For example, for the KMTSA1 shown
in Figure 1(a), everymust transition is also amay transition,
but there does not exist a concrete refinement ofA over
the states{c1, c2, c3}. To see this, suppose such a concrete
modelC exists. Because of the transitiona12

must
−−−→ a3, there

must be a transitionc1 → c3 in C. This in turn requires
a may transition from a1 to a3 which does not exists in
A1. Similarly, for a GKMTS A = 〈A,Rmust, Rmay〉, the
sufficient condition for logical consistency [7], which requires
that every destination of amusthyper-transition intersects with
the destination of amay transition from the same state, i.e,
∀a ∈ A · ∀U ⊆ A ·U ∈ Rmust(a) ⇒ U ∩Rmay(a) 6= ∅, can be
viewed as an analogue of the logical consistency condition for
KMTSs, and in general does not ensure semantic consistency
either.

The reason that logical and semantic consistency are not
equivalent is that they describe consistency for differentstates-
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(a) (b) c3

c1

c1

c3

c2

a1
a3

a12

c2

c1

Fig. 2. (a) A consistent MixTS thatdoes notsatisfyRmust ⊆ Rmay. (b) A
BTS in that refines a MixTS in (a).

paces — the former ensures consistency of temporal properties
for abstract states, and the latter — for concrete states. In
general, even ifU(‖ϕ‖c) ⊆ O(‖ϕ‖c) holds for each formula
ϕ, it may still be possible that there exist concrete states
approximated by both of the states inU(‖ϕ‖c) and that in
O(‖ϕ‖c), which results in inconsistency on those concrete
states. In the previous example, for the formulaψ , ♦ ¬p,
we have thatU(‖ψ‖c) = {a12} ⊆ O(‖ψ‖c) = {a12, a3}.
However, because ofγ(U(‖ψ‖c)) ∩ γ(O(‖ψ‖c)) = {c1}, it
implies thatc1 satisfies bothψ and¬ψ! To fix the problem,
we add the monotonicityrequirement on transition relations
(see Def. 9) that guarantees the equivalence between logical
and semantic consistency.
Theorem 3 Let M = 〈SM , Rmust

M , Rmay
M 〉 be a monotone

(Def. 9) MixTS transition system, then the following are
equivalent:

1) M is semantically consistent, i.e.,C[M ] is not empty.
2) M is logically consistent, i.e.,〈M,L〉 is logically con-

sistent for every (consistent) labeling functionL.
3) for any a, b1 ∈ SM , a

must
−−→ b1 ⇒ ∃b2 ∈ SM · b1 �

b2 ∧ a
may
−−→ b2.

Intuitively, by adding the monotonicity requirement to a
MixTS A, if an abstract statea1 is less precise thana2, then
the truth value of any formulaϕ at a1 is less precise than
that ata2, i.e.,A, a1 |= ϕ ⇒ A, a2 |= ϕ. Therefore, for each
concrete statec, if the truth value ofϕ is consistent atα(c) –
the most precise abstract state approximatingc, then it is also
consistent forc.

The next corollary follows immediately from the fact that
KMTSs require that everymust transition is also amay
transition.
Cor. 1 Every monotone KMTS is logically/semantically con-
sistent.

Every MixTS can be translated to an equivalent mono-
tone one without affecting the concrete models it approx-
imates [12]. Thus, Theorem 3 can also be used to check
semantic consistency of non-monotone MixTSs. For example,
the MixTS A1 in the previous example is equivalent to a
monotone MixTSA2 shown in Figure 1(b). It is then easy to
check thatA2 is not consistent because of themusttransition
a1

must
−−→ a3 is not matched by anymay transition.
The only difference between KMTSs and MixTSs is that

KMTSs require thatRmust⊆ Rmay. We believe that originally
this requirement was introduced to ensure implementability
of specifications represented by KMTSs [16]. However, as
we have shown, even with this condition a KMTS may

still be semantically inconsistent. In the abstraction refine-
ment framework of software model-checking [11], requiring
Rmust ⊆ Rmay makes KMTSs incapable of supporting precise
monotone refinement [20] — extramaytransitions imposed by
this requirement lead to imprecise model checking results.This
is not a problem form MixTSs. Note that GKMTS, proposed
by Shoham and Grumberg [20] for solving this problem,
achieve the same goal by using hyper-transitions. This also
ensure that no extramay transitions are added to imprecise
states.

IV. EXPRESSIVENESS

We show that GKMTSs, MixTSs, and KMTSs are expres-
sively equivalent. Two partial TSsM andM ′ aresemantically
equivalent, denotedM ≡a M ′, iff they have the same
set of concrete refinements. Two modeling formalisms are
expressively equivalentiff for every TS M from the one
formalism, there exists a TSM ′ from the other, s.t.M ≡a M

′.
The equivalence of the three formalisms is proved by defining
semantics-preserving translations between them.

A. GTOM: Translation from GKMTSs to MixTSs

Here, we present the translation GTOM that converts a
GKMTS into a semantically equivalent MixTS. We begin by
illustrating the translation on a GKMTSG1 in Fig. 3.G1 is not
a MixTS because of amusthyper-transitiona1

must
−−→ {a2, a3}.

This transition ensures that in every concrete BTS refiningG1,
all states inγ(a1), i.e., those satisfying(x ≤ 0∧ even(x)),
must have a transition to a state inγ({a2, a3}), i.e., satisfying
x > 0. No single state ofG1 representsx > 0. Thus, this
requirement can only be captured either by a hyper transition
(as done inG1), or by extendingG1 with a new state, saya5,
such thatγ(a5) = (x > 0). In the latter case, themusthyper-
transition a1

must
−−→ {a2, a3} can be replaced by a (regular)

must transition a1
must
−−→ a5. The result is a MixTSM1 in

Fig. 3. Moreover, sincea5 replaces a “hyper-state”{a2, a3},
a5 needs to preserve itsmaybehaviours. We do so by adding
a5

may
−−→ a4 and a5

may
−−→ a2 corresponding toa2

may
−−→ a4

and a3
may
−−→ a2, respectively. There are no outgoingmust

transitions froma5 since the existingmusttransitions froma2

anda3 are sufficient.G1 andM1 are semantically equivalent:
any BTS that refinesG1 also refinesM1, and vice versa.

In our example, a new state was added to encode a hyper-
transition by a regular one. This isn’t always necessary. For
example, TSsG2 andM2 in Fig. 3 are semantically equivalent.
The hyper-transitiona1

must
−−→ {a2, a3} is encoded bya1

must
−−→

a3 in M2 since the hyper-state{a2, a3} is equivalent to an
existing statea3, i.e., γ({a2, a3}) = γ(a3) = (x > 0).

