
UCHITEL, BRUNET, CHECHIK 1

Synthesis of Partial Behaviour Models from
Properties and Scenarios
Sebastian Uchitel, Greg Brunet, and Marsha Chechik

Abstract— Synthesis of behaviour models from software
development artifacts such as scenario-based descriptions or
requirements specifications helps reduce the effort of model
construction. However, the models favoured by existing syn-
thesis approaches are not sufficiently expressive to describe
both universal constraints provided by requirements and
existential statements provided by scenarios. In this paper,
we propose a novel synthesis technique that constructs
behaviour models in the form of Modal Transition Systems
(MTS) from a combination of safety properties and sce-
narios. MTSs distinguish required, possible and proscribed
behaviour, and their elaboration not only guarantees the
preservation of the properties and scenarios used for synthe-
sis but also supports further elicitation of new requirements.

Index Terms— Modal Transition Systems, Merge, Synthe-
sis, Partial Behaviour Models.

I. INTRODUCTION

Pre-development and pre-deployment reasoning about
system behaviour supports identifying flaws early in the
development process, greatly aiding the requirements and
design processes. Labelled Transition Systems (LTSs) and
other event-based behaviour models are convenient for-
malisms for modelling and reasoning about system be-
haviour. These models provide a basis for a wide range
of automated analysis techniques, such as model-checking
and simulation.

One of the serious limitations of behaviour modelling
and analysis is the complexity of building the models in the
first place. This process is somewhat simplified by compo-
sitionality: behaviour models describe a system as a set of
interacting components where each component is modelled
as a state machine, and interactions between components
occur through shared events. Hence, behaviour models for
complex systems can be constructed by describing simpler
subsystems and composing them into more complex ones.

Despite compositionality, behaviour model construction
remains a difficult, labour-intensive task that requires con-
siderable expertise. To address this, a wide range of tech-
niques for supporting (semi-)automated synthesis of be-
haviour models have been investigated. In particular, syn-
thesis from declarative requirements specifications (e.g.,
[30], [37], [50], [43], [25]) or from scenarios and use cases
(e.g., [29], [49], [27], [6]) has been studied extensively.

The first author is in Department of Computing, Imperial College,
180 Queen’s Gate, London, SW7 2RH, UK, s.uchitel@doc.ic.ac.uk,
and Department of Computer Science, FCEN, University of Buenos
Aires, Argentina, suchitel@dc.uba.ar. The second author participated
in early work leading to this paper while he was a graduate student at
the University of Toronto and a research associate at Imperial College.
The third author is in Department of Computer Science, University of
Toronto, Toronto, Canada, chechik@cs.toronto.edu.

Synthesis from declarative specifications such as goal
models describing the requirements of a system delivers ex-
ecutable models early in the requirements process, enabling
a wide range of validation analyses such as animations,
simulations, and scenario-based techniques.

Properties are statements that prune the space of ac-
ceptable behaviours of the system being built: The fact
that a trace satisfies a property does not mean that the
system is required to provide that trace; the trace could be
violating another property, possibly one yet to be elicited.
Consequently, a behaviour model synthesized from prop-
erties should characterize all possible behaviours that do
not violate the properties. Such a model provides an upper
bound on all the behaviours that the system will actually
provide, once implemented. In other words, the final system
cannot provide more behaviour than that described by
the synthesized model, or, more formally, the synthesized
model must be able to simulate the behaviour of the final
system. Validation of behaviour models synthesized from
properties can prompt the elicitation of more properties,
which in turn will further approximate from above the
intended behaviour of the system to be. In other words, as
new properties are elicited, the resulting synthesized model
will be able to do less, describing behaviour that is closer
to that of the system to be.

Synthesis from scenario-based specifications such as Mes-
sage Sequence Charts (MSCs) [24] has a number of advan-
tages that complement those of property synthesis. Scenar-
ios describe how system components, the environment and
users interact in order to provide system-level functional-
ity. Their simplicity and intuitive graphical representation
facilitate stakeholder involvement and make them popular
for requirements elicitation.

In their simplest, and widely used form, scenarios are ex-
istential statements: they provide examples of the intended
system behaviour; in other words, sequences of interactions
that the system is expected to exhibit (and do not, as
opposed to properties, provide universal requirements for
all system behaviours). By synthesizing behaviour models
from scenarios, it is possible to support early analysis, val-
idation, and incremental elaboration of behaviour models.

Scenarios are inherently partial descriptions, it is not nor-
mally assumed that the behaviour they describe amounts to
the complete system behaviour. Consequently, a behaviour
model synthesized from scenarios should provide a lower
bound from which to identify the behaviours that the system
will provide but that have not been explicitly captured
by the scenarios. In other words, the synthesized model
describes less behaviour than what the final system shall
provide, or formally, the system shall be able to simulate

UCHITEL, BRUNET, CHECHIK 2

the behaviour described by the scenarios. As new scenarios
are identified, the resulting model will approximate the
behaviour of the final system from below, meaning that
the synthesized model will have more behaviour than the
previous one (i.e., it will be able to simulate the previous
one), but will still be a lower bound for the final system.

