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Abstract—A variety of partial modeling formalisms, aimed computational models for partial specifications of reactiv
to capture and reason about abstractions, have been propase systems [16], and later adapted for model-checking [2,18, 14
Some, e.g., Kripke Modal Transition Systems (KMTSs) putstong  thg second family is Mixed Transition Systems (MixTSs) [5],

restrictions on necessary and possible behaviours. Some,ge - .
Mixed Transition Systems (MixTSs), relax these restrictims. Yet or, equivalently, Belnap TSs [12]. It places no restrictiam

others, e.g., Generalized Kripke MTSs (GKMTSs), allow hype  the relationship betweemay and musttransitions and thus
transitions. extends KMTSs. MixTSs where introduced in [5] as abstract

In this paper, we aim to understand trade-offs between these models for L,,, and have been combined with predicate
formalisms w.r.t. their applicability to symbolic model-checking. gpstraction and software model-checking in [11]. The third

We establish that these formalisms have the same expressiver, .., : ; Coo
power while differing in succinctness. We also measure the family is Generalized KMTSGKMTSs) [20], or, equiva

analyzability of these formalisms, measured as the precisnh of Ieptly, Abstract TSSW] and Disjunctive MTS§Q17]- It eXt?_ndS
computing compositional semantics of temporal logic formias. MixTSs by allowing must hyper-transitionsi.e., transitions
We show that the standard compositional semantics is not pre into sets of states. Both MixTSs and KMTSs have been
served between_ equivalent GKMTSs _and Mix'l_'Ss, and int_rc_;duce used in practical symbolic model-checkers (e.g., [3, 1)),13

a novel semantics, callededuced, which remains compositional while the direct use of GKMTSs has been hampered by the

while being both more precise than the standard one and . . . - .
preserved by the semantic equivalence. difficulty of compactly encoding hyper-transitions into BB.

We also present a symbolic algorithm to compute the reduced N this paper, we compare the three families w.r.t. theit-sui
semantics for MixTS models built via predicate abstractiors and ability as the “right” formalism for symbolic model-checigj
report on our experience using it in practice. of partial models. Our basis of comparison is (i) the expvess
power of the formalisms (i.e., what can be modeled, what ab-
straction can be captured) (ii) analyzability of the forismls

Abstraction is the key to scaling model-checking tgi.e., the cost and precision of evaluating temporal lagic)
industrial-sized problems. Typically, a large (or infijite We show that MixTSs, KMTSs and GKMTSs are equally
concrete system is approximated by a smaller abstrasipressive: for any partial modal expressed in one formal-
system via abstracting the concrete states, analyzing tibm, there exists a partial mod&l’ in the other s.t\M and M’
resulting abstract system, and lifting the result back t tlapproximate the same set of concrete systems. Thus, neither
concrete system. The interpretation of the result depengiger-transitions nor restrictions enay and musttransitions
on the type of property being checked, and the type affect expressiveness. They do, however, affect the sizieeof
the abstraction used. The two common abstraction schemasdels: a GKMTS can be modeled by a MixTS of smaller
are over-approximation — the abstract system containsr equal size (the reduction can be exponential), and MixTSs
more behaviours than the concrete one and thus preserggs more succinct than KMTSs. Dams and Namjoshi have
universal properties, andnder-approximation- the abstract showed that all of the above partial models are subsumed by
system containdess behaviours than the concrete one angtee automata [6]. Our work completes the picture by showing
thus preserves existential properties. Preserving arbitr the expressive equivalentetweernthose formalisms.
properties (e.g., fuli-calculus,L,,, [15]) requires combining A semantics of temporal logic is callempositionaif it
over- and under-approximation into a single model [5, 16k defined inductively on the syntax of the logic. We refer to
This is done via using two types of transitionsiay and the typical compositional semantics &f, on partial models
must representingpossible (or over-approximating), and asstandard(SCS). We show that GKMTSs are more precise
necessary(or under-approximating) behaviours, respectivelyhan MixTSs (and, hence, KMTSs), w.r.t. SCS. That is, a
We refer to such models gmartial. Temporal properties over GKMTS can prove/disprove more properties under SCS than
partial models are interpreted using the 3-valued senmmntia MixTS obtained by a semantics-preserving translatiofis Th
a property can be either true, false,wrknown is significant since in practice partial models are evalliate

A variety of partial modeling formalisms have beemw.r.t. compositional semantics. We propose a novel altemna
developed, forming three separate families. The firgtripke semantics, callededuced (RCS), which remains composi-
Modal Transition System@MTSs) [14] and their equivalent tional (and tractable) and is more precise than SCS. We
variants Modal TSq16], Partial Kripke StructuregPKSs) [2], show that GKMTSs and MixTSs are equivalent w.r.t. RCS.
and 3-valued KSd3]. It requires that everynusttransition Thus, we argue that MixTSs offer a more compact and more
is also amay transition. KMTSs were first introduced asversatile alternative to GKMTSs, supporting efficient syt

I. INTRODUCTION



compositional model checking. defined as abbreviations:Vv 1) £ —~(=p A=), Op £ =0,
To show the practical impact of the above result, we present - p(Z) £ —uZ - ~p(=Z).
a symbolic algorithm to compute the reduced semantics ofLet M = (M, L) be a model, wher@/ = (S, R™®, RMusY,
MixTS models constructed using predicate abstraction. ¥¥e dand ¢ be anL, formula. Aninterpretation(or semantick of
scribe our implementation and evaluate it empirically agai ¢ over M, denoted|| ||, is given by a pairU, O), where
the standard compositional semantics. U,O C S. Intuitively, U is the set of states that satisfy,
The rest of the paper is organized as follows. Sec. Il reviewsd O is the set of states that are “not known to refuie”
the necessary background on partial models and abstractibhus, ¢ is true inU, false inS'\ O and unknown inO \ U.
In Sec. IV, we show that KMTSs, MixTSs and GKMTSsWe call U and O the under- and theover-approximatiorof
are equally expressive by developing semantics-presgrvip, respectively.
translations from GKMTSs to MixTSs, and from MixTSs to The semantics of , is calledcompositionalf it is inductive
KMTSs. In Sec. V, we introduce a ne@ducedcompositional on the syntax of the logic. We refer to the commonly used
semantics (RCS) fol,. In Sec. VI, we present a symboliccompositional semantics asandard(SCS). In the definition,
algorithm to compute RCS in the context of predicate alwve use the following notation. Let= (U, O). We write U(e)
straction, and report on our experience with this algorithm andO(e) to denote/ andO, respectively. We use operatofs
Sec. VII. We conclude the paper in Sec. VIl with the summargnd ~ defined as follows= (U, O) £ (O,TU), and (U, O1) 1

of the paper, and comparison with related work.
1. PRELIMINARIES

In this section, we review several complete and partighy . 1/, — 25«25

modeling formalisms, and their use for abstraction.
A. Complete and Partial Models

A statespace of partial transition system is a tupl&, <s),
where S is a set of states, ands is a partial order onS.
Intuitively, s; <g s2 means that; is less informative (more
partial) thans,.

Def. 1 (Partial TSs) [1, 5, 14, 20] A Generalized Kripke
Modal Transition SysteniGKMTS) is a tupleM = ((S, <g),
R™M RpMusYH "where(S, <s) is the statespace, and@™® C S x
S, RmustC S x 25 are themay and musttransition relations,
respectively. AMixed TS (MixTS) is a GKMTS s.tRMst C
S x S. A Kripke Modal TS(KMTS) is a MixTS s.tRMUst C
R™, A Boolean TS(BTS) is a KMTS s.tRM& = pmust

We write s =% ¢ for (s,t) € R™, s ™% ¢ ands ™% @
for (s,t) € R™stand (s, Q) € R™S, respectively. Intuitively,

<U2, 02> £ <U1 NU;, 01N 02>

Def. 2 (SCS) [1,5,12,14,20]. LetM = (M, Ly) be a
model,M = (S, R™, R™SY Var a set of fixpoint variables,

. Thestandard compositional semantics
(SCS)of p € L, is:

Pl 2 (s 1P € Lar()}{s | ~p ¢ Laa(s)})

=@l 2 ~lpli 121144 2 o(2)
le ABIEE 2 gl il

10011 2 (preu(U(lleli2)), preo(O(e24)
112 -ell2% 2 (0= (AQ- UlllellX g )

1= (AQ - Ol 7))
where Z € Var, Ifp is the least fixpoint, and thpre-image
operatorsprey and preg are defined as follows:

reu(Q) & {s|3teQ s ™%t} if MisaMixTS
e {s|VCQ-s XU if Misa GKMTS
preo(Q) 2 {s|3teQ s =t}

B. Partial Models and Abstraction

may and must transitions represent possible and necessary

behaviours, respectively. For example, a BT8amplete(i.e.,
not partial) since evergnaybehaviour is also emustbehaviour.