In summary, a GKMTSG is translated to a MixTSM in
two steps: (i) everymust hyper-transitiona

must
−−→ U of G is

replaced by a regularmust transitiona
must
−−→ b, whereb is a

(possibly new) state s.t.γ(b) = γ(U); (ii) may transitions are
added for every state introduced in the first step, if any. We
formalize this translation below.
Def. 6 (GTOM) Let G = 〈SG, R

may
G , Rmust

G 〉 be a
GKMTS. The translation GTOM(G) is a MixTS
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G1

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0
evn(x)

x > 0
odd(x) M1

a1 a4a5

a3

a2

x ≤ 0
evn(x) x > 0 x ≤ 0

odd(x)

x > 0
evn(x)

x > 0
odd(x) G2

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x) M2

a1 a4

a3

a2

x ≤ 0
evn(x)

x ≤ 0
odd(x)

x > 0

x > 0
odd(x)

M3

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

K3

a1 a4

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

K4

a1 a4a5

a3

a2

x > 0
odd(x)
y > 0

x > 0
odd(x)

x > 0
odd(x)
y ≤ 0

odd(x)

x > 0

Fig. 3. Two GKMTSs:G1, G2; three MixTSs:M1, M2, M3; two KMTSs:K3, K4. Solid and dashed lines represent must and may transitions,respectively.

M = 〈SM , Rmust
M , R

may
M 〉, such that

SM , SG ∪ S+

S+ , {a | ∃(s, U) ∈ Rmust
G · γ(a) = γ(U) ∧

(∀t ∈ SG · γ(t) 6= γ(U))}

R
may
M , R

may
G ∪ {(a, b) | a ∈ S+ ∧ b ∈ SG ∧

∃s ∈ SG · (s, b) ∈ Rmay
G ∧ γ(s) ⊆ γ(a)}

Rmust
M , {(a, b) | a ∈ SG ∧ b ∈ SM ∧

∃U ⊆ SG · (a, U) ∈ Rmust
G ∧ γ(b) = γ(U)}

The translation GTOM is semantics-preserving.
Theorem 4 LetG be a GKMTS, andM = GTOM(G). Then,
M is a MixTS, andG andM are semantically equivalent.

A corollary of Thm. 4 is that GKMTSs and MixTSs are
equivalent w.r.t. thorough semantics. LetLG be a labeling
function forG. We extend the translation GTOM to a GKMTS
model〈G,LG〉 such that GTOM(〈G,LG〉) , 〈M,LM 〉, where
M = GTOM(G), and LM is a labeling function forSM

defined as follows:

LM (a) ,

{

LG(a) if a ∈ SG
⋂

{s∈SG|γ(s)⊆γ(a)} LG(s) if a ∈ S+

ThenLM is well-defined and approximates the same labellings
as LG. This ensures that〈G,LG〉 and 〈M,LM 〉 satisfy the
same properties under thorough semantics.
Cor. 2 Let 〈G,LG〉 be a GKMTS model and〈M,LM 〉 =
GTOM(〈G,LG〉). Then,〈G,LG〉 and〈M,LM 〉 are equivalent
w.r.t. thorough semantics.

Complexity. We show that the translation GTOM does not
increase the size of the model. LetG be a GKTMS with the
statespaceSG, andM = GTOM(G). The size ofG is at most
|SG×2SG |. Each new state added by GTOM corresponds to a
subset ofSG, i.e., |S+| ≤ |2SG|. Furthermore, no transitions
between the states inS+ are added. Thus, the size ofM is
also at most|SG × 2SG|.

Sometimes GTOM can reduce a GKMTS exponentially. For
example, assume thatSG is a disjunctive completion [4], i.e.,
for every subsetU of SG there exists an equivalent elements

in SG such thatγ(U) = γ(s). In this case, GTOM does not
add any new states, i.e.,S+ = ∅. This makes the size of the
output MixTSs be|SG × SG|, which is exponentially smaller
than that of the input GKMTS.

B. MTOK: Translation from MixTSs to KMTSs

Below we present the translation MTOK that converts a
MixTS into a semantically equivalent KMTS. We begin by
illustrating the translation using a MixTSM3 in Fig. 3.M3 is
not a KMTS because of the twomust onlytransitionsa1

must
−−→

a2 anda2
must
−−→ a4. One way to turnM3 into a KMTS is to

add may transitionsa1
may
−−→ a2 and a2

may
−−→ a4, resulting in

K3 in Fig. 3. However, this transformation is not semantics-
preserving, i.e.,K3 6≡a M3. For example, the concrete system1

((y > 0) ∧ (x > 0) ∧ odd(x) ∧ x′ = x+ 1 ∧ y′ = y) ∨

((x > 0) ∧ odd(x) ∧ x′ = x ∧ y′ = −1 × x) ∨

((x > 0) ∧ ¬odd(x) ∧ x′ = x+ 1 ∧ y′ = −1 × x)

refinesK3, but notM3: the transition〈x = 1, y = 1〉 → 〈x =
2, y = 1〉 cannot be simulated by anymay transition ofM3.

The must onlytransitiona1
must
−−→ a2 of M3 ensures that in

any concrete BTS refiningM3, all states inγ(a1), i.e., those
satisfying(x > 0∧ odd(x)∧ y > 0), must have a transition to
a state inγ(a2), i.e., satisfyingx > 0. This is further restricted
by themaytransitions froma1 that ensure that states inγ(a1)
have transitions only to states inγ({a1, a3}). Hence, in any
BTS refiningM3, every state inγ(a1) must (and may) have
a transition to a state inγ(a2) ∩ γ({a1, a3}).

Intuitively, the must onlytransitiona2
must
−−→ a4 in M3 is

equivalent to a pair ofmay and must transitions froma2 to
a4, sinceγ(a4)∩γ({a1, a2, a3}) = γ(a4). On the other hand,
themust onlytransitiona1

must
−−→ a2 can be equivalently repre-

sented by (a) adding a new statea5 such thatγ(a5) = γ(a2)∩
γ({a1, a3}) = (x > 0∧ odd(x)), and (b) adding amustand a
maytransition froma1 to a5. Moreover, sincea5 approximates
some of the same states asa2, i.e.,γ(a5) ⊆ γ(a2), a5 inherits

1Unprimed and primed variables represent current- and next-state valua-
tions, respectively.
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the transitions froma2: a5
may
−−→ a1, a5

may
−−→ a2, a5

may
−−→ a3,

a5
must
−−→ a4, a5

may
−−→ a4. The final result is the KMTSK4 in

Fig. 3, which is semantically equivalent toM3.
In summary, a MixTSM is translated to a KMTSK in

two steps. First, everymust onlytransitiona
must
−−→ b of M is

replaced by a pair ofmustandmay transitionsa
must
−−→ â→ b

anda
may
−−→ â→ b, whereâ→ b is a (possibly new) abstract

state such thatγ(â→ b) = γ(b) ∩ γ(Rmay
M (a)). Second,may

andmusttransitions are added for all states introduced in the
first step. We formalize this translation below.
Def. 7 (MTOK) Let M = 〈SM , R

may
M , Rmust

M 〉 be
a MixTS. The translation MTOK(M) is a KMTS
K = 〈SK , R

may
K , Rmust

K 〉, s.t.