In this paper, we argue that classical state machine
models (the target for existing synthesis approaches) such
as LTSs are insufficiently expressive to support synthesis
from both properties and scenarios as they cannot model
simultaneously lower and upper bounds to intended sys-
tem behaviour. We extend existing LTS synthesis algorithms
to produce Modal Transition Systems (MTSs) [35] and
demonstrate that elaboration from MTSs not only preserves
the original properties and scenarios, but also supports
elicitation of new properties and scenarios. In addition to
the approach itself, specific contributions of the paper are:

1) a technique for automatically generating MTSs from
safety properties expressed in Fluent Linear Temporal
Logic (FLTL);

2) a technique for extending LTS synthesis from scenario
approaches to support construction of MTS models;

3) a demonstration that merging of synthesized
MTSs [48], preserves properties and scenarios
and hence can be used as the basis for a combined
synthesis procedure of behaviour models from
all these artifacts. Given that merge characterizes,
through refinement, all MTSs (and LTSs) that preserve
the scenarios and properties, merge produces the
starting point for further elaboration of system
behaviour.

4) a report on a case study that demonstrates that analy-
sis of synthesized MTSs can help find new meaningful
properties and scenarios to be used to further the
behaviour model elaboration process.

The rest of the paper is organized as follows. We begin
with a motivating example in Section II, followed by the
necessary background in Section III. In Section IV, 3-valued
FLTL is presented. Sections V and VI present algorithms for
synthesizing MTSs from safety properties and scenarios, re-
spectively. In Section VII, we use the merge operator to put
such partial behaviour descriptions together. Automated
support for model synthesis techniques described in this
paper is implemented in a tool called MTSA, which we
describe in Section VIII. In Section IX, we apply results of
this paper, illustrating construction of a partial model and
its elaboration, identifying new scenarios and properties.
We discuss our work and compare it to related approaches
in Section X, and conclude in Section XI.

II. MOTIVATING EXAMPLE

In this section, we provide a motivating example, explain-
ing the concepts of scenarios, properties, LTSs and synthesis
informally.

Consider a simple web-based email system. Figure 1
provides some examples of the intended system behaviour
using a standard message sequence chart notation [24]. The
scenario sc describes a repetition (the outer rep box) of a
(non-deterministic) choice (the inner alt box) between two
sequences of actions: (1) a User requests authentication from

U s e r S e r v e r A d m i na u t h e n t i c a t es e n d M s gl o g o u t M s gl o g o u tr e pa l t a u t h e n t i c a t es e n d M s gl o g o u t M s gr e p d i s a b l ee n a b l e
r e p

Fig. 1. Webmail scenario specification sc.

Registered = 〈enable, disable〉 initially TRUE
LoggedIn = 〈authenticate, {logout, disable}〉 initially FALSE

(Legal access) p1 = 2(LoggedIn ⇒ Registered)

(Private access) p2 = 2(sendMsg ⇒ LoggedIn)

(Logouts are ack’d) p3 = 2(logout ⇒ X logoutMsg)

Fig. 2. Webmail system properties.

the Server which then sends a number of messages; after
that, the User logs out and receives a logout message. (2) an
Admin disables the User during user activities, effectively
expelling the latter from the system. An example of a
sequence of events required by sc is

sc1 = authenticate, sendMsg, disable, logoutMsg . . .

The Webmail system is required to enforce legal and
private access to the emails it stores. These requirements are
formalized in FLTL [13] in Figure 2 as properties p1 and p2.
Legal access requires the User be Registered if she is to be
LoggedIn. Private access requires that the User be LoggedIn if
she is to receive e-mail (sendMsg) from the Server. Registered
and LoggedIn are fluents that change value according to
the occurrence of events. A User is Registered once he has
been enabled and not yet disabled. A User is LoggedIn once
he has been authenticated and not yet done a logout nor
has been disabled. An additional requirement, p3, specifies
that users should be sent an acknowledgment on logout.
Formalization of p3 states that if logout occurs, then the next
(X) event to occur is logoutMsg.

We now consider synthesis of LTS models from the
scenarios and properties of the Webmail system.

Property P = p1∧p2∧p3 can be used to synthesize, via an
adaptation of the method in [13], an LTS model L(P) shown
in Figure 3. This model describes all possible behaviours
over the events

Actweb = {enable, disable, authenticate, logout,
sendMsg, logoutMsg}

that do not violate P . If P represents a subset of the actual
system requirements, then the model L(P) can be thought
of as providing an upper bound on the actual intended
behaviour of the system, and the elaboration process is
aimed at removing behaviour from L(P).

UCHITEL, BRUNET, CHECHIK 3

Fig. 3. LTS synthesized from property P = p1 ∧ p2 ∧ p3.

The problem with L(P), and with synthesis of LTSs in
general, is that the model blurs the distinction between
behaviours that may occur as they will not violate P , and
behaviours that must occur in order to avoid a violation of
P . For instance, it does not convey that removing a self-
loop on logoutMsg from state 0 does not violate P , whereas
removing a transition on the same event between states 4

and 0 does. Consequently, elaboration by arbitrary removal
of behaviour can be incorrect. Furthermore, the problem of
lack of distinction between required and possible behaviour
is aggravated when the scenario description in Figure 1 is
considered as well. From sc we know that removing the
transition on authenticate from 0 to 1 would be incorrect as
it would impede sc1 from occurring; however, L(P) does
not, and cannot be modified to reflect this. In summary,
the problem is that by interpreting the LTS L(P) as an
upper bound to the actual intended system behaviour, the
distinction of what behaviour is required is lost. Such is the
case of the transition on authenticate between states 0 and 4

and the self-loop on logoutMsg in state 1.

Synthesis of LTS models from scenarios presents the dual
problem. A scenario description specifies only some of the
required traces of the system. For example, Figure 1 says
nothing about the possibility of the Admin disabling a User
while the latter is not logged into the system:

sc2 = disable, enable, