
Raising Level of Abstraction with Partial Models: A
Vision

Marsha Chechik1, Arie Gurfinkel2, Sebastian Uchitel3, and Shoham Ben-David1

1 Department of Computer Science, University of Toronto
2 SEI/CMU

3 University of Buenos Aires and Imperial College London

1 Introduction and Position

We support the goals of the workshop to concentrate community efforts towards usable
verification. We believe that the keys to addressing this problem areabstraction(i.e.,
raising the level of abstraction at which the software is designed) andautomation(i.e.,
creating automated and scalable tools for reasoning about such software at the highest
level of abstraction possible).

Specifically, we advocate designing and constructing software systems by starting
with high-level “abstract” models or by synthesizing operational models from (declar-
ative) specifications. Then, such models can be refined by adding detail, as necessary,
while preserving the properties of interest. Such an approach, which builds on a recent
trend in model-driven development (MDD), may allow “building quality and reliabil-
ity” into the software from the very beginning of the design life-cycle.

Our position is that in order to provideusable verificationin this domain, we need
notations and techniques with the following properties:

1. Handling incompleteness.It is clear that “abstract” models are incomplete – i.e.,
some details are hidden (“abstracted”) away. An ability to specify such incomplete
models and reason with them is essential. The required automation involves
(a) reasoning (using model-checking or theorem proving) about such models w.r.t.

a variety of (temporal, behavioral, correctness) properties, including, properties
that may depend on details that are not present at a given level of abstraction
and, therefore, may warrant an “I do not know” answer.

(b) refinement (i.e., integrating new information such as additional behavior and/or
additional data objects). Refinement must preserve properties established at a
higher level of abstraction (otherwise, all correctness established earlier in the
software lifecycle does not carry over to later stages).

(c) merge (combining information from multiple sources). For example, integrat-
ing (possibly conflicting) viewpoints of different stakeholders such as the end-
users, maintainers, the database, etc.

(d) operationalization (an ability to simulate, test, and validate a model). A repre-
sentative example is constructing a model representing a parallel composition
of several components described at different levels of abstraction and/or from
viewpoints of different stakeholders.



The motivation is to do the analysis as early as possible in the design lifecycle –
before the complete software is built.

2. Handling inconsistency identification and resolution.Models early in the de-
sign lifecycle, models with multiple stakeholders, or models coming from different
sources are bound to be inconsistent. Therefore, support for tolerating (e.g., by not
trivializing the entire logical inference) and resolving (e.g., through computer-aided
negotiation) inconsistency must be provided.

3. Support for operationalization of models.
(a) Code generation. Once a model is consistent and has sufficient level of detail,

it must be converted into running code. Ideally, this step should include suffi-
cient traceability to allow for the use of the original modelfor debugging and
maintenance in downstream activities.

(b) Synthesis. We believe that more analyses are possible when models of software
are operationalized, e.g., expressed in the form of state machines. Such oper-
ational models can be produced directly by users or synthesized from higher-
level, declarative specifications such as temporal logic formulas and scenarios.

(c) Validation. Operational models can and should be validated using simulation
and testing, and model-checked against properties of interest. Ideally, results
of validation should help the developer determine how to refine the models
further.

We expect that the combination of these properties allows usto start with high-level op-
erational models and, though property-preserving refinement, ensure that the resulting
software systems will have the desired properties.

Our vision is related to the classical refinement methodologies like the B method [1],
to the traditional synthesis approaches like [15] and to theMDD techniques [12]. Yet,
the vision is unique in the combination of the above three characteristics. For example,
refinement uses partiality but does not include operationalization. Synthesis does oper-
ationalization but does not explicate partiality of the solution. MDD techniques allow
inconsistencies but do not capture partiality explicitly.

While there are several modeling formalisms and reasoning frameworks that can
support our vision, in this paper, we concentrate onpartial behavioral modelsand some
of our recent and on-going projects.

A lot of notations and formalisms for this work have been developed with the aim
of capturing abstractions of complex software systems. That is, while these formalisms
omitted various details, they were available in the underlying concrete models. In con-
trast, in our work we do not assume presence of concrete models and thus each partial
model essentially represents asetof concrete models – those that can be obtained via
refinement.

The rest of this paper is organized as follows: In Section 2, we survey related work
on partial modeling formalisms and formally define and illustrate one of them – Modal
Transition Systems (MTSs). In Section 3, we summarize our recent results on using
MTSs as the formalism for our usable verification vision. Finally, in Section 4, we
describe some limitations of the MTS-based framework and motivate some of our cur-
rent/future work in this field.

2



A :

0 1 2

login?

fail?

success?

exit

balance,
topup?,

withdraw

B :

0 1 2

login success?

exit

balance,
withdraw

C :

5 3 1 2

0 4

login? fail? fail?

retainCard

recoverCard

login
success

success?

fail?

D :

4 1

0 6 2

3 5

login

success?

exit

success

fail?

login?

recoverCard

retainCard

fail?

fail?

balance,
topup?,

withdraw

Fig. 1.Some MTSs:A andC are ATM models;B is a refinement ofA; D is a merge ofA andC.

2 Partial Models

We begin with a well-known concept of Labeled Transition Systems.

Definition 1. (Labeled Transition System)A Labeled Transition System(LTS) is a tu-
ple L = (S, A, ∆, s0), whereS is a finite set of states,A is a set of actions,∆ ⊆

(S × A × S) is a transition relation between states, ands0 ∈ S is the initial state.

Modal Transition Systems (MTSs) [10, 14] allow explicit modeling of what isnot
known about the behavior of a system. They extend LTSs with anadditional set of tran-
sitions that model the interactions with the environment that the system cannot guaran-
tee to provide, but, equally, cannot guarantee to prohibit.

Definition 2. (Modal Transition System)A Modal Transition System(MTS)M is a
structure(S, A, ∆r, ∆p, s0), where∆r ⊆ ∆p, (S, A, ∆r, s0) is an LTS representing
requiredtransitions of the system and(S, A, ∆p, s0) is an LTS representingpossible
(but not necessarily required) transitions of the system.

MTSs specifypartial behavioral modelswhich distinguish between required, pro-
hibited, or unknown behaviors. When depicting MTSs, we enumerate states for refer-
ence and assume that state0 is the initial state.Requiredtransitions are denoted by a
solid labeled arrow. Transitions that arepossible but not required(a.k.a.maybetran-
sitions) are denoted by a question mark following the label.Transitions on sets are
shorthand for a single transition on every element of the set.

For example, consider a specification of software controlling a bank Automated
Teller Machine (ATM). The specification may consist of a number of use cases exem-
plifying how the ATM is to be used, and some properties it is expected to satisfy. An

3



example use case is “when a user has successfully logged in, i.e., inserted a valid card
and keyed in a valid password, the user must be offered the following choices: with-
draw cash, balance slip or log out”. In addition, some ATMs may provide an optional
feature of topping up a pay-as-you-go mobile phone. A possible safety property of an
ATM is to prohibit withdrawals, balances and top-ups if the user is not logged in. An
operational model, in the form of an MTS that captures the above use-case and prop-
erty, is depicted in modelA in Figure 1. Here, the initial state of the model is labeled
0, the transition from state 0 onlogin is allowed (but not required); all other transitions
from state 0 are prohibited. If the system has provisions forlogging in the user and the
login is successful, the user (in state 2) must be given a choice to withdraw cash, obtain
a balance or exit. Thetop-upfeature is optional, i.e., allowed but not required.

C in Figure 1 is another ATM model. UnlikeA, which gives an overview of the en-
tire ATM system,C concentrates just on the possible protocols for a failed login attempt.
It allows zero, one and two failures, and requires that in both cases there areretainCard
andrecoverCardtransitions. This model specifies nothing about the operations allowed
once a successful login has been achieved.

Refinement of MTSs maintains required behaviors, does not introduce behaviors
that are prohibited, but can change unknown behaviors into required or prohibited. For
example, modelB of Figure 1 shows one possible refinement of modelA: the unknown
transition onlogin became a required transition, and the optional transition on fail and
the self-loop ontop-upin state 2 were omitted.

MTSs are members of a large family of partial modeling formalisms including Par-
tial Labeled Transition Systems (PLTSs) [18], multi-valued state machines [8], Mixed
Transition Systems [7] and multi-valued Kripke structures[4,6,11] among others.

3 Modeling and Analysis with Modal Transition Systems

In our work [5, 10, 16, 17], we have studied MTSs as the underlying formalism for en-
abling usable verification. Specifically, our goal was to interpret an MTS as a concise
representation of a set of LTSs and to define refinement as resolving partiality. More-
over, we found it important to consider models with different vocabularies, describing
different aspects from the perspectives of different stakeholders (and, hence, of diverse
scopes, as correspond to the elaboration of behavioral models in practice). For example,
modelsA andC in Figure 1 describe different aspects of the ATM model and thus their
vocabularies overlap but are not the same.

In our study of MTSs, we concentrated on defining operations on MTSs: refinement,
merge (defined as the least common refinement of two models), consistency checking
(defined as absence of the merge of two models), synthesis, parallel composition and
model-checking of MTSs [10, 16]. These operations were implemented in MTSA – a
tool for specifying, animating and reasoning about MTS models [9]. A screenshot of
MTSA is shown in Figure 2. We have not explored code generation.

We discuss some of MTS operations below. Merge is perhaps themore unusual one.
Its goal is to combine information coming from various sources. Defined as the least
common refinement of two models, it preserves all required behaviors of the models.
It also preserves all prohibited behaviors (i.e., if neither model was allowed to have a

4



Fig. 2. MTSA screenshot – Draw View.

particular behavior then neither would their merge). However, if a particular behavior
is possible but not required in one model and is required (prohibited) in the other, then
it is required (prohibited) in the merge. For example, modelD in Figure 1 is the merge
of A andC. Note that thelogin transition from state 0 is possible but not required inA

but is required inC; thus, it is required in the merge.

We showed that our refinement operator preserves propertiesexpressed in Fluent
LTL [13], whether they are true or false in the less refined model. Of course, properties
which are “unknown” in the less refined model might become true or false in the more
refined one, or remain unknown. For example, consider the safety property for the ATM
which states that if the user is not logged in, withdrawals and balance checks are pro-
hibited. It is expressed in Fluent LTL asG(LoggedOut⇒ (¬balance∧ ¬withdraw)),
whereLoggedOutis afluent(i.e., a state description) indicating that the user eitherhas
not executed alogin or hasexited from the system. This property holds for the model
A shown in Figure 1 and thus is preserved in its refinement,B.

Since merge is based on refinement, a property which is true (false) in two models
is also true (false) in their merge.

To operationalize partial descriptions of behavior of different aspects of software,
we have developed synthesis algorithms. These compute MTSsfrom safety proper-
ties described in temporal logic (they give the “upper bound” of the MTS behavior,
specifying prohibited behavior), and from scenarios expressed as Message Sequence
Charts [16] (they give the “lower bound” of the MTS behavior,specifying required
behavior).

5



4 Challenges

In this section, we discuss some challenges in using MTSs as the partial behavioral
models to support our Usable Verification position.

1. While MTSs can be used to detect inconsistency (and even potentially help with
negotiation), they do not allow analysis in the presence of inconsistency. We have
looked at other partial formalisms that allow such reasoning – most notably, multi-
valued Kripke structures [6] and built a model-checking engine that can determine
whether a (CTL) property evaluates to “inconsistent”, in addition to true, false and
unknown. However, it is unclear how to combine multi-valuedKripke structures
with labeled transition-like approaches such as MTSs, to take advantage of other
operations defined over them.

2. The main drawback of MTSs and similar operational partialmodeling formalisms
is that the complexity of many key operations associated with them is EXPTIME-
complete [2,3]. This restricts the use of MTSs to only modestly sized programs.
Yet, our experience using MTSs for specification and modeling of (relatively com-
plex) software systems indicates that most of their use is limited either to capturing
particular traces or, at most, linear behavior with some branching parts.
We are now working on defining a new formalism for which manipulations of
partial models can be achieved relatively inexpensively without compromising too
much on expressive power. A first attempt is to describerequiredandpossiblebe-
havioral traces as regular expressions (REs). These can be represented as automata,
and manipulated in linear time. However, regular expressions are less expressive
than other modeling formalisms: for example, they cannot express triggered scenar-
ios: if a prefix of a behavior trace appears, some suffix behavior must be possible
(e.g., absence of deadlocks). Instead, we are looking to enrich linear temporal logic
with trigger abilities, to identify a “sweet spot”: a language with sufficient expres-
sive power and yet with low-complexity of analysis for the software-engineering
tasks outlined in Section 1.

3. Finally, our proposal is best categorized as “green field”research. While having
many desirable characteristics, it is unclear how to combine our approach with
more traditional methods for software development.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
1996.

2. A. Antonik, M. Huth, K. Guldstrand L., U. Nyman, and A. Wasowski. “EXPTIME-complete
Decision Problems for Modal and Mixed Specifications”.Electronic Notes in Theoretical
Computer Science, 242(1):19–33, 2009.

3. N. Benes, J. Kretnsky, K. Larsen, and J. Srba. “Checking Thorough Refinement on Modal
Transition Systems is EXPTIME-complete”. InProceedings of ICTAC’09, pages 112–126,
2009.

4. G. Bruns and P. Godefroid. “Model Checking Partial State Spaces with 3-Valued Temporal
Logics”. In Proceedings of Proceedings of 11th International Conference on Computer-
Aided Verification (CAV’99), volume 1633 ofLNCS, pages 274–287. Springer, 1999.

6



5. M. Chechik, G. Brunet, D. Fischbein, and S. Uchitel. “Partial Behavioural Models for Re-
quirements and Early Design”. InMethods for Modelling Software Systems (MMOSS), num-
ber 06351 in Dagstuhl Seminar Proceedings, pages 1–10, 2007.

6. M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel.“Multi-Valued Symbolic
Model-Checking”.ACM Transactions on Software Engineering and Methodology, 12(4):1–
38, October 2003.

7. D. Dams.Abstract Interpretation and Partition Refinement for ModelChecking. PhD thesis,
Eindhoven University of Technology, The Netherlands, July1996.

8. R. Diaz-Redondo, J. Pazos-Arias, and A. Fernandez-Vilas. “Reusing Verification Informa-
tion of Incomplete Specifications”. InProceedings of the 5th Workshop on Component-Based
Software Engineering, 2002.

9. N. D’Ippolito, D. Fishbein, M. Chechik, and S. Uchitel. “MTSA: The Modal Transition
System Analyzer”. InProceedings of International Conference on Automated Software En-
gineering (ASE’08), pages 475–476, September 2008.

10. D. Fischbein, G. Brunet, N. D’Ippolito, M. Chechik, and S. Uchitel. “Weak Alphabet Merg-
ing of Partial Behaviour Models”.ACM Transactions on Software Engineering and Method-
ology (TOSEM), pages 1–49, 2010.

11. M. Fitting. “Many-Valued Modal Logics”.Fundamenta Informaticae, 15(3-4):335–350,
1991.

12. D. S. Frankel.Model Driven Architecture: Applying MDA to Enterprise Computing. John
Wiley & Sons, 2003.

13. D. Giannakopoulou and J. Magee. “Fluent Model Checking for Event-Based Systems”. In
Proceedings of the 9th joint meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’03),
pages 257–266. ACM Press, September 2003.

14. K. Larsen and B. Thomsen. “A Modal Process Logic”. InProceedings of 3rd Annual Sym-
posium on Logic in Computer Science (LICS’88), pages 203–210. IEEE Computer Society
Press, 1988.

15. A. Pnueli and R. Rosner. “On the Synthesis of a Reactive Module”. In Proceedings of 16th
ACM Symposium on Principles of Programming Languages, January 1989.

16. S. Uchitel, G. Brunet, and M. Chechik. “Synthesis of Partial Behaviour Models from Prop-
erties and Scenarios”.IEEE Transactions on Software Engineering, 3(35):384–406, 2009.

17. S. Uchitel and M. Chechik. “Merging Partial BehaviouralModels”. InProceedings of 12th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pages
43–52, November 2004.

18. S. Uchitel, J. Kramer, and J. Magee. “Behaviour Model Elaboration using Partial Labelled
Transition Systems”. InProceedings of the 9th joint meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’03), pages 19–27, 2003.

7