SK , SM ∪ S+

S+ , {â→ b | ∃(a, b) ∈ (Rmust
M \Rmay

M ) · ∀s ∈ SM ·

γ(s) 6= γ(â→ b)}

Rmay
K , Rmay

M ∪ REPL∪ IM AY ∪ IMO

Rmust
K , (Rmust

M ∩Rmay
M ) ∪ REPL∪ IM UST∪ IMO

where

REPL , {(a, â→ b) | ∃(a, b) ∈ (Rmust
M \Rmay

M )}

IM AY , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·

(a, b) ∈ (Rmust
M \Rmay

M ) ∧ (b, b′) ∈ R
may
M ∧ â→ b ∈ S+}

IM UST , {(â→ b, b′) | ∃a, b, b′ ∈ SM ·
(a, b) ∈ (Rmust

M \Rmay
M ) ∧ (b, b′) ∈ (Rmust

M ∩Rmay
M ) ∧

â→ b ∈ S+}

IMO , {(â→ b, b̂→ b′ | ∃a, b, b′ ∈ SM ·

(a, b), (b, b′) ∈ (Rmust
M \Rmay

M ) ∧ â→ b ∈ S+}

In Def. 7, REPL denotes transitions that replacemust only
transitions, and IMAY , IM UST and IMO denote transitions
from newly added states inS+ that correspond tomay, must,
andmust onlytransitions of the original system, respectively.
For our example of MTOK(M3), we have

S+ = {a5} REPL= {(a1, a5), (a2, a4)}
IM UST = ∅ IMO = {(a5, a4)}

IM AY = {(a5, a1), (a5, a2), (a5, a3)}

The result of the translation MTOK is a KMTS: everymust
transition is matched by amay transition.
Theorem 5 Let M be a MixTS, andK = MTOK(M). Then
K is a KMTS, andM andK are semantically equivalent.

A corollary of Thm. 5 is that MixTSs and KMTSs are
equivalent w.r.t. thorough semantics. LetLM be a labeling
function for M . We extend MTOK to 〈M,LM 〉 such that
MTOK(〈M,LM 〉) , 〈K,LK〉, whereK = MTOK(M), and
LK is a labeling function forSK defined as follows:

LK(a) ,

{

LM (a) if a ∈ SM
⋃

{s∈SM |γ(a)⊆γ(s)} LM (s) if a ∈ S+

Then, LK is well-defined and approximates the same la-
bellings asLM . This is sufficient to ensure that〈M,LM 〉 and
〈K,LK〉 satisfy the same properties under thorough semantics.

Cor. 3 Let 〈M,LM 〉 be a MixTS model and〈K,LK〉 =
MTOK(〈M,LM 〉). Then,〈M,LM 〉 and 〈K,LK〉 are equiv-
alent w.r.t. thorough semantics.
Complexity.Let M = 〈SM , Rmay

M , Rmust
M 〉 be a MixTS, andK

be a KMTS such thatK = MTOK(M). The size ofM is
bounded byO(|SM ×SM |). In the worst case, the translation
adds a new state for eachmust onlytransition inRmust

M \Rmay
M .

Therefore, the number of new states|S+| is bounded by|SM×
SM |, and |K| is bounded byO(|SM × SM |2).

MixTSs are more succinct than KMTSs: for a fixed
statespaceS, the set of MixTSs overS is strictly more
expressive than the set of KMTSs overS. This is true since
for every statet added by MTOK, there exists a subsetU ⊆ S
s.t. γ(t) = γ(U).

V. REDUCED COMPOSITIONAL SEMANTICS

GKMTSs and MixTSs are equally expressive: a GKMTS
model and its equivalent MixTS model satisfy the same prop-
erties under thorough semantics. However, thorough check
has exponential complexity. In practice, partial models are
evaluated using a more tractable compositional semantics SCS.
Unfortunately, GKMTSs are more precise than MixTSs w.r.t.
SCS: for anyϕ ∈ Lµ, the value ofϕ in a GKMTS modelG
under SCS is more precise than its value in the MixTS model
M = GTOM(G). We propose an alternative semantics, called
reduced compositional semantics(RCS). While RCS is defined
(and evaluated) inductively on the structure of the formula, it
is strictly more precise than SCS. We show that GKMTSs and
MixTSs are equivalent w.r.t. RCS.

In Sec. V-A, we illustrate the differences between GKMTSs
and MixTSs w.r.t. SCS. We define RCS in Sec. V-B, and show
how to compute it effectively in Sec. V-C.

A. Example

Let p and q denote predicatesx > 0 and odd(x),
respectively. Consider the modelG1 = 〈G1, LG1

〉, whereG1

is shown in Fig. 3, andLG1
is a labeling function that labels

each abstract state as shown in Fig. 3. LetM1 = 〈M1, LM1
〉

be the model obtained fromG1 by GTOM, whereM1 is shown
in Fig. 3 andLM1

(s) , if s = a5 then {p} elseLG1
(s).

Compare the value ofϕ , ♦(q∨¬q) under SCS onG1 andM1:

‖ϕ‖G1

c = 〈{a1, a2, a3}, {a1, a2, a3, a4}〉

‖ϕ‖M1

c = 〈{a2, a3}, {a1, a2, a3, a4, a5}〉

According toG1, ϕ is true in all states corresponding toa1.
According toM1, the value ofϕ is unknown in exactly the
same states. SinceM1 = GTOM(G1), G1 ≡a M1. Thus,M1

is less precise thanG1 under SCS.
Let us examine the above example more carefully. First,

there is no precision loss during the evaluation ofq ∨ ¬q:

e1 = ‖q ∨ ¬q‖G1

c =〈{a1, a2, a3, a4}, {a1, a2, a3, a4}〉 (⋆)

e2 = ‖q ∨ ¬q‖M1

c =〈{a1, a2, a3, a4}, {a1, a2, a3, a4, a5}〉

Since γ(U(e1)) = γ(U(e2)) and γ(O(e1)) = γ(O(e2)) =
γ(∅), e1 ≡a e2. However, there is a subtle difference between
them. q ∨ ¬q is unknown in statea5 of M1, even thoughϕ
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is true in botha2 and a3, andγ(a5) = γ(a2) ∪ γ(a3). This
minor imprecision is then magnified by the♦ operator.

We note that the precision loss is not limited to tautologies.
For example,µZ · (¬p ∧ q) ∨ ♦Z, i.e.,EF (¬p ∧ q) in CTL,
is true in statea1 on G1, but is unknown in the same state of
M1.

B. Reduced Compositional Semantics for Partial Models

In this section, we define the reduced compositional seman-
tics (RCS). The new semantics is compositional and isstrictly
more precisethan SCS. The key idea is to use areduction
operator to eliminate any local imprecision.

Let S be an abstract statespace, ande, e′ ∈ 2S × 2S be
two abstract elements. Recall that in the information ordere
is less thane′, i.e., e �i e

′, if U(e) is contained inU(e′),
andO(e) containsO(e′). We define thereductionoperator as
follows: RED(e) , 〈REDU(U), REDO(O)〉, whereREDU(U) ,
{s | γ(s) ⊆ γ(U)}, and REDO(O) , {s | γ(s) * γ(O)}.
Intuitively, RED(e) increasesU(e) and decreasesO(e) as much
as possible without affecting the semantic meaning ofe. That
is, RED(e) is the largest element w.r.t. information ordering and
semantically equivalent toe. For example, considerRED(e2),
wheree2 is as defined by (⋆). Then,

e3 = RED(e2) =

〈{a1, a2, a3, a4, a5}, {a1, a2, a3, a4, a5}〉 (⋆⋆)

e3 differs from e2 only in the addition ofa5 to U(e3). Since
γ(U(e2)) = γ(U(e3)) and γ(O(e2)) = γ(O(e3)) e2 ≡a e3;
but e2 is less informative sinceU(e2) ⊂ U(e3).

An elemente = {U,O} ∈ 2S × 2S is monotoneiff

s1 �S s2 ⇒ (s1 ∈ U ⇒ s2 ∈ U ∧ s1 /∈ O ⇒ s2 /∈ O)

RED(e) is monotone for anye, and commutes with proposi-
tional operations on monotone elements. That is, lete ande′

be monotone elements of2S × 2S. Then,∼e ≡a ∼RED(e),
ande ⊓ e′ ≡a RED(e) ⊓ RED(e′).

RCS is defined by applying theRED operator before and
after ♦ to prevent it from propagating imprecision.
Def. 8 (RCS) Let M = 〈M,LM 〉 be a model, s.t.M =
〈S,Rmay, Rmust〉 and σ : V ar → 2S × 2S . The reduced
compositional semanticsof ϕ ∈ Lµ is defined as follows:

||p||Mr,σ , 〈{s | p ∈ LM (s)}, {s | ¬p /∈ LM (s)}〉

||¬ϕ||Mr,σ , ∼||ϕ||Mr,σ ||Z||Mr,σ , σ(Z)

||ϕ ∧ ψ||Mr,σ , ||ϕ||Mr,σ ⊓ ||ψ||Mr,σ
||♦ϕ||Mr,σ , RED(〈preU(REDU(U(||ϕ||Mr,σ))),

preO(REDO(O(||ϕ||Mr,σ)))〉)

||µZ · ϕ||Mr,σ , 〈lfp⊑
(

λQ · U(||ϕ||M
r,σ[Z 7→Q])

)

,

lfp⊑
(

λQ · O(||ϕ||M
r,σ[Z 7→Q])

)

〉

The only difference between RCS (Def. 8) and SCS (Def. 2)
is the semantics of♦. Since we assume that state-labellings
are monotone, applyingRED to other operators as well does
not improve precision.

Returning to our running example, RCS ofϕ on M1 is
computed as follows: RCS ofq, ¬q, andq∨¬q is the same as

SCS. Thus,‖q∨¬q‖M1

r = e2. To compute♦, recall from (⋆⋆)
that RED(e2) = e3; thus,

‖ϕ‖M1

r = 〈{a1, a2, a3, a5}, {a1, a2, a3, a4, a5}〉

Hence,‖ϕ‖M1

r is more precise than‖ϕ‖M1

c .
Theorem 6 RCS is more precise than SCS:‖ϕ‖c �a ‖ϕ‖r.

The previous example illustrates another important point:
GKMTSs and MixTSs are equivalent w.r.t. RCS. For exam-
ple, ‖ϕ‖M1

r is equivalent to‖ϕ‖G1

r . The following theorem
formalizes this relationship.
Theorem 7 Let G be a GKMTS, andM = GTOM(G). Then,
G andM are equivalent w.r.t. RCS:∀ϕ ∈ Lµ · ‖ϕ‖Gr ≡a ‖ϕ‖Mr.

Our new semantics RCS is both compositional and precise
enough to make GKMTSs and MixTSs equivalent. How-
ever, theRED operator requires comparing concretizations of
abstract elements. In practice, this may be impossible or
inefficient. We address this limitation next.

C. Reduced Compositional Semantics for Monotone Models

We specialize the reduction operatorRED of RCS to mono-
tone models.
Def. 9 A MixTSM = 〈S,Rmay, Rmust〉 is monotoneiff

∀s1 �S s2, t2 �S t1 ·((s2, t2) ∈ Rmay ⇒ (s1, t1) ∈ Rmay)∧
(

(s1, t1) ∈ Rmust⇒ (s2, t2) ∈ Rmust
)

A modelM = 〈M,LM 〉 is monotoneiff M is monotone.
Monotone models are as expressive as their regular counter-
parts [12]. The monotonicity condition simply ensures thatall
information that can be derived from the existingmay and
musttransitions is made explicit in the model.

For a states ∈ S, let the upset of s be defined as
↑s , {t ∈ α[S] | s �a t}. Then,↑s is the set of all those states
in α[S] that are more precise thans. For example, letS1 be
the statespace ofM1 in Fig. 3. Then,α[S1] = {a1, a2, a3, a4},
and ↑a5 = {a2, a3}. Note that the states and the set↑s
approximate the same set of concrete states, i.e.,γ(s) = γ(↑s).
For example,γ(↑a5) = γ(a5) = (x > 0).

Let e = 〈U,O〉 be a monotone element of2S ×2S, ands ∈
S. By monotonicity,γ(s) ⊆ γ(U) iff ↑s ⊆ U . Dually, γ(s) 6⊆
γ(O) iff ↑s 6⊆ O. Thus, we define a new operatorred as
follows: red(e) , 〈redU(U), redO(O)〉, whereredU(U) ,
{s | ↑s ⊆ U}, andredO(O) , {s | ↑s * O)}.
Theorem 8 Let S be an abstract statespace, ande be a
monotone element in2S × 2S . Then,red(e) = RED(e).
red can be computed effectively since it does not need to
concretize abstract elements.

In this section, we have introduced a new compositional
semantics RCS, and shown that it is more precise than SCS,
and that GKMTSs and MixTSs are equivalent w.r.t. RCS. RCS
can be computed effectively on monotone models, which is not
restrictive since monotone models are as expressive as their
non-monotone counterparts.

VI. SYMBOLIC COMPUTATION OF RCSUSING BDDS

In this section, we describe a symbolic algorithm RCS
that implements the RCS semantics for monotone models
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1: global var Rmay, Rmust : BDD

2: func RCS(Exprϕ) : BDD

3: match ϕ with
4: ATOMIC(p) : return ABSV(BDDVAR(“p” ),

BDDVAR(“p” ))
5: ¬ψ : return ABSNOT(RCS(ψ))
6: ψ1∧ψ2 : return ABSAND(RCS(ψ1),RCS(ψ2))
7: ψ1 ∨ ψ2 : return ABSOR(RCS(ψ1),RCS(ψ2))
8: ♦ψ : return ABSPRE(Rmay, Rmust,RCS(ψ))
9: µψ : return RCSlfp(RCS(ψ))

10: νψ : return RCSgfp(RCS(ψ))
11:

12: func ABSV(BDD u, BDD o) : BDD

13: sel := BDDVAR(“sel”)
14: return BDDITE(sel, u, o)
15:

16: func ABSO(BDD v) = v[0/sel]
17: func ABSU(BDD v) = v[1/sel]

18: func ABSAND(BDD v1, BDD v2) = BDDAND(v1, v2)
19: func ABSOR(BDD v1, BDD v2) = BDDOR(v1, v2)
20: func ABSEQ(BDD v1, BDD v2) = BDDEQ(v1, v2)
21:

22: func ABSNOT(BDD v) : BDD

23: o := ABSO(v), u := ABSU(v)
24: return ABSV(BDDNOT(o), BDDNOT(u))
25:

26: func ABSREDU(BDD v) : BDD

27: if (BDDISCONST(v)) return v

28: b := BDDROOTVAR(v), h := UVAR(b)
29: T := ABSREDU(v[1/b]), F := ABSREDU(v[0/b])
30: tmp := BDDITE(b, T, F )
31: return BDDITE(h, BDDAND(T, F ), tmp)
32:

33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD

34: o := ABSO(V), u := ABSREDU(ABSU(V))
35: return ABSV(BDDPRE(Rmust, u), BDDPRE(Rmay, o))

Fig. 4. The RCS algorithm and its supporting functions.

constructed using predicate abstraction. These are the models
used by an existing software model-checker [13].

Our implementation is based on the following observation.
Let S be an abstract statespace. Then, for any monotone
element of2S × 2S there exists a semantically equivalent
element in2α[S] × 2α[S].
Theorem 9 Let e1 = 〈U1, O1〉 be a monotone element of2S×
2S , ande2 = 〈U2, O2〉 be in 2α[S] × 2α[S]. If U1 ∩α[S] = U2

andO1 ∩ α[S] = O2, thene1 ≡a e2.
This allows us to restrict the algorithm to sets overα[S] instead
of sets overS. Another consequence of Thm. 9 is that the
transition relations can be simplified as well, since we only
need the result of the pre-image in the states inα[S].
Theorem 10 Let Rmay ⊆ S × S and Rmust ⊆ S × S be
the may and must transition relations of a monotone MixTS,
respectively, ande = 〈U,O〉 be a monotone element of
2S × 2S . Define Û , U ∩ α[S], Ô , O ∩ α[S], R̂must ,
Rmust∩ (α[S] × S), and R̂may , Rmay∩ (α[S]× α[S]). Then,

〈pre[Rmust](REDU(U)), pre[Rmay](REDO(O))〉 ≡a

〈pre[R̂must](REDU(Û)), pre[R̂may](Ô)〉

The algorithm RCS is shown in Fig. 4. It uses BDDs
to symbolically represent and manipulate sets of states and
transition relations. Functions that are prefixed with “BDD” are
the standard BDD operations. The algorithm works recursively
on the structure of the input formulaϕ. The fixpoints are
computed in the usual way, by iterating until convergence.
We describe the details of the implementation below.

Let P = {p1, . . . , pn} be a set ofn predicates. Re-
call that Mon(P ) denotes the set of monomials overP ,
and MT(P ) — the set of minterms overP . Furthermore,
α[Mon(P )] = MT(P ). The input to the algorithm is a MixTS
model 〈M,LM 〉, s.t. M = (S,Rmay, Rmust), S = Mon(P ),
andLM (s) = Lit(s), and anLµ propertyϕ. By Thm. 10,
we assume that the transition relations are restricted s.t.
Rmay ⊆ MT(P ) × MT(P ), andRmust⊆ MT(P ) × Mon(P ).

The algorithm uses the following sets of BDD variables:
B = {bi | pi ∈ P} – the current state Boolean variables,
B′ = {b′i | pi ∈ P} – the next state Boolean variables,H =
{hi | pi ∈ P} – the current state unknown variables, and

H ′ = {h′i | hi ∈ H} – the next state unknown variables. In
what follows, we do not distinguish between the BDDs and
the corresponding propositional formulas.

A set of mintermsX ⊆ MT(P ) is encoded by a propo-
sitional formula overB, as usual. For example, letP =
{p1, p2, p3}. Thenb1∧¬b2 encodes the set{p1∧¬p2∧p3, p1∧
¬p2∧¬p3}. A set of monomialsX ⊆ Mon(P ) is encoded by
a formula overB ∪H as follows:

∨

m∈X

(

(
∧

pi∈Lit(m)

¬hi ∧ bi) ∧

(
∧

¬pi∈Lit(m)

¬hi ∧ ¬bi) ∧ (
∧

pi∈P\Term(m)

hi)

)

Intuitively, given a monomialm, a variable hi indicates
whetherpi is present inm, and a variablebi specifies the polar-
ity of the occurrence. For example,(¬h1∧b1)∧(¬h2∧b2)∧h3

represents a singleton set{p1 ∧ ¬p2}.
An abstract valuee = 〈U,O〉 is encoded in a single BDD by

a formula(sel∧U)∨ (¬sel∧O), wheresel is a designated
BDD variable. This encoding is implemented byABSV. U and
O elements of the pair are extracted usingABSU and ABSO,
respectively. Abstract intersection (ABSAND), union (ABSOR),
and equality (ABSEQ) are done using the corresponding BDD
operations. Abstract negation (ABSNOT) is implemented fol-
lowing its definition in Sec. II.

The may transition relationRmay ⊆ MT(P ) × MT(P ) is
encoded by a formula overB∪B′ as usual. Similarly, the must
relationRmust ⊆ MT(P ) × Mon(P ) is encoded by a formula
over B ∪ B′ ∪ H ′, where the primed variables are used to
encode the destination state. For example, amust transition
from a state(p1 ∧p2 ∧p3) to a state(p1∧¬p2) is represented
by (b1 ∧ b2 ∧ b3) ∧ ((¬u′1 ∧ b

′
1) ∧ (¬u′2 ∧ ¬b′2) ∧ u

′
3).

ABSREDU implements theredU reduction operator of
Sec. V-C, using the following observation: letQ ⊆ Mon(P )
be a monotone subset, anda ∈ Mon(P ). If a ∈ MT(P ), then
↑a ⊆ Q ⇔ a ∈ Q; otherwise,↑a ⊆ Q iff ↑(a ∧ p) ⊆ Q
and ↑(a ∧ ¬p) ⊆ Q, where p is a term not occurring in
a. ABSREDU applies this reasoning recursively on the input
diagram. It uses a function UVAR to find a variablehi ∈ H
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for each variablebi ∈ B. The functionABSPRE implements
the pre-image computation based on Thm. 10.
Theorem 11 For a monotone MixTSM and ϕ ∈ Lµ,
the functionRCS(ϕ) returns the symbolic representation of
‖ϕ‖Mr .

VII. E XPERIMENTS

We have implemented symbolic algorithms for computing
both SCS and RCS using the CUDD [22] library. Our goal
was to evaluate the cost and performance of RCS versus SCS
on a realistic model. Understanding and analyzing RCS in the
context of abstraction refinement and software model-checking
is left for future work.

For the model, we used a template program built out of
n blocks, each based on an example from [20] and having
one integer variable. The method of [11] was applied to
build an abstract MixTS via predicate abstraction. We checked
one reachability (least fixed-point) property,Prop1, and two
non-termination (greatest fixed-point) properties,Prop2, and
Prop3. The code for the experiments is available fromhttp:
//www.cs.toronto.edu/∼owei/MixTS/FMCAD08.html.

The results are summarized in Fig. 5. The top part of
the table shows that, as expected, the model for RCS is
significantly smaller, in the # of DD nodes, than the model
for SCS. RCS is always more precise than SCS, and the extra
precision changes the number of iterations of the fixpoint
computation. ForProp1, RCS requires more iterations, and
takes more time than SCS. ForProp2, RCS is a lot faster
than SCS— the fixpoint computation in the former converges
in just two steps, whereas the number of iterations in latter
is proportional to the size of the model. ForProp3, where
RCS and SCS take the same number of iterations, RCS
performs significantly better. In all the cases, the time spent
in ABSREDU, which represents the main difference between
the two semantics, is only about 20% - 25% of the total time.

These experiments suggest that the additional precision of
RCS improves the overall performance of model checking,
making it a viable alternative to SCS in practice.

VIII. R ELATED WORK AND CONCLUSION

Related Work. Godefroid and Jagadeesan [9], and Gurfinkel
and Chechik [10] proved that the models in the KMTS family
have the same expressive power and are equally precise for
SCS. Dams and Namjoshi [6] showed that the three families
considered in this paper are subsumed by tree automata. Our
paper completes the picture by proving that the three families
are equivalent as well. Specifically, we showed that KMTSs,
MixTSs and GKMTSs are relatively complete (in the sense of
[6]) with one another.

