
VAQTREE: Efficient Vacuity Detection for Bounded
Model Checking

Jocelyn Simmonds, Jessica Davies, and Arie Gurfinkel

University of Toronto,
Toronto, ON M5S 3G4, Canada.

{jsimmond,jdavies,arie}@cs.toronto.edu

1 Motivation and Introduction

Model-checking is a widely-used automated technique for verification of both hardware
and software artifacts. A model-checker decides if a property to check is satisfied by
a finite-state model of the artifact. If the property does not hold on the model, a coun-
terexample, which can aid in debugging, is exhibited to the user. However, if the pro-
perty does hold, no further information is given by traditional model-checkers. Thus,
existing vacuity detection techniques (Beer et al. [1, 2]; Kupferman and Vardi [8, 9];
Purandare and Somenzi [10]; and Gheorghiu [6]) rely on property analysis and extra
model-checking runs to determine if a property holds for the wrong reasons.

We focus on vacuity detection for SAT-based Bounded Model Checking (BMC). In
the BMC setting, the property and the behavior of the model are encoded as a proposi-
tional theory using a model-checker. This theory is passed to a SAT solver to determine
its satisfiability – it is unsatisfiable if and only if the property holds on the model, and
a resolution proof showing how false (or the empty clause) can be derived is implicitly
constructed. The set of clauses needed to derive false is known as the UNSAT core.
Intuitively, this resolution proof provides an explanation of why the property holds on
the model.

A naive method for detecting vacuity is to replace subformulas of the property with
unconstrained boolean variables and model-check for each such substitution. If the pro-
perty is still found to hold on the model with some substitution, the property is vacuous.
This naive approach is expensive, since in the worst-case it requires as many runs of the
model-checker as there are subformulas of the property. More efficient methods of de-
tecting vacuity are necessary.

In this paper we discuss VAQTREE, a tool that efficiently exploits the resolution
proof produced by a successful run of BMC to detect vacuity of LTL properties. The
goal of this tool is to detect a significant amount of vacuity when compared to the
naive method, with faster runtimes. Our experiments, reported in [11], indicate that in
practice, VAQTREE detects 83% of the vacuous properties, and it is faster than the naive
method in 72% of the cases studied.

Consider a simple two-process mutual exclusion program, like the one described
in [4], where each process is in one of three states: trying, critical, non-critical. In a mo-
del where state1 will never become trying, the property ϕ = 2((state1 = trying1) ⇒

3(state1 = critical1)) holds vacuously. Naive detection requires two model-checking
runs while VAQTREE requires only one. To our knowledge, ours is the first vacuity
detection tool for BMC.

1

Model
+

Property

SMV→ CNF
Translator

Proof-
outputting
SAT solver

CNFM

CNFp

Proof
Analyzer

CNFM

CNFp

Proof

Vacuity
Results

VAQTREE

Fig. 1. VAQTREE components.

2 Design and Implementation

Th inputs to VAQTREE are a model (encoded using the specification language of the
model-checker NUSMV [3]) and an LTL property. The tool generates the vacuity re-
sults for each variable present in the property. The component diagram for VAQTREE

is shown in Figure 1. The three components interact sequentially:

SMV → CNF Translator receives as input a SMV file containing a model (M) and a
property (p), which are translated into separate CNF files, CNFM and CNFp, respec-
tively. This translation is done using NUSMV, to which we added about 40 lines of
code to get the translation as two files (lines added to the bmcBmcNonInc.c file in
the bmc package).

Proof-outputing SAT solver generates the resolution proof for CNFM ∪CNFp. We use
MINISAT [5] as it can explicitly generate resolution proofs when checking satisfiability.
Instead of using MINISAT’s binary proof format, we developed our own XML format,
to facilitate future incorporation of other SAT solvers.

Proof Analyzer receives the CNF translations of the model and the property and the
XML version of the corresponding resolution proof and produces the vacuity results.
This is a new component, written in Java (around 3.5K lines of code).

VAQTREE can be executed via command line or controlled through its GUI. The
GUI can generate an interactive graph representation of the resolution proof under anal-
ysis. Currently, VAQTREE can handle cases with 1.1 million clauses, i.e., roughly a
model with 30 SMV boolean variable, expanded up to 19 steps.

The Proof Analyzer uses one of three vacuity detection methods (irrelevance, local
irrelevance and peripherality) to produce the vacuity results. These methods are of in-
creasing completeness and analyze the resolution proof produced by a successful BMC
run. Irrelevance detects vacuity based on which variables appear in the UNSAT core.
The intuition for irrelevance is that if a variable does not appear in the UNSAT core, it
is not essential in proving that the property holds.

The intuition for local irrelevance is that variables that appear in the UNSAT core
are not always central to the proof of why the property holds on the model. Thus, by
analyzing where the variables occur in the UNSAT core, we are able to detect vacuity.
The peripherality algorithm examines the structure of the resolution proof, identifying
variables that are not necessary or central to its derivation of the empty clause as vac-
uous. This method is relatively complete and has time complexity linear in the size of
the resolution proof. The user can choose which of these three methods is applied by
VAQTREE. More information is available in [11]

2

��
��
��

Periph.
L. Irrel and Periph.
Irrel., L. Irrel and Periph.

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

		
		
		
		
		
		
		
		
		
		

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���� ��
��
��
��
��

��
��
��
��
��

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!
!�!!�!

"�""�"
"�""�"
"�""�"
"�""�"
"�""�"
"�""�"
"�""�"
"�""�"
"�""�"
"�""�"

#�##�#
#�##�#
#�##�#
#�##�#
#�##�#

$$
$$
$$
$$
$$

%& '()�))�)
)�))�)
)�))�)
)�)

**
**
**
*

+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+
+�++�+

,,
,,
,,
,,
,,
,,
,,
,,
,,
,,

--
--
--
--
--
--
--
--
--
--

..
..
..
..
..
..
..
..
..
..

//
//
//
//
//
//
//
/

00
00
00
00
00
00
00
0

1�11�1
1�11�1
1�11�1
1�11�1
1�11�1

22
22
22
22
22

3�34 55
55
55
55
55

66
66
66
66
66

7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7
7�77�7

88
88
88
88
88
88
88
88
88
88

9: ;�;<�< ==
==
==
==
==
==
==
==
==
==

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

?�??�?
?�??�?
?�??�?
?�?

@�@@�@
@�@@�@
@�@@�@
@�@

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

BB
BB
BB
BB
BB
BB
BB
BB
BB
BB

CD E�EF�F G�GG�G
G�GG�G
G�GG�G
G�GG�G
G�GG�G

HH
HH
HH
HH
HH

IJ KL M�MNO�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O
O�OO�O

PP
PP
PP
PP
PP
PP
PP
PP
PP
PP

QQ
QQ
QQ
QQ
QQ
QQ
QQ
QQ
QQ
QQ

RR
RR
RR
RR
RR
RR
RR
RR
RR
RR

SS
SS
SS
SS
SS
SS
SS
S

TT
TT
TT
TT
TT
TT
TT
T

U�UU�U
U�UU�U
U�UU�U
U�UU�U
U�UU�U

VV
VV
VV
VV
VV

W�WX YY
YY
YY
Y

ZZ
ZZ
ZZ
Z

[�[\]^ _�_`�` aa
aa
aa
aa
aa
aa
aa
aa
aa
aa

bb
bb
bb
bb
bb
bb
bb
bb
bb
bb

c�cd�d ee
ee
ee
ee
ee
ee
ee
ee
ee
ee

ff
ff
ff
ff
ff
ff
ff
ff
ff
ff

gh i�ij�j k�kk�k
k�kk�k
k�kk�k
k�kk�k
k�kk�k

ll
ll
ll
ll
ll

mn op q�qr 0%

 20%

 40%

 60%

 80%

 100%

pci p20

abp4 p6

abp4 p4

prod−cell p2

prod−cell p12

prod−cell p9

prod−cell p4

prod−cell p5

prod−cell p1

pci p14

pci p12

pci p1

toyFG
S04 p1

toyFG
S04 p15

toyFG
S04 p8

m
si_w

trans p9

m
si_w

trans p17

m
si_w

trans p16

%
 v

ac
uo

us
 v

ar
ia

bl
es

 d
et

ec
te

d

Test cases

Naive = 100%

Fig. 2. Vacuous variable detection rates

3 Evaluation
To evaluate whether our algorithms were effective in practice, we ran VAQTREE on
18 realistic model-property pairs that we knew to be vacuous. These test cases [11]
are NuSMV distribution examples (15 properties, total) and a Flight Guidance System
(toyFGS04) from [7] (three properties, referred to as p1, p8, p15). All tests were run
on a Dell PowerEdge SC1425 (P4Xeon - 3.6GHz) running RedHat Linux 7.3 (2.4.x
kernel) and 6 GB of RAM, where a maximum of 1.7 GB of RAM was available to each
process.

Figures 2 and 3 show a summary of our evaluation. The percentages in Figure 2 are
calculated with respect to the number of vacuous variables found by the naive method.
For example, irrelevance and local irrelevance detected 75% of the vacuous variables
present in property msi wtrans p9, while peripherality managed to detect 100%. We
do encounter cases where incompleteness prevents us from detecting vacuity (abp4
p4, abp4 p6, toyFGS04 p15); however, VAQTREE can still detect 83% of the vacuous
properties studied. Additionally, 28% of the properties are marked as vacuous only by
peripherality (pci p12, pci p14, pci p20, prod-cell p9, prod-cell p12).

Execution times for irrelevance are not shown in Figure 3 as these are the same
as for local irrelevance. We found that peripherality was faster than the naive method
for 72% of the properties tested. It is slower in the remaining 5 cases (prod-cell p2,
prod-cell p12, abp4 p4, abp4 p6, pci p20) due to technical issues with MINISAT:
when it generates the resolution proof, it also outputs extraneous chains of resolution.
Significant effort is needed to parse this output. We are currently investigating possible
solutions, including an improved version of MINISAT.

Our evaluation indicates that in practice, examining the UNSAT core (i.e., using ir-
relevance and local irrelevance) will fail to detect many cases of vacuity, but peripheral-
ity detects around 60-80% of the vacuous properties, and does so an order of magnitude

3

 1

 10

 100

 1000

 10000

 100000

pci p20

abp4 p6

abp4 p4

prod-cell p2

prod-cell p12

prod-cell p9

prod-cell p4

prod-cell p5

prod-cell p1

pci p14

pci p12

pci p1

toyFG
S04 p1

toyFG
S04 p15

toyFG
S04 p8

m
si_w

trans p9

m
si_w

trans p17

m
si_w

trans p16

E
xe

cu
tio

n
tim

e
(s

)

Test cases

Naive
Local Irrelevance

Peripherality

Fig. 3. Execution times

faster than the naive method in 72% of the cases tested. Thus, we have shown that ex-
amining the resolution proof produced by a successful BMC run is an efficient method
for detecting vacuity of LTL properties. VAQTREE is a fully-functional prototype, and
will be released after some improvements to the user-interface are completed.

References

1. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient Detection of Vacuity in ACTL
Formulas”. In Proceedings of CAV’97, volume 1254 of LNCS, pages 279–290, 1997.

2. I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. “Efficient Detection of Vacuity in Temporal
Model Checking”. FMSD, 18(2):141–163, 2001.

3. A. Cimatti, E. Clarke, E. Giunchilia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. “NUSMV Version 2: An Open Source Tool for Symbolic Model Checking”.
In Proceedings of CAV’02, volume 2404 of LNCS, pages 359–364, 2002.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking, chapter 8, pages 109–112. MIT
Press, 1999.

5. N. Een and Sörensson. The MiniSat Page. http://www.cs.chalmers.se/Cs/
Research/FormalMethods/MiniSat/Main.html, April 2006.

6. M. Gheorghiu, A. Gurfinkel, and M. Chechik. VaqUoT: A Tool for Vacuity Detection. CSRG
Technical Report, University of Toronto, April 2005.

7. M. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao. “Auto-generating Test
Sequences Using Model Checkers: A Case Study”. In Proceedings of FATES’03, volume
2931 of LNCS, pages 42–59, 2003.

8. O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model Checking”. In Pro-
ceedings of CHARME’99, volume 1703 of LNCS, pages 82–96, 1999.

9. O. Kupferman and M. Vardi. Vacuity Detection in Temporal Model Checking. International
Journal on Software Tools for Technology Transfer (STTT), 4(2):224–233, February 2003.

10. M. Purandare and F. Somenzi. “Vacuum Cleaning CTL Formulae”. In Proceedings of
CAV’02, volume 2404 of LNCS, pages 485–499, 2002.

11. J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. “Exploiting Resolution Proofs for
LTL Vacuity Detection”. CSRG Technical Report 539, Department of Computer Science,
University of Toronto, 2006.

4