Let AP be a set of atomic propositionit(AP) be a set
of literals of AP, and S be a statespace. state labelingis
a functionL : S — 247 that assigns to each statea set of
literals that are true iB. A TS M together with a labelind.,
written (M, L), is called amodel L is defined over literals.
Thus, if p € L(s), we say thap is true ins; if —p € L(s)
— p is false ins; otherwise, the value gf is unknown We
require that a state labeling liscally consistenti.e., at most
one of p and —p belongs toL(s); and monotonew.r.t. <g,
i.e., s1 =g s2 = L(s1) C L(s2).

In this paper, we use the modaicalculus [15] {,) as our
temporal logic. It is defined as the set of all formulas switigf
the following grammar:

pu=ploplene|Op|uz-o(Z),
wherep is an atomic proposition, angd a fixpoint variable.

A concretestatespace” is a set of states. Arabstract
statespace approximatirgg is a set of state$' together with
a soundnesgelation p : C x S, where (¢,s) € p means
that s p-approximatesc. p induces aconcretizationfunction
v(s) £ {c | (¢,8) € p}, and anapproximationordering
=,C S x S defined ass <, t & v(s) D ~(t). Thatis,y(s) is
the set of all concrete states approximatedspgnds =<, ¢ if
s is less precisgmore approximate) thah For a set) C 5,
we definey(Q) £ Usegr(s). Following [4], we require that
=< be an partial order, and th& satisfy “the existence of a
best approximation”:

Vee C-3s €S- (ple,s) Vs € 8-p(c,s") = v(s") D(s))
We use anabstractionfunction o« : ¢ — S to map each
concrete element to its best approximation. The image isf
denoted byn[S] £ {a(c) | c € C}.

In our examples, we often use the abstract domain of
predicate abstraction. LeP = {p;,...,p,} be a set ofn

Furthermore,Z in uZ - ¢(Z) must occur under the scopepredicates. A conjunction of literals &f is called anonomiaj
of an even number of negations. Additional operations asemonomial in which each variable, appears once (either



positively or negatively) is called minterm We write Mor( P)

and MT(P) for the set of all monomials and minterms Bf w o

respectively. The domain of predicate abstraction is the se, 1 \:@< ® v \$@<
Mon(P). The soundness relatigrp is defined s.t(c, s) € pp - o ?L.w@/ i
iff ¢ satisfies all predicates is, i.e., ¢ = s; the abstraction T o) :,4 om0y

ap(€) 2 (Ao, Pi) A (Aayep, 0i); ap[MoON(P)] = MT(P);
and the approximation ordering is reverse implication.

The approximation relation is extended from a statespacefie 1. (a) A semantically inconsistent KMT&; wherev(a1) = {1},
transition systems using the conceptroixed simulation gé‘;il\fgle; téill’”} and y(a3) = {es}. (b) A monotone KMTS A,
Def. 3 (Mixed Sim.) [5] Let M, = (S1, R*™, Ry*st) and '

My = (Sa, Ry, RT*') be two MiXTSsH C S; x Sz is a denoted|¢|.(s), can be defined using 3-valued logic:
mixed simulatiorbetween\/; and M if for any (s1, s2) € H, tif se Ul
the following two conditions hold: lolle(s) = foif s¢O(lgf.)

may may -
dt1 € S1- 81 —>t1:>3t2€S2'82—>t2/\(t1,t2) cH m  otherwise

Ity € 8o -5 Tty = Ity € 8151 bty A(tr,ts) € H  Def. 4 A transition systend/ is logically consistenif (M, L)
In this case, we say/, H-simulatesi;, written M, <y M;. is logically consistent for every (consistent) labelingdtion
Intuitively, M, simulatesM; wheneverl, is less precise L.

about its behaviour thad/;. This definition generalizes to Let C[M] denote the set of all concrete refinementsiHf
GKMTSs (c.f., [20]). A model M is semantically consistent C[M] is not empty.

Let C and S be a concrete and abstract statespaces, resppef. 5 A transition systemM is semantically consisten
tively, andp C C x S be the soundness relation. A partial TS/, L) is semantically consistent for every (consistent) la-
M over S approximatesa BTS B over C (or, equivalentlyB  beling functionL.
refinesM) iff M p-simulatesB, M <, B.Let Ly andLp be  There is an obvious relationship between the two notions
state-labellings forS and C, respectively.L), approximates of consistency.

Lp, denotedLys =, Lp, iff p(c,s) = Lu(s) € Lp(c). A Theorem 2 If an abstract transition systed is semantically
partial modelM = (M, L) approximatesa concrete model consistent, then it is logically consistent.
B = (B, Lp) (or, equivalently,5 refinesM) iff M =, B, The converse of Theorem 2 is not true in general. Filling this

andLy =, Lp. gap is the subject of the rest of this section.
Theorem 1 [5] Let B = (B, Lp) be a concrete model that

refines a partial modeM = (M, L), andg € L,. Then, B. Checking for consistency

Y(U(lelIM) € U([l¢lB), and O(]|¢[|B) € v(O(]|¢||M)). It is of practical interest of ensure semantic consistemncy f
That is, if ¢ is true (false) at a state of M, then it is true partial models, e.g., to ensure a specification given by agbar
(false) at all states(a) of B. model is implementable in model-based software developmen

Let C[M] be the set of all concrete refinements bf. Surprisingly, we found that such conditions have not been
Intuitively, C[ M| is the semantic meaning @#1. An interpre- precisely defined before. For example, one may think that the
tation of L,, based on the semantic meaning of a partial modepndition R™' C R™ is sufficient to ensure that KMTSs are
was introduced in [2] ashorough semanticdt is defined as semantically consistent. However, although this doesaniae
follows: [|p||M = (U,0) iff a € U < VB € CIM]-~(a) C that every KMTS is logically consistent, it does not ensure
U(||90||f), anda ¢ O < VB € C[M] - v(a) C U(||ﬁ<p|\§), semantic consistency. For example, for the KMA$ shown

To compare different interpretations df,,, we introduce in Figure 1(a), everynusttransition is also anay transition,
two ordering relations or2® x 2°. Let e; = (U;,0;) and but there does not exist a concrete refinementAofover
ea = (Uy, 03). We say thate; is less informativethan e,, the states{ci,co,c3}. To see this, suppose such a concrete
written e; <; e iff Uy C Uy and Oy C O;. We say that modelC exists. Because of the transitian; must, as, there
e1 is semantically less precisthan ez, written e; <, eo, iff must be a transitior;, — c¢3 in C. This in turn requires
v(Uy) € 4(Us) and~(Oy) C v(O2). a may transition froma; to a3 which does not exists in

IIl. CONSISTENCY Aj. Similarly, for a GKMTS A = (A, R™St M) the
sufficient condition for logical consistency [7], which técgs
that every destination of musthyper-transition intersects with

A consistency of a partial model can be defined in twthe destination of anay transition from the same state, i.e,
ways: either based on satisfaction of temporal logic foasulVa € A-VU C A-U € R™(a) = U N R™(a) # (), can be
(logical consistency), or based on possible concrete refingewed as an analogue of the logical consistency condition f
ments (semantic consistency). Here, we formally define thK&ITSs, and in general does not ensure semantic consistency
two notions. either.