In this paper, we did not consider Hyper TSs (HTSs) [21]
which allow for both must and may hyper-transitions. As
pointed out in [21],may hyper-transitions can be eliminated
by increasing the abstract statespace, making HTSs exactlyas
expressive as GKMTSs.

Our reduction operatorRED is an instance of normalization
from Abstract Interpretation [4], typically used to provide a

n SCS RCS

M
od

el
S

iz
e

100 370,070 216,689
150 825,112 482,531
200 1,460,270 853,389
250 2,275,196 1,329,215

Analysis Num. of Analysis ABSREDU Num. of
Prop. n (sec.) Iterations (sec.) (sec.) Iterations

P
r
o
p
1

100 2.20 301 3.60 0.74 401
150 6.66 451 12.12 2.57 601
200 15.36 601 27.77 6.45 801
250 28.92 751 55.19 13.40 1001

P
r
o
p
2

100 3.60 203 0.03 < 10
−4 2

150 11.91 303 0.07 < 10
−4 2

200 27.16 403 0.12 < 10
−4 2

250 54.62 503 0.19 < 10
−4 2

P
r
o
p
3

100 33.96 400 21.24 4.5 400
150 137.38 600 76.38 15.77 600
200 395.24 800 258.72 42.44 800
250 1108.67 1000 546.88 101.20 1000

Fig. 5. Experimental results for SCS and RCS.

canonical representation of equivalent abstract properties. Our
symbolic implementationABSREDU is similar to the semantic
minimization of 3-valued propositional formulas [19].

Since RCS is compositional, its precision is between SCS
and thorough semantics. Thus, existing results comparing SCS
and thorough semantics, i.e., [8,10,18], apply to RCS as well.
It is interesting to investigate whether the additional precision
enjoyed by RCS can be used to improve the above results.

Summary. In this paper, we compared three families of partial
modeling formalisms: KMTSs, MixTSs and GKMTSs. We
showed that they are equally expressive – a model of one
formalism can be transformed into an equivalent model of
another. Thus, neither hyper-transitions nor restrictions onmay
andmusttransitions affect expressiveness; they only affect the
succinctness of the formalism.

We also proposed a reduced compositional semantics for
partial models. This semantics is more precise than the stan-
dard one, MixTSs and GKMTSs are equivalent w.r.t. it. We
also provided a symbolic implementation of the new seman-
tics, and our experiments suggested that the new semantics is a
good alternative to the standard one for predicate abstraction-
based model-checkers.
Acknowledgments.We thank Sagar Chaki for comments on
earlier drafts of this paper.
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APPENDIX

The appendix contains proof sketches of theorems for the
convenience of the reviewers.
Theorem 2 LetG be a GKMTS, andM = GTOM(G). Then,
M is a MixTS, andG andM are semantically equivalent.
Proof: (1) According to the construction in Def. 6, every must
hyper-transition is replaced by a regular one. It is easy to
show thatM is a MixTS. (2) To prove thatG andM are
semantically equivalent, we show that any concrete BTSB =
〈C,R〉 refinesG iff it refines M . It is equivalent to showing
that the soundness relationρG ⊆ C×SG is a mixed simulation
betweenB andG iff the soundness relationρM : C × SM is
a mixed simulation betweenB andM . This is proved based
on the construction of transition relations given in Def. 6.
Theorem 3 Let M = 〈SM , Rmust

M , Rmay
M 〉 be a monotone

(Def. 9) MixTS transition system, then the following are
equivalent:

1) M is semantically consistent, i.e.,C[M ] is not empty.
2) M is logically consistent, i.e.,〈M,L〉 is logically con-

sistent for every (consistent) labeling functionL.
3) for any a, b1 ∈ SM , a

must
−−→ b1 ⇒ ∃b2 ∈ SM · b1 �

b2 ∧ a
may
−−→ b2.

Proof:

• (1) ⇒ (2). Trivial (by Theorem 2)
• (2) ⇒ (3). Given a

must
−−→ b1, we prove the result by

constructing a consistent labeling functionL such that for
some atomic propositionp, to ensure the value‖♦p‖(a)

is consistent, i.e., belonging to{t, f,m}, a must have a
may transition to some stateb2 such thatb1 � b2.
We construct the labeling functionL as follows.
We define three setsS1, S2, andS3.

S1 = {s ∈ SM | b1 � s}

That is, S1 is the set of states which are more precise
thanb1. Let

S2 = {s ∈ SM | ∃t ∈ S1 · s � t} \ S1

That is,S2 is the set of states which are less precise than
some state inS1, but does not include the states inS1

themselves. Let

S3 = SM \ (S1 ∪ S2)

That is, the set of states which are outside ofS1 andS2.
Note thatS1, S2 andS2 are disjoint.
Let AP = {p} and the labeling functionL is defined as
follows:

L(s) =











{p} if s ∈ S1

{} if s ∈ S2

{¬p} if s ∈ S3

That is,p is true inS1, unknown inS2, and false inS3.
We show thatL is consistent:

– at most one ofp or ¬p belongs toL(s) for any
s ∈ SM

– L is monotone, which follows from the following
fact: for anys, t ∈ SM

1) s, t ∈ S1:
In this caseL(s) = L(t), and the monotonicity
condition is always satisfied. Same result holds
for the cases ofs, t ∈ S2, ands, t ∈ S3.

2) s ∈ S1 and t ∈ S2: In this case, supposes � t,
thenb1 � t, andt ∈ S1; contradiction.
Therefore, the only possible ordering relation
betweens and t is t � s. SinceL(t) ⊆ L(s),
the monotonicity condition is satisfied.

3) s ∈ S2 and t ∈ S3:
In this case, supposet � s, then there exists
s′ ∈ S1, andt � s′, i.e., t ∈ S2; contradiction.
Therefore, the only possible ordering relation
betweens and t is s � t. SinceL(s) ⊆ L(t),
monotone condition holds.

4) s ∈ S3 and t ∈ S1:
In this case, supposes � t, then s ∈ S2; a
contradiction. Moreover, supposet � s, then
s ∈ S1; a contradiction. Therefore, neithers � t
nor t � s holds. Monotone condition is satisfied.

We now show that

∃b2 ∈ SM · b1 � b2 ∧ a
may
−−→ b2 (1)
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a
must
−−→ b1

⇒ (by definition ofL, ‖p‖ = 〈S1, S1 ∪ S2〉)

a
must
−−→ b1 ∧ b1 ∈ U(‖p‖)

⇒ (by definition of‖♦p‖)
a ∈ U(‖♦p‖)

⇒ (since‖♦p‖(a) is consistent)
a ∈ O(‖♦p‖)

⇒ (by definition of‖♦p‖)

∃b ∈ S1 ∪ S2 · a
may
−−→ b

Consider different cases ofb,

– b ∈ S1: by definition of S1, b1 � b; let b2 = b,
then (1) holds.

– b ∈ S2: in this case, we have that

∃b ∈ S2 · a
may
−−→ b

⇒ (by definition ofS2)

∃b ∈ S2 · a
may
−−→ b ∧ ∃b′ ∈ S1 · b � b′

⇒ (by monotonicity ofM )

∃b′ ∈ S1 · a
may
−−→ b′

⇒ (by definition ofS1)

∃b′ ∈ S1 · a
may
−−→ b′ ∧ b1 � b′

let b2 = b′, then (1) holds.

• (3) ⇒ (1): we prove the result by constructing a BTS
B = 〈C,R〉 such thatM �ρ B , whereC is the concrete
statespace approximated bySM andρ ⊆ C × SM is the
soundness relation.
The BTSB be defined as follows: for anyc, d ∈ C,

(c, d) ∈ R ⇔ ∃b ∈ SM · α(c)
may
−−→ b ∧ (d, b) ∈ ρ

We now show thatM �ρ B, i.e.,ρ is a mixed simulation
betweenM andB.
For every(c, a) ∈ ρ, we have the following results

– for any b ∈ A

a
must
−−→ b

⇒ (sincea � α(c), by monotonicity ofM )

α(c)
must
−−→ b

⇒ (by assumption)

α(c)
must
−−→ b ∧ ∃b′ · b � b′ ∧ α(c)

may
−−→ b′

⇒ (let d be a state inγ(b′); by the construction ofB)
∃b′ · b � b′ ∧ c→ d ∧ (d, b′) ∈ ρ

⇒ (sinceb � b′, γ(b′) ⊆ γ(b))
c→ d ∧ (d, b) ∈ ρ

– for any d ∈ C, supposec→ d, i.e., c
may
−−→ d, then

c
may
−−→ d

⇒ (by the construction ofB)

∃b ∈ SM · α(c)
may
−−→ b ∧ (d, b) ∈ ρ

⇒ (sincea � α(c), by monotonicity ofM )

∃b ∈ SM · a
may
−−→ b ∧ (d, b) ∈ ρ

Theorem 4 Let M be a MixTS, andK = MTOK(M). Then
K is a KMTS, andM andK are semantically equivalent.
Proof: (1) The construction in Def. 7 ensures that everymust
transition inK is matched by amay transition. Therefore,
K is a KMTS. (2) To prove thatM andK are semantically
equivalent, we show that for any concrete BTSB = 〈C,R〉,
the soundness relationρM ⊆ C × SM is a mixed simulation
betweenB andM iff the soundness relationρK : C × SK

is a mixed simulation betweenB andK. The proof follows
from the construction of transition relations in Def. 7.
Theorem 5 RCS is more precise than SCS:‖ϕ‖c �a ‖ϕ‖r.
Proof: The proof is by structural induction onϕ. For the base
case, it is obvious that for any atomic propositionp, ‖p‖c ≡a

‖p‖r. In the following, we show the inductive case for♦ϕ;
the proofs of other cases are trivial.

We show that if||ϕ||c �a ||ϕ||r, then ||♦ϕ||c �a ||♦ϕ||r,
i.e.,

||ϕ||c �a ||ϕ||r ⇒ γ(U(||♦ϕ||c)) ⊆ γ(U(||♦ϕ||r)) (2)

and

||ϕ||c �a ||ϕ||r ⇒ γ(O(||♦ϕ||c)) ⊆ γ(O(||♦ϕ||r)) (3)

Proof of (2). For any two setsQ1, Q2, we have that

γ(Q1) ⊆ γ(REDU(Q2)) ⇒ Q1 ⊆ REDU(Q2) (P1)

This follows from the following derivation: supposeQ1 *
REDU(Q2), then there exists a states s.t. s ∈ Q1 and s /∈
REDU(Q2). By the definition ofREDU, γ(s) * γ(Q2); on the
other hand, sinceγ(Q1) ⊆ γ(REDU(Q2)) = γ(Q2), γ(s) ⊆
γ(Q2). A contradiction.

The proof of (2) is shown below.

||ϕ||c �a ||ϕ||r
⇒ (by the definition of�a)

γ(U(||ϕ||c) ⊆ γ(U(||ϕ||r))
⇒ (sinceγ(Q) = γ(REDU(Q)))

γ(U(||ϕ||c) ⊆ γ(REDU(U(||ϕ||r)))
⇒ (by (P1))

U(||ϕ||c)) ⊆ REDU(U(||ϕ||r))
⇒ (sinceQ1 ⊆ Q2 ⇒ preU(Q1) ⊆ preU(Q2))

preU(U(||ϕ||c)) ⊆ preU(REDU(U(||ϕ||r)))
⇒ (by the definition ofγ)

γ(preU(U(||ϕ||c))) ⊆ γ(preU(REDU(U(||ϕ||r))))
⇒ (sinceγ(Q) = γ(REDU(Q))

γ(preU(U(||ϕ||c))) ⊆ γ(REDU(preU(REDU(U(||ϕ||r)))))
⇒ (by the definition of SCS and RCS)

γ(U(||♦ϕ||c)) ⊆ γ(U(||♦ϕ||r))

Proof of (3). Dual of the one above.
Theorem 6 Let G be a GKMTS, andM = GTOM(G). Then,
G andM are equivalent w.r.t. RCS:∀ϕ ∈ Lµ · ‖ϕ‖Gr ≡a ‖ϕ‖Mr .
Proof: The proof is by structural induction onϕ. For the base
case, according to the definition ofLM , we have that for any
atomic propositionp, ‖p‖Gr ≡a ‖p‖Mr . In the following, we
show the inductive case for♦ϕ; the proofs of the other cases
are trivial.
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We show that if‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ ‖♦ϕ‖Gr ≡a ‖♦‖rϕ
M,

i.e.,

‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(U(‖♦ϕ‖Gr )) ⊆ γ(U(‖♦ϕ‖Mr )) (4)

and

‖ϕ‖Gr ≡a ‖ϕ‖Mr ⇒ γ(O(‖♦ϕ‖Gr )) ⊆ γ(O(‖♦ϕ‖Mr )) (5)

Proof of (4). For any concrete statec and a set of abstract
statesQ,

c ∈ γ(REDU(Q)) ⇔ ∃a ∈ Q · c ∈ γ(a) (P2)

The proof of (4) is as follows: for any concrete statec,

c ∈ γ(U(‖♦ϕ‖Gr ))
⇔ (by the definition of RCS)

c ∈ γ(REDU(preG
U

(REDU(U(‖ϕ‖Gr )))))
⇔ ( (⇒) let a be the abstract state in (P2),

(⇐) sinceγ(Q) = γ(REDU(Q)))
c ∈ γ(a) ∧ a ∈ preG

U
(REDU(U(‖ϕ‖Gr )))

⇔ (by the definition ofpreU)
c ∈ γ(a) ∧ ∃Q ⊆ REDU(U(‖ϕ‖Gr )) · Rmust

G (a,Q)
⇔ (by the construction in Def. 6 and (P2))

c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Gr ))) ∧Rmust
M (a, b)

⇔ (since‖ϕ‖Gr ≡a ‖ϕ‖Mr , γ(U(‖ϕ‖Gr )) = γ(U(‖ϕ‖Mr )))
c ∈ γ(a) ∧ ∃b · γ(b) ⊆ γ(REDU(U(‖ϕ‖Mr ))) ∧Rmust

M (a, b)
⇔ (sinceγ(Q) = γ(REDU(Q)), by the definition ofREDU)

c ∈ γ(a) ∧ ∃b ∈ REDU(U(‖ϕ‖Mr )) ·Rmust
M (a, b)

⇔ (by the definition ofpreU)
c ∈ γ(a) ∧ a ∈ preM

U
(REDU(U(‖ϕ‖Mr )))

⇔ ( (⇒) sinceγ(Q) = γ(REDU(Q)),
(⇐) let a be the abstract state in (P2))
c ∈ γ(REDU(preM

U
(REDU(U(‖ϕ‖Gr )))))

⇔ (by the definition of RCS)
c ∈ γ(U(‖♦ϕ‖Mr ))

Proof of (5). The proof is similar to the one above. It is based
on the observation that for any concrete statec and a set of
abstract statesQ, c ∈ γ(REDO(Q)) ⇔ ∃a ∈ Q · c ∈ γ(a).