A model (M, L) is logically consistentf for every p € L,,, The reason that logical and semantic consistency are not
U(ll¢lle) € O(|l¢lle)- Thatis, the value of in a states € S, equivalent is that they describe consistency for diffestates-

A. Two definitions of consistency



still be semantically inconsistent. In the abstractionnefi

0 ment framework of software model-checking [11], requiring
7 T— RMUstC RMY makes KMTSs incapable of supporting precise
@ ® . ” :
P \ / monotone refinement [20] — extraaytransitions imposed by
T v this requirement lead to imprecise model checking restitis

is not a problem form MixTSs. Note that GKMTS, proposed

by Shoham and Grumberg [20] for solving this problem,
Fig. 2. (a) A consistent MixTS thaloes notsatisfy R™*S'C R™. (b) A achieve the same goal by using hyper-transitions. This also
BTS in that refines a MXTS in (). ensure that no extrenay transitions are added to imprecise

paces — the former ensures consistency of temporal preperﬁtates-
for abstract states, and the latter — for concrete states. In IV. EXPRESSIVENESS

general, even ilJ([|¢[lc) < O([[#||) holds for each formula  \ye show that GKMTSs, MixTSs, and KMTSs are expres-
o, it may still be possible that there exist concrete statgﬁ/dy equivalent. Two partial TS and M’ aresemantically
approximated by both of the states U([[¢||c) and that in oqivalent denoted M =, M, iff they have the same
O(lllle), which results in inconsistency on thoie CONCre&st of concrete refinements. Two modeling formalisms are
states. In the previous example, for the formyla= O —p,  expressively equivaleriff for every TS M from the one
we have thatU(|[¢|[c) = {ai2} € O([¢[lc) = {‘“2’“3}' formalism, there exists a T®’’ from the other, s.tM =, M.
However, because of (U([|¢][c)) Nv(O(ll¢llc)) = {ei} it The equivalence of the three formalisms is proved by defining
implies thatc; satisfies both) and —! To fix the problem, semantics-preserving translations between them.

we add the monotonicityrequirement on transition relations . )

(see Def. 9) that guarantees the equivalence between logfea GTOM: Translation from GKMTSs to MixTSs

and semantic consistency. Here, we present the translationT@GM that converts a
Theorem 3 Let M = (S, RTFS RT™) be a monotone GKMTS into a semantically equivalent MixTS. We begin by
(Def. 9) MixTS transition system, then the following ar@lustrating the translation on a GKMTS; in Fig. 3.G; is not
equivalent: a MixTS because of musthyper-transitions; - {asz,as}.

1) M is semantically consistent, i.C[M] is not empty.  This transition ensures that in every concrete BTS refiding

2) M is logically consistent, i.e(M, L) is logically con- all states invy(a1), i.e., those satisfyingz < 0Aeven(z)),
sistent for every (consistent) labeling functién must have a transition to a statejt{az, a3}), i.e., satisfying

3) for any a,by € S, a must by = Jby € Sy - by = « > 0. No single state of7; representse > 0. Thus, this
bo A a 22, by requirement can only be captured either by a hyper transitio

Intuitively, by adding the monotonicity requirement to éas done inGy), or by extendingz, with a new state, says,
MIxTS A, if an abstract state, is less precise tham,, then SUCN thaty(as) = (x> 0). In the latter case, theusthyper-
the truth value of any formula at a; is less precise than transitiona; — }[n%i{ az} can be replaced by a (regular)
that atas, i.e., A, a1 = ¢ = A, ay = . Therefore, for each Musttransitiona; — as. The result is a MixTSM; in
concrete state, if the truth value ofy is consistent at(c) — Fig. 3. Moreover, sincess replaces a “hyper-state{as, as},
the most precise abstract state approximatintipen it is also a5 nngae)/ds to preservemgtfaybehawours. We do so ngaddlng
consistent fore. as — a4 andas —> ao corresponding tau, — ay

The next corollary follows immediately from the fact thagnd a3 —— a,, respectively. There are no outgoimgust
KMTSs require that everymust transition is also amay transitions fromus since the existingnusttransitions froma,

transition. andag are sufficient; and M; are semantically equivalent:
Cor. 1 Every monotone KMTS s logically/semantically cordny BTS that refines/; also refinesi/;, and vice versa.
sistent. In our example, a new state was added to encode a hyper-

Every MixTS can be translated to an equivalent mond@nsition by a regular one. This isn't always necessary. Fo
tone one without affecting the concrete models it approgXample, TS&: and)M, in Fig. 3 are semantically equivalent.
imates [12]. Thus, Theorem 3 can also be used to cheERe hyper-transitiom; = {ay,a3} is encoded by, ~—
semantic consistency of non-monotone MixTSs. For exampte, in M2 since the hyper-statéas, a3} is equivalent to an
the MiXTS A; in the previous example is equivalent to #Xisting stateus, i.e.,v({az,a3}) = v(az) = (z > 0).
monotone MixTSA, shown in Figure 1(b). It is then easy to In summary, a GKMTS is translated to a MixTS\/ in
check that4, is not consistent because of thmusttransition two steps: (i) everymusthyper-transitiona ML U of G is
a1 ™% 45 is not matched by angnay transition. replaced by a regulamusttransitiona ™= b, whereb is a

The only difference between KMTSs and MixTSs is thapossibly new) state s.4(b) = v(U); (i) maytransitions are
KMTSs require thatR™'st C R™, We believe that originally added for every state introduced in the first step, if any. We
this requirement was introduced to ensure implementgbiliormalize this translation below.
of specifications represented by KMTSs [16]. However, d3ef. 6 (GTOM) Let G = (Sg,Rga’ﬂ RP'SY be a

we have shown, even with this conditon a KMTS magaKMTS. The translation GTOM(G) is a MixTS

4



" @
Ks ) d

Fig. 3. Two GKMTSs:G1, G2; threé-MixTSs:Ml, Mas, Ms; two KMTSSZK:;,- K 4. Solid and dashed lines represent 4r-nust and may transitiesisectively.

M = (S, RSt RTP), such that in S¢ such thaty(U) = v(s). In this case, GoM does not
Sy L Se U STt add any new states, i.5;" = (). This makes the size of the
output MixTSs beSi x S|, which is exponentially smaller
+ 4 must _
ST ={a|3(s,U) € RG™-v(a) =7(U) A than that of the input GKMTS.
(¥ € Sq -4(t) #1(U)} B. MTOK: Translation from MixTSs to KMTSs

may o pmay b T AD
R = BgmU{(a,0) [a € 57 A emiG A Below we present the translation ™K that converts a
ds € Sa - (s,b) € R~ Ay(s) S v(a)} MixTS into a semantically equivalent KMTS. We begin by
RYP'E {(a,b) |a€ Sg A be SuA illustrating the translation using a MixT®/; in Fig. 3.]\{%&5
JU C Sg - (a,U) € RMSU A 4(b) = 4(U)} hota KMTgutthecause of the twaust onlytransitionsa; —
as andas — a4. One way to turnMs into a KMTS is to
-, may may . .
add may transitionsa; —> as andas — ay, resulting in
K3 in Fig. 3. However, this transformation is not semantics-

: : ing, i.e. o Ms. F le, th t te
A corollary of Thm. 4 is that GKMTSs and MixTSs arepreservmg he.K3 #a Ms. For example, the concrete system

equivalent w.r.t. thorough semantics. LBt be a labeling (¢ >0) A (z>0) Aodd(z) N’ =z + 1Ay =y)V
function forG. We extend the translation1®M to a GKMTS (z>0)ANodd(zx) N2’ =z Ny =—-1x2x)V
model(G, L) such that GoM ((G, Lg)) = (M, L), where (x> 0)A—odd(z) Ao’ =z + 1Ay =—1xz)
M = GTOM(G), and L), is a labeling function forSy,
defined as follows:

The translation GOM is semantics-preserving.
Theorem 4 Let G be a GKMTS, and/ = GTOM(G). Then,
M is a MixXTS, and= and M are semantically equivalent.

refinesKs, but notMs: the transition(z = 1,y = 1) — (xz =
) 2,y = 1) cannot be simulated by anpaytransition of M.
La(a) 2 Lg(a) !f a € Sg The must onlytransitiona; = a, of M; ensures that in
Nisesely(s)cryayy Lals) ifae ST any concrete BTS refining/s, all states iny(a;), i.e., those
ThenL,, is well-defined and approximates the same labelling@tisfying(z > 0 A odd(x) Ay > 0), must have a transition to
as L. This ensures thatG, Lg) and (M, Ly,) satisfy the a state iny(az2), i.e., satisfyinge > 0. This is further restricted

same properties under thorough semantics. by themaytransitions froma; that ensure that statesirfa;)
Cor. 2 Let (G, Lg) be a GKMTS model andM, L) = have trqn;itions only to states #({a1,as}). Hence, in any
GTOM((G, Lg)). Then(@, L¢) and (M, L) are equivalent BTS re_fl_n|ngM3, every state iny(a1) must (and may) have
w.rt. thorough semantics. a transition to a state in(az2) N y({a1,as}).

Intuitively, the must onlytransition as must, as in Ms is
equivalent to a pair ofnay and musttransitions fromas to
a4, sincey(aq) Ny({a1,az,as}) = v(aqs). On the other hand,
the must onlytransitiona; = a, can be equivalently repre-
sented by (a) adding a new statgsuch thaty(as) = v(az2)N
v({a1,a3}) = (x > 0Aodd(z)), and (b) adding anustand a
maytransition froma; to as. Moreover, sinces approximates
Some of the same statesas i.e.,y(as) C v(az2), as inherits

Complexity We show that the translation T6M does not
increase the size of the model. L&the a GKTMS with the
statespac&, andM = GTOM(G). The size ofG is at most
|S¢ x 29¢|. Each new state added byrGM corresponds to a
subset ofSg, i.e., |S*T| < |29¢|. Furthermore, no transitions
between the states i are added. Thus, the size &f is
also at mostSg x 25¢.

Sometimes GOM can reduce a GKMTS exponentially. Fo

example, assume thag; is a d'SJlImCt'Ve completlon [4]' I.e., lUnprimed and primed variables represent current- and stesg- valua-
for every subset/ of S there exists an equivalent element tions, respectively.



the tratnsitions fromus: as 8, ai, as may, as, as ma, as, Cor. 3 Let (M, L)) be a MixTS model andK, Lx) =
mus

as ™% a4, a5 =% a4. The final result is the KMTSK, in - MTOK((M, Ly,)). Then, (M, Lys) and (K, L) are equiv-
Fig. 3, which is semantically equivalent fd. alent w.r.t. thorough semantics.
In summary, a MixTSM is translated to a KMTSK in  Complexity.Let M = (Sy, R}2, RT¥Y) be a MixTS, andK

M >
two steps. First, everynust onlytransitiona M h of M is be a KMTS such thatk = MTOK(M). The size ofM is

replaced by a pair omustand maytransitionsa must » b bounded byO(|Sy x Sar]). In the worst case, the translation

anda ™% 4 — b, wherea — b is a (possibly new) abstractadds a new state for eaahust onlytransition in RTjs"\ R},
state such that(a — b) = v(b) N y(R7™(a)). Secondmay Therefore, the number of new statés™| is bounded byS,, x

and musttransitions are added for all states introduced in th&v|, and|K| is bounded byO(|Sxs x Sas|?).

first step. We formalize this translation below. MixTSs are more succinct than KMTSs: for a fixed
Def. 7 (MTOK) Let M _ (Sar, BT, RMUsy e statespaceS, the set of MixTSs overS is strictly more
a MixTS. The translation MTOK(M) Mis’ 34 KMTS expressive than the set of KMTSs ow&r This is true since
K = (Sk, R™ Rmush st for every state¢ added by MoK, there exists a subsét C S

s.t.y(t) = v(U).
V. REDUCED COMPOSITIONAL SEMANTICS
GKMTSs and MixTSs are equally expressive: a GKMTS

Sk £ Sy U St
S* 2 {a b | 3(ab) € (RIS RT) Vs € Sy

(s) #v(a = b)} model and its equivalent MixTS model satisfy the same prop-
R £ RTYUREPLUIMAY UIMO erties under thorough semantics. However, thorough check
RIust 2 (RwstﬂRrIT\}ay) UREPLUIMUSTUIMO has exponential complexity. In practice., _partial models ar
evaluated using a more tractable compositional semani& S
where - Unfortunately, GKMTSs are more precise than MixTSs w.r.t.
REPL £ {(a,a — b) | 3(a,b) € (RT¥'\ RT)} SCS: for anyy € L, the value ofy in a GKMTS modelGg
IMAY = {(a/—>\b, b') | 3a, bt € Sy under SCS is more precise than its value in the MixTS model
(a,b) € (RMISU\ RT™) A (b, 1/) € RTY A a—-be st} M =GToM(G). We propose an alternative semantics, called
IMUST £ {(a/;\b, b) | 3a,b, b € Sar- reduced compos_|t|onallsemant(®CS). While RCS is deflr_led
(a,b) € (RMIst\ R™™) A (b,1) € (RMUst Rmay) A (and evaluated) inductively on the structure of the formiila
’ MM M M is strictly more precise than SCS. We show that GKMTSs and
a—besST} MixTSs are equivalent w.r.t. RCS.
IMO £ {(a/—>\b, b= | 3a,b,b" € Sy In Sec. V-A, we illustrate the differences between GKMTSs

/ musty pMayy , = 3 + and MixTSs w.r.t. SCS. We define RCS in Sec. V-B, and show
(a,0), (0,8) € (Ry™\ Bar”) ha— b € 57} how to compute it effectively in Sec. V-C.

In Def. 7, REPL denotes transitions that replacest only
transitions, and IMy, IMusT and IMO denote transitions
from newly added states ifi* that correspond tonay, must Let p and ¢ denote predicatesx > 0 and odd(z),
and must onlytransitions of the original system, respectivelyiespectively. Consider the modél = (G1, L, ), whereG,

A. Example

For our example of MoK (M3), we have is shown in Fig. 3, and.¢, is a labeling function that labels
S+ ={as} REPL={(a1,as), (az,as)} each abstract stat_e as shown in Fig. 3. Mt = <J\/_[1,LM1>
IMUST = 0) IMO = {(as,a4)} !oe the model obtalne(AJI fro@}l by GToM, whereM; is shown
IMAY = {(as,a1), (as, as), (a5, az)} in Fig. 3 andLyy, (s) = if 5= as then {p} else Lg, (s).
. . ] Compare the value af = ((qV —q) under SCS oij; and M;:
The result of the translation MK is a KMTS: everymust
transition is matched by may transition. lelld = ({a1, a2, a3}, {a1, az, a3, as})

Theorem 5 Let M be a MiXTS, ands’ = MTOK(M). Then lellM = ({ag, as}, {a1, a2, az, as,as})
K is a KMTS, and\/ and K are semantically equivalent. - sccording toG,, o is true in all states corresponding i.
A corollary of Thm. 5 is that MixTSs and KMTSs arepaccording toM, the value ofy is unknown in exactly the

equivalent w.r.t. thorough semantics. LE§; be a labeling ggme states. Sinckt; = GTOM(Gy), Gi =, M;. Thus,M;
function for M. We extend MoK to (M, Ly) such that g |ess precise thag, under SCS.

MTOK({M, Lys)) = (K, Li), where K = MTOK (M), and

: . : : Let us examine the above example more carefully. First,
L is a labeling function foiSk defined as follows:

there is no precision loss during the evaluation;of —¢:
Li(a) 2 {LM(a) !f ac Slf er = |lqV —q||$ =({a1,a2,a3,as},{a1,a2,a3,a4}) (%)
U{SESIWI'Y(U')Q'Y(S)} LIM(S) If ac S € = Hq\/_‘q||é\41:<{a/17a/27a’37a/4}7{a17a23a37a47a5}>
Then, Lk is well-defined and approximates the same |"’Since7(U(el)) = v(U(e2)) and v(0(e1)) = 7(O(ea)) =

bellings asLy;. This is sufficient to ensure thad/, Lyr) and . (g) ¢, =, e,. However, there is a subtle difference between
(K, L) satisfy the same properties under thorough semantl%m'q V —q is unknown in stateis of M, even thoughy




is true in bothay andas, and~y(as) = v(az) U y(a3). This SCS. Thusl|qV—q||M* = es. To compute), recall from )
minor imprecision is then magnified by tKeoperator. thatRED(eq2) = es; thus,

We note that the precision loss is not limited to tautologies oM = ({ay, as, a3, as}, {a1, az, as, as, as})
For examplepZ - (-p A q) vV OZ, i.e., EF(=p A q) in CTL,

M - M
is true in statez; on Gy, but is unknown in the same state offencelo[;™ is more precise _tham‘pHc 5
M. Theorem 6 RCS is more precise than SC&||. <. [|¥]| -

. i ) The previous example illustrates another important point:
B. Reduced Compositional Semantics for Partial Models  skMTSs and MixTSs are equivalent w.r.t. RCS. For exam-
In this section, we define the reduced compositional semane, [|¢[|;*'* is equivalent to||¢[|7*. The following theorem
tics (RCS). The new semantics is compositional arstriistly formalizes this relationship.
more precisethan SCS. The key idea is to usereduction Theorem 7 LetG be a GKMTS, andU = GToM(G). Then,
operator to eliminate any local imprecision. G and M are equivalent w.rt. RCStp € L, - [|¢||9 =, |||
Let S be an abstract statespace, and’ € 2° x 2° be Our new semantics RCS is both compositional and precise
two abstract elements. Recall that in the information okderenough to make GKMTSs and MixTSs equivalent. How-
is less thane’, i.e., e <; €, if U(e) is contained inU(e’), ever, theRED operator requires comparing concretizations of
andO(e) containsO(e’). We define theeductionoperator as abstract elements. In practice, this may be impossible or
follows: RED(e) £ <REDU(U),REDO(OA)>, whereREDy(U) £ inefficient. We address this limitation next.
{s |. 7(8) < V(U).}’ and REDo(0) = {s | 1(s) & 7(O)}. C. Reduced Compositional Semantics for Monotone Models
Intuitively, RED(e) increased)(e) and decrease3(e) as much
as possible without affecting the semantic meaning.dofhat ~ We specialize the reduction operak®D of RCS to mono-
is, RED(e) is the largest element w.r.t. information ordering antpne models.
semantically equivalent te. For example, consid&ED(e;), Def. 9 A MiXTSM = (S, R™¥, R™) is monotoneiff
wheree, is as defined byx). Then, W1 =g s,ts < t1-((52,12) € B™ = (s1,41) € R™) A
e3 = RED(ez) = ((s1,t1) € R™'= (s5,85) € R™")
({a1, a2, a3, a4, a5}, {a1,a2,a3,a1,a5}) (%) A modelM = (M, L,,) is monotoneiff M is monotone.
e3 differs from e, only in the addition ofas to U(es). Since Monotone models are as expressive as their regular counter-
v(U(e2)) = ~v(U(e3)) andy(O(ez)) = 7(O(e3)) ea =, e3; parts [12]. The monotonicity condition simply ensures thilht
but e, is less informative sincél(es) € U(es). information that can be derived from the existintpy and
An elemente = {U, 0} € 25 x 25 is monotoneiff musttransitions is made explicit in the model.
For a states € S, let the upset of s be defined as
512582 =(51€U=5€UANs &0 =359¢0) Ts 2 {t € a[S] | s =, t}. Then,Ts is the set of all those states
RED(e) is monotone for any, and commutes with proposi-in o[S] that are more precise than For example, letS; be
tional operations on monotone elements. That iselahde’  the statespace df/; in Fig. 3. Thenp[S:] = {a1, as, a3, a4},
be monotone elements af x 2°. Then,~e =, ~RED(¢), and a5 = {as,a3}. Note that the state and the set|s

ande e’ =, RED(e) MRED(e’). approximate the same set of concrete states;i(e),= v(7s).
RCS is defined by applying theED operator before and For example;y(Tas) = v(as) = (z > 0).
after ¢ to prevent it from propagating imprecision. Lete = (U, O) be a monotone element 8f x 25, ands €

Def. 8 (RCS)Let M = (M, Lys) be a model, s.tM = S. By monotonicity,y(s) C v(U) iff Ts C U. Dually,v(s) £
(S,R™ RMSY and ¢ : Var — 2% x 25, Thereduced ~(O) iff Ts ¢ O. Thus, we define a new operatoed as

compositional semantiasf ¢ € is defined as follows: ollows: red(e) = (redy(U),redo , Whereredy =
itional iosf L, is defined as foll foll = U 0 h U) 2
C £ O)).
P& 2 (slpeLu()h{s|p¢Luls)y 13118 S UL andredo(0) = {s|1s £ O)}
I~ 2 gl M 1ZIIM 2 5(2) Theorem 8 Let S be an abstract statespace, ardbe a
|l A ¢||§\7/7 2 ||MT’U|—| ||| M " monotone element i2° x 2°. Then,red(e) = RED(e).
<p||<> Hj\’f{ N RED&’(’W (REBU(U(H M) red can be computed effectively since it does not need to
Plire = preu (REDU (O(||<p||m )))’>) concretize abstract elements.
M b ™ Pliro n this section, we have introduced a new compositional
nZ ol = (fp= (AQ- U(||<P||T,U[ZHQ]) ; semantics RCS, and shown that it is more precise than SCS,
Ifp= (AQ - O(H‘F’Hﬁ[zHQ]) ) and that GKMTSs and MixTSs are equivalent w.r.t. RCS. RCS

can be computed effectively on monotone models, which is not

~ The only difference between RCS (Def. 8) and SCS (Def. &strictive since monotone models are as expressive as thei
is the semantics of. Since we assume that state-labellinggon-monotone counterparts.

are monotone, applyin8ED to other operators as well does
not improve precision.

Returning to our running example, RCS @fon M; is In this section, we describe a symbolic algorithm RCS
computed as follows: RCS af —¢, andgV —q is the same as that implements the RCS semantics for monotone models

V1. SymBoLIC COMPUTATION OFRCSUSING BDDs



1: global var Rmay, Rmust : BDD 18: func ABSAND(BDD v1, BDD v2) = BDDAND(v1,v2)
2: func RCSExpry) : BDD 19: func ABSOR(BDD v1,BDD v2) = BDDOR(v1,v2)
3 match ¢ with 20: func ABSEQ(BDD v1,BDD v2) = BDDEQ(v1,v2)
4 ATtomic(p) : return ABSV(BDDVAR(“P”), 21:
BDDVAR(“p")) 22: func ABSNOT(BDD v) : BDD
5 ) : return ABSNOT(RCSv))) 23:  0:=ABSO(v), u:=ABSU(v)
6: 1Ay return ABSAND(RCS(¢)1), RCSv2)) 24:  return ABSV (BDDNOT(o), BDDNOT(u))
7: Y1 V1) @ return ABSOR(RCS(¢)1), RCSv2)) 25:
8: Qv : return ABSPRE(Rmay, Rmust, RCS(v))) 26: func ABSREDU(BDD v) : BDD
o: pp  return RCSyp (RCS(v))) 27.  if (BDDISCONST(v)) return v
10: vip : return RCSyp(RCY(v))) 28: b:=BDDROOTVAR(v), h:= UVAR(b)
11: 29: T:=ABSREDU(v[1/b]),F := ABSREDU(v[0/b])
12: func ABSV (BDD u, BDD o) : BDD 30:  tmp:=BDDITE(H, T, F)
13:  sel:= BDDVAR(“sel”) 31:  return BDDITE(h, BDDAND(T, F), tmp)
14:  return BDDITE(sel, u,0) 32
15 33: func ABSPRE(BDD Rmay, BDD Rmust, BDD v) : BDD
16: func ABSO(BDD v) = v[0/sel] 34:  0:=ABSO(V), u:=ABSREDU(ABSU(V))
17: func ABSU(BDD v) = v[1/sel] 35 return ABSV (BDDPRE(Rmust,u), BDDPRE(Rmay, 0))

Fig. 4. The RCS algorithm and its supporting functions.

constructed using predicate abstraction. These are thelmod’ = {h} | h; € H} — the next state unknown variables. In
used by an existing software model-checker [13]. what follows, we do not distinguish between the BDDs and
Our implementation is based on the following observatiothe corresponding propositional formulas.
Let S be an abstract statespace. Then, for any monotoneA set of mintermsX C MT(P) is encoded by a propo-
element of2% x 25 there exists a semantically equivalensitional formula overB, as usual. For example, lgP =
element in2°15] x 20151, {p1,p2,p3}. Thenb, A—by encodes the sdipy A—py Aps, p1 A
Theorem 9 Lete; = (U, O;) be a monotone element®fx  —ps A —p3}. A set of monomialsX C Mon(P) is encoded by
25, andey = (U, 03) be in29051 x 22181 1f U, na[S] = U, a formula overB U H as follows:
and O; N a[S] = Oq, thene; =, eo.
This allows us to restrict the algorithm to sets oug$] instead \/ <( /\ —hi Abi) A
of sets overS. Another consequence of Thm. 9 is that the meXx * p;eLit(m)
transition relations can be simplified as well, since we only
need the result of the pre-image in the states|ifi]. ( /\ ~hi A =bi) A /\ hi))
Theorem 10 Let R™ C S x S and R™st C S x S be “pi€Lit(m) pi€P\Term(m)
the may and musttransition relations of a monotone MixTS,Intuitively, given a monomialm, a variable h; indicates
respectively, ande = (U,0) be a monotone element ofwhetherp; is presentinn, and a variablé; specifies the polar-
25 % 95 Definel 2 U N als], O 20n als], Rmust 2 jty of the occurrence. For exampleshy Aby) A(—=ha Abs) Ahs
R™StA ([S] x S), and R™ 2 R™ N (a[S] x o[S]). Then, represents a singleton s A —ps}.
. An abstract value = (U, O) is encoded in a single BDD by
(pre[R™}(REDy (V)), p“?[Rmay] (REDOA(O)» =a A a formula(sel AU) vV (—\<se1/20), wheresel is a designated
(pre[ "™} (REDy (U)), pre[R™¥](O)) BDD variable. This encoding is implemented bgsV. U and
The algorithm RCS is shown in Fig. 4. It uses BDD$) elements of the pair are extracted usikgsU and ABSO,
to symbolically represent and manipulate sets of states diggpectively. Abstract intersectiongSAND), union ABSOR),
transition relations. Functions that are prefixed wighhb” are  and equality BSEQ) are done using the corresponding BDD
the standard BDD operations. The algorithm works recukgiveoperations. Abstract negatioagsNOT) is implemented fol-
on the structure of the input formula. The fixpoints are lowing its definition in Sec. II.
computed in the usual way, by iterating until convergence. The may transition relatiotR™ C MT(P) x MT(P) is
We describe the details of the implementation below. encoded by a formula ové®U B’ as usual. Similarly, the must
Let P = {p1,...,p.} be a set ofn predicates. Re- relation R™*'C MT(P) x Mon(P) is encoded by a formula
call that Mor{P) denotes the set of monomials ovét, over B U B’ U H', where the primed variables are used to
and MT(P) — the set of minterms oveP. Furthermore, encode the destination state. For examplenst transition
a[Mon(P)] = MT(P). The input to the algorithm is a MixTS from a state(p; Ap2 Aps3) to a state(p; A —p2) is represented
model (M, L), s.t. M = (S, R™, R™SY S = Mon(P), by (b1 Aby Abg) A ((—ul AbY) A (—uhy A =bh) Aug).
and Lys(s) = Lit(s), and anL, propertyy. By Thm. 10, ABSREDU implements theredy reduction operator of
we assume that the transition relations are restricted $ec. V-C, using the following observation: 1€ C Mon(P)
R™ C MT(P) x MT(P), and R™StC MT(P) x Mon(P).  be a monotone subset, andc Mon(P). If a € MT(P), then
The algorithm uses the following sets of BDD variablesta C @ < a € Q; otherwise,Ta C Q iff 1(a Ap) C @
B = {b; | p; € P} — the current state Boolean variablesand 1(a A —p) C @, wherep is a term not occurring in
B’ = {b} | p; € P} — the next state Boolean variabld$,= «a. ABSREDU applies this reasoning recursively on the input
{hi | p; € P} — the current state unknown variables, andiagram. It uses a function U\ to find a variableh;, € H
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ol SCS I RCS

for each variablé; € B. The functionABSPRE implements |

the pre-image computation based on Thm. 10. 5 100 370,070 216,689
. 3o ||150 825,112 482,531
Theorem_ll For a monotone MIXTS.M_ and ¢ € LH, §(/_) 200 1,460,270 853,389
the functionRCS(y) returns the symbolic representation o 250 2,275,196 1,329,215
H@Hf«w- Analysis Num. of || Analysis| ABSREDU Num. of
VII. EXPERIMENTS Prop.|| n (sec.) | lterations| (sec.) (sec.) Iterations
. _ _ . 100]] 2.20 301 3.60 0.74 401
We have implemented symbolic algorithms for computing & |/150|| 6.66 451 12.12 2.57 601
both SCS and RCS using the CUDD [22] library. Our goal & |/200|| 15.36 601 27.77 6.45 801
was to evaluate the cost and performance of RCS versus SCS_[[250] 28.92 751 55.19 13.40 1001
on a realistic model. Understanding and analyzing RCS in the  [|100|| 3.60 203 0.03 < 10*2‘l 2
context of abstraction refinement and software model-dhgck| &' || 150] 11.91 303 0.07 <107 2
is left for future work. A ggg éﬁg ggg 8'13 < 18: X g
For the model, we used a template program built out of - - <
n blocks, each based on an example from [20] and havinge 100 33.96 400 21.24 4.5 400
. . . g |{150|| 137.38 600 76.38 15.77 600
one integer varlab_le. Th_e method of [11] was applied 10§ 200!l 39524 800 258 72 42.44 800
build an abstract MixTS via predicate abstraction. We ckdck| 250|| 1108.67 1000 546.88 101.20 1000

one reachability (least fixed-point) properBtop;, and two
non-termination (greatest fixed-point) propertiespp,, and
Props. The code for the experiments is available frowtp:  canonical representation of equivalent abstract prageer®ur
Ihaww.cs.toronto.eddr owei/MixTS/FMCADO8. html symbolic implementatiomBSREDU is similar to the semantic
The results are summarized in Fig. 5. The top part @hinimization of 3-valued propositional formulas [19].

the table shows that, as expected, the model for RCS issjnce RCS is compositional, its precision is between SCS
significantly smaller, in the # of DD nodes, than the modeind thorough semantics. Thus, existing results compai@®) S
for SCS. RCS is always more precise than SCS, and the exifgy thorough semantics, i.e., [8,10,18], apply to RCS ak wel
precision changes the number of iterations of the fixpoiftis interesting to investigate whether the additionalcsien

computation. ForProp;, RCS requires more iterations, antbpjoyed by RCS can be used to improve the above results.
takes more time than SCS. FBrop,, RCS is a lot faster

than SCS— the fixpoint computation in the former converg
in just two steps, whereas the number of iterations in latt

Fig. 5. Experimental results for SCS and RCS.

gsummaryln this paper, we compared three families of partial
odeling formalisms: KMTSs, MixTSs and GKMTSs. We
is proportional to the size of the model. FBrops, where S OW(T_d that thiy ?re efquallyd ng[)reSS|ve - alm?del gflonfe
RCS and SCS take the same number of iterations, Rggmalsm can beé transiormed nto an equivalent modet o
another. Thus, neither hyper-transitions nor restrictionmay

performs significantly better. In all the cases, the timenspe d it i foot . “th v affect th
in ABSREDU, which represents the main difference betweef] 0 mustiransitions aflect expressiveness, they only atiect the

the two semantics, is only about 20% - 25% of the total timgyccmctlness of the (;ormal:jsm. d itional tics f
These experiments suggest that the additional precision o1we also proposed a reduced compositional semantics Tor

RCS improves the overall performance of model checkingartial models. This semantics is more precise than the stan
making it a viable alterative to SCS in practice. ard one, MixTSs and GKMTSs are equivalent w.r.t. it. We

also provided a symbolic implementation of the new seman-
VIIl. RELATED WORK AND CONCLUSION tics, and our experiments suggested that the new semastcs i
ood alternative to the standard one for predicate abgiract

Related Work Godefroid and Jagadeesan [9], and Gurfinkél
ased model-checkers.
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have the same expressive power and are equally precisedgflier drafts of this paper.
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APPENDIX

The appendix contains proof sketches of theorems for the
convenience of the reviewers.
Theorem 2 Let G be a GKMTS, and/ = GTOM(G). Then,
M is a MixTS, andG and M are semantically equivalent.
Proof: (1) According to the construction in Def. 6, every must
hyper-transition is replaced by a regular one. It is easy to
show thatM is a MixTS. (2) To prove thatG and M are
semantically equivalent, we show that any concrete BIS
(C, R) refinesG iff it refines M. It is equivalent to showing
that the soundness relatipp C C'x S¢ is a mixed simulation
betweenB and G iff the soundness relatiop,; : C x Sy is
a mixed simulation betweeR and M. This is proved based
on the construction of transition relations given in Def. &.
Theorem 3 Let M = (S, RTFSU RT™) be a monotone
(Def. 9) MIXTS transition system, then the following are
equivalent;
1) M is semantically consistent, i.€C[M] is not empty.
2) M is logically consistent, i.e(M, L) is logically con-
sistent for every (consistent) labeling functién
3) for anya,b; € Sy, a m by = dby € Sy - b1 <
bo ANa may, bo.
Proof:
e (1) = (2). Trivial (by Theorem 2)
e (2) = (3). Givena M4 5., we prove the result by
constructing a consistent labeling functibrsuch that for
some atomic propositiop, to ensure the valugOp||(a)
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is consistent, i.e., belonging tft,f,m}, a must have a
may transition to some stati» such thath; < bs.

We construct the labeling functioh as follows.

We define three setS;, S;, and Ss.

Slz{SESMlbljS}

That is, S; is the set of states which are more precise
thanb,. Let

So={seSy|IHesS -s<Xt}\S1

That is, .S; is the set of states which are less precise than
some state inSy, but does not include the states $h
themselves. Let

S3 :SM\(Sl USQ)

That is, the set of states which are outsideSpfand Ss.
Note thatS;, So and S, are disjoint.

Let AP = {p} and the labeling functiod is defined as
follows:

{p} ifses
L(s) = {} if s€5;
{-p} ifseS;s

That is,p is true in Sy, unknown inS,, and false inSs.
We show thatL is consistent:

— at most one ofp or —p belongs toL(s) for any
s€e Sy

— L is monotone, which follows from the following
fact: for anys,t € Sy

1) s,t € St
In this caseL(s) = L(t), and the monotonicity
condition is always satisfied. Same result holds
for the cases of,t € S5, ands, ¢t € Ss.

2) s € 81 andt € Ss: In this case, suppose= t,
thenb; < t, andt¢ € Sy; contradiction.
Therefore, the only possible ordering relation
betweens andt¢ is ¢ < s. Since L(t) C L(s),
the monotonicity condition is satisfied.

3) s€ Sy andt € Ss:
In this case, suppose < s, then there exists
s’ € Sq, andt < ', i.e.,t € Sy; contradiction.
Therefore, the only possible ordering relation
betweens andt is s < t. SinceL(s) C L(t),
monotone condition holds.

4) s € 53 andt € Sq:
In this case, suppose =< t, thens € Ss; a
contradiction. Moreover, suppose < s, then
s € S1; a contradiction. Therefore, neither< ¢
nor ¢t < s holds. Monotone condition is satisfied.

We now show that

HbQESM'bljbg/\aﬂbg

(1)



must

a— by
= (by definition of L, ||p|| = (S1, S1 U S2))
a ™% by Aby € U(]p])
= (by definition of ||0p]|)
a € U(|[Opl))
= (since||0p]|(a) is consistent)
a € O([|0pl|)
= (by definition of ||0p]|)

may

eSS uUSy-a—b
Consider different cases of
— b € S1: by definition of Sy, by < b; let by
then (1) holds.
— b e S5 in this case, we have that

by

el a—b

(by definition of S5)
IBeSyabAIW €S b=V
(by monotonicity of M)

W eS a2y

(by definition of Sy)

W e ap Aby <Y

let b, = ¥’, then (1) holds.

=

=

=

Theorem 4 Let M be a MixTS, and = MTOK(M). Then
K is a KMTS, andM and K are semantically equivalent.
Proof: (1) The construction in Def. 7 ensures that evamnyst
transition in K is matched by amay transition. Therefore,
K is a KMTS. (2) To prove thaf\/ and K are semantically
equivalent, we show that for any concrete BBS= (C, R),
the soundness relatigny, C C x Sj; is a mixed simulation
betweenB and M iff the soundness relatiopx : C' x Sk
is a mixed simulation betweeB and K. The proof follows
from the construction of transition relations in Def. 7. &
Theorem 5 RCS is more precise than SC&||. <. [|¥]|--
Proof: The proof is by structural induction ap. For the base
case, it is obvious that for any atomic propositian|p||. =.
|lp]|-- In the following, we show the inductive case fOr;
the proofs of other cases are trivial.

We show that ifl|io|l. <a [lollr, then[0wlle <a [[0¢]l:.
ie.,

lelle Za llellr = v(U([00lle)) € v(U(I0¢ll:)  (2)
and
llelle Za llellr = 7(O([[0elle)) € (O(I0¢llr)  (3)
Proof of (2). For any two set€);, Q2, we have that
7(Q1) € v(REDy(Q2)) => @1 CREDy(Q2)  (P1)

« (3) = (1): we prove the result by constructing a BTSThis follows from the following derivation: suppos@: ¢

B = (C,R) such thatM <, B, whereC is the concrete

statespace approximated by, andp C C x Sy is the

soundness relation.

The BTS B be defined as follows: for any,d € C,
(c,d) € R< Tbe Sy -afc) 22 bA(d,b) € p

We now show that/ <, B, i.e., p is a mixed simulation

REDy(Q2), then there exists a states.t. s € @1 ands ¢
REDy(Q-). By the definition ofREDy, v(s) ¢ v(Q2); on the
other hand, since/(Q1) C 7(REDY(Q2)) = 7(Q2), 7(s) C
~v(Q2). A contradiction.

The proof of (2) is shown below.

llelle Za llellr
between) and 5. , = (by the definition of<,)
For every(c, a) € p, we have the following results ~FU(l2lle) € v(U(lell)
— foranybe A = (sincey(Q) = v(REDy(Q)))
Y(U([lelle) € v(REDY(U(]l¢ll)))
st = (by (P1))
= (sincea < a(c), by monotonicity ofM) U(llell)) € REDY(U([l¢l]))
ale) Mt = (since@i C Q2 = prey(Q1) C prey(Q2))
o assumpton) el < (e, U1
ale) ™ p AT b < b Aale) T — by the aelinttion oty
= (let d be a state iny(V'); by the construction OBQ> ’Y(preu(U(H‘iHc))) C y(preu(REDY (U(||¢l]+))))
/ / / (Slnce'Y(Q) = 7(REDU(Q))
b bxne o dh(@b) e (rrev(U(lg))) € (REDy(preu(REDy (U(l¢]l,)))))
= (sinceb <XV, y(t') C (b)) 7\preu Plle))) & ulpreu U ®llr

c—dAN(d,b)ep

— for anyd € C, suppose: — d, i.e., c %, 4, then

may
c—d

= (by the construction oB)
e Sy -ale) =L bA(db) €p

= (sincea < a(c), by monotonicity of M)
e Sy-a 2 bA(db) € p
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= (by the definition of SCS and RCS)

Y(U([0@lle)) € v (U(I0¢llr))

Proof of (3). Dual of the one above. [ ]
Theorem 6 Let G be a GKMTS, andW = GToM(G). Then,
G and M are equivalent w.r.t. RCSip € L, - |||l =, [|lo||M.
Proof: The proof is by structural induction ap. For the base
case, according to the definition &fy;, we have that for any
atomic propositiorp, ||p||¢ =. ||p[|M. In the following, we

show the inductive case fdyp; the proofs of the other cases
are trivial.



We show that if|¢||9 =, [l¢|M = [|0¢ll9 =4 |0, 1s¢U
n el el 10wl 101l & JueS-acishadl

(sincea € 1s, a € a[9))

g _ M g M JaeS-actsha¢UANIceC a=al)
Il =a llgli = 2UA0elD) CaUUopl) @ e T S ey & )
JaeS-aefshag¢UANTceC- a=alc)A
ce(U)

(by the definition ofy)
daeS-actshagUATceC a=alc)A
cevy(U)NTbeU-cen(d)
Proof of (4). For any concrete stateand a set of abstract = (by the definition ofa)
statesQ, JaeS-aefsha¢UANTceC-a=alc)A
cevyU)ANTFeU-ceqb)Ab=,a

¢ € v(REDy(Q)) & Ja € Q- c € v(a) (P2 = (by monotonicity ofe, a € U)

JaeS-aetshagUANaclU

The proof of (4) is as follows: for any concrete stafe A contradiction. The €) direction is trivial.

I

and

lellf =a llell = ~(O[02]9)) € vO([0elF)  (6)

G Proof of (7). Dual of the one above. [ ]

ce 'V(U(HOSDHT_ ) Theorem 8 Lete; = (U, O;) be a monotone element df x

< (by the deﬁmu%n of RCS) 25, andey = (Us, 0) be in2215) x 29151 1f U, Na[S] = U,
¢ € v(REDy (prefj (REDy (U(|l¢[[7))))) and O, N a[S] = O0s, thene; =, e».

< ((=) leta be the abstract state i), Proof: This is proved by showing th&®ED(e;) = RED(eq);

(<) since(Q) = 7(REDu(Q))) sinceRED is semantics preserving, the result holds. ]
c € v(a) Aa € preS (REDy(U(||o]19)))
o zhe definitign O e l)J #llr Theorem 9 Let R™ C S x § and R™s! C S x S be
y prev the may and musttransition relations of a monotone MixTS,

C G\\ . pmus
& fbe ?ég)c/;r?gractriigmgué'(‘ef”g);ncﬁg)) Q) respectively, ande = (U,0) be a monotone element of
y . 25 x 25, DefinelU £ UnNalS], O £ 0N alS], RMust 2

c€vy(a)ANTb-y(b) C W(REDU(U(HQPHQ))) A Rr&ust(& b) Rmust (a[S] x S), and hmay &2 pmay A (a[S] x a[S]). Then,

& (sincellell7 =a llell, v (U(lel?)) = 1 (Ulell)
c €v(a) A 3b-y(b) € v(REDy(U([l¢[))) A RFF*(a,b)  (pre[R™J(REDy(U)), pre[R™|(REDo (0))) =a

< (sincev(Q) = v(REDy(Q)), by the definition ofREDy) AMUS 2 Amay] (/A
€ 9(@) A3 € REDY(U([oIM) - RISa,b)  SprelEERED(U), pref ()

& (by the definition ofprey) Proof: According to the definition ofzaA, we shovy that
c € v(a) Aa € pref (REDy(U([l¢[))) ~(pre[R™)(REDy (U))) = ~(pre[B:](REDy(U)))  (8)

& ((=) sincey(Q) = y(REDy(Q)), and  7(PrelRMY(REDo(O))) = y(pre[R](O)) 9)
C(<€:?Y (lgfzgu?zrtehﬂ? (:EES?SEHS;TQG);T;?) Proof of (8). The fact that~(pre]R™S}(REDy(U))) C

& (by the definition of RCS) ' ~(pre[R,](REDy(U))) is shown as follows. For any concrete
c € v(U([[0¢l*) statec,

c € y(pre[RM|(REDy (U)))
= Ja€ S -cey(a)Aac prelR™SY(REDy(U))
Proof of (5). The proof is similar to the one above. It is based = (by the definition ofpre)

on the observation that for any concrete statend a set of Ja € S-cevy(a)AIbeREDY(U) - R™Ya,b)
abstract stateg), ¢ € vy(REDp(Q)) < Ja € Q- c € v(a). N = (let ' = a(c), by the definition ofa)
Theorem 7 Let S be an abstract statespace, ardbe a cey(@)na €alS]ATa€ S a=qad N
monotone element i25 x 25. Then,red(e) = RED(e). 3b € REDy(U) - R™*(a, b)

= (by the definition of monotone MixTSs)

Proof: According to the definition oRED, the proof of the ¢ € 1(a') Ad' € a[S] ATb € REDY(U) - R™SYa!, b)

theorem is equivalent to showing that for any= (U, O) €

95 % 25 ands ¢ S, = (by the definition of ™) )
ce€y(ad)Nad € a[S]ATbeREDY(U) - R™{(d/, b)
V(s) Cy(U) & 1sCU (6) = (sincee is a monotone element, by Theorem 8)

ce~(d)nad €alS]ATbe redy(U) - R™Ya', b)

and _ — = (by the definition ofl/, redy(U) = redy(U) )
7(s) £4(0) & 15 L O (7) cer(a)Ad €alS]ATberedy(U) - R™S(d’, b)
o _ = (by the definition ofpre)
Proof of (6). The &) direction follows from the following ceq(a)nd € pre[ 1] (REDy (U))
derivation: supposing thdts ¢ U, we have that = ¢ € y(prel R™SY(REDy (U)))
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The  proof  of  ~(pre[R™J(REDy(U))) 2
~(pre[R1](REDy(U))) is trivial.

Proof of (9). The fact that~(pre[R™®](REDp(0O))) C
v(pre[R,](0)) is shown as follows. For any concrete state

=
=

=

¢ € y(pre[R™¥|(REDo (0)))

Ja € S-ce~y(a)Aa e prelRMY|(REDo(O))

(by the definition ofpre)

Ja € S-cevy(a) NR™(a) CRED(O) Ac € v(a)
(let ' = a(c), by the definition ofw)

cey(a)Nd € alSIA

Ja €S -a=,ad NR"™(a) CRED(O)

(by the definition of monotone MixTSs)
cey(a)Nd € alSIA

Ja € S- R™(a') C R™¥(a) C REDo(O)

(by the definition of @™, R™(a/) N a[S] = R™(a'))
cev(a)Ad € alS]AR™(a') C (REDo(O) N alS))
(sincee is a monotone element, by Theorem 8)
cev(a)Nd € alS]AR™(da') C (redo(O) NalS))
(by the definition ofredo)

Vs € a[S]- s € redp(0) & s € 0)

cex(a)Ad €alS]AR™(d') C (ONalS])

(by the definition of0)

cey(@)nd €alS]AR™(a) C alS]\ O
(by the definition ofpre)

c€(a) Ad € (pre[R2](0))

¢ € v(pre[R](0))

The proof of(pre[R™](REDo(0))) 2 ~(pre[R2](0)) is
similar. [ |
Theorem 10 For a monotone MiXTSM and ¢ € L,,
the functionRCS(y) returns the symbolic representation of
llpll.

Proof: The proof follows from Thm. 8, Thm. 9, and Thm. 10.
In particular, Thm. 9 is used to show that in the interpretati
of Q¢ in Def. 8, removing the application ®ED after prey
andpreo does not affect precision. [ ]
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