Theorem 7 Let S be an abstract statespace, ande be a
monotone element in2S × 2S . Then,red(e) = RED(e).

Proof: According to the definition ofRED, the proof of the
theorem is equivalent to showing that for anye = 〈U,O〉 ∈
2S × 2S ands ∈ S,

γ(s) ⊆ γ(U) ⇔ ↑s ⊆ U (6)

and γ(s) * γ(O) ⇔ ↑s * O (7)

Proof of (6). The (⇒) direction follows from the following

derivation: supposing that↑s * U , we have that

↑s * U
⇒ ∃a ∈ S · a ∈ ↑s ∧ a /∈ U
⇒ (sincea ∈ ↑s, a ∈ α[S])

∃a ∈ S · a ∈ ↑s ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)
⇒ (by the def. of↑s, γ(a) ⊆ γ(s); sinceγ(s) ⊆ γ(U))

∃a ∈ S · a ∈ ↑s ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)∧
c ∈ γ(U)

⇒ (by the definition ofγ)
∃a ∈ S · a ∈ ↑s ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)∧
c ∈ γ(U) ∧ ∃b ∈ U · c ∈ γ(b)

⇒ (by the definition ofα)
∃a ∈ S · a ∈ ↑s ∧ a /∈ U ∧ ∃c ∈ C · a = α(c)∧
c ∈ γ(U) ∧ ∃b ∈ U · c ∈ γ(b) ∧ b �a a

⇒ (by monotonicity ofe, a ∈ U )
∃a ∈ S · a ∈ ↑s ∧ a /∈ U ∧ a ∈ U

A contradiction. The (⇐) direction is trivial.

Proof of (7). Dual of the one above.
Theorem 8 Let e1 = 〈U1, O1〉 be a monotone element of2S×
2S, ande2 = 〈U2, O2〉 be in2α[S] ×2α[S]. If U1∩α[S] = U2,
andO1 ∩ α[S] = O2, thene1 ≡a e2.
Proof: This is proved by showing thatRED(e1) = RED(e2);
sinceRED is semantics preserving, the result holds.
Theorem 9 Let Rmay ⊆ S × S and Rmust ⊆ S × S be
the may and must transition relations of a monotone MixTS,
respectively, ande = 〈U,O〉 be a monotone element of
2S × 2S . Define Û , U ∩ α[S], Ô , O ∩ α[S], R̂must ,
Rmust∩ (α[S] × S), and R̂may , Rmay∩ (α[S] × α[S]). Then,

〈pre[Rmust](REDU(U)), pre[Rmay](REDO(O))〉 ≡a

〈pre[R̂must](REDU(Û)), pre[R̂may](Ô)〉

Proof: According to the definition of≡a, we show that

γ(pre[Rmust](REDU(U))) = γ(pre[R̂1](REDU(Û))) (8)

and γ(pre[Rmay](REDO(O))) = γ(pre[R̂2](Ô)) (9)

Proof of (8). The fact that γ(pre[Rmust](REDU(U))) ⊆

γ(pre[R̂1](REDU(Û))) is shown as follows. For any concrete
statec,

c ∈ γ(pre[Rmust](REDU(U)))
⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmust](REDU(U))
⇒ (by the definition ofpre)

∃a ∈ S · c ∈ γ(a) ∧ ∃b ∈ REDU(U) · Rmust(a, b)
⇒ (let a′ = α(c), by the definition ofα)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃a ∈ S · a �a a
′∧

∃b ∈ REDU(U) ·Rmust(a, b)
⇒ (by the definition of monotone MixTSs)

c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) ·Rmust(a′, b)

⇒ (by the definition ofR̂must)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ REDU(U) · R̂must(a′, b)

⇒ (sincee is a monotone element, by Theorem 8)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ redU(U) · R̂must(a′, b)

⇒ (by the definition ofÛ , redU(U) = redU(Û) )
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ ∃b ∈ redU(Û) · R̂must(a′, b)

⇒ (by the definition ofpre)
c ∈ γ(a′) ∧ a′ ∈ pre[R̂1](REDU(Û))

⇒ c ∈ γ(pre[R̂must](REDU(U)))
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The proof of γ(pre[Rmust](REDU(U))) ⊇
γ(pre[R̂1](REDU(Û))) is trivial.

Proof of (9). The fact that γ(pre[Rmay](REDO(O))) ⊆

γ(pre[R̂2](Ô)) is shown as follows. For any concrete statec,

c ∈ γ(pre[Rmay](REDO(O)))

⇒ ∃a ∈ S · c ∈ γ(a) ∧ a ∈ pre[Rmay](REDO(O))
⇒ (by the definition ofpre)

∃a ∈ S · c ∈ γ(a) ∧Rmay(a) ⊆ REDO(O) ∧ c ∈ γ(a)
⇒ (let a′ = α(c), by the definition ofα)

c ∈ γ(a′) ∧ a′ ∈ α[S]∧

∃a ∈ S · a �a a
′ ∧Rmay(a) ⊆ REDO(O)

⇒ (by the definition of monotone MixTSs)
c ∈ γ(a′) ∧ a′ ∈ α[S]∧

∃a ∈ S · Rmay(a′) ⊆ Rmay(a) ⊆ REDO(O)

⇒ (by the definition ofR̂may, Rmay(a′) ∩ α[S] = R̂may(a′))
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (REDO(O) ∩ α[S])

⇒ (sincee is a monotone element, by Theorem 8)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (redO(O) ∩ α[S])

⇒ (by the definition ofredO)
∀s ∈ α[S] · s ∈ redO(O) ⇔ s ∈ O)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ (O ∩ α[S])

⇒ (by the definition ofÔ)
c ∈ γ(a′) ∧ a′ ∈ α[S] ∧ R̂may(a′) ⊆ α[S] \ Ô

⇒ (by the definition ofpre)

c ∈ γ(a′) ∧ a′ ∈ γ(pre[R̂2](Ô))

⇒ c ∈ γ(pre[R̂2](Ô))

The proof ofγ(pre[Rmay](REDO(O))) ⊇ γ(pre[R̂2](Ô)) is
similar.
Theorem 10 For a monotone MixTSM and ϕ ∈ Lµ,
the functionRCS(ϕ) returns the symbolic representation of
‖ϕ‖Mr .
Proof: The proof follows from Thm. 8, Thm. 9, and Thm. 10.
In particular, Thm. 9 is used to show that in the interpretation
of ♦ϕ in Def. 8, removing the application ofRED after preU
andpreO does not affect precision.
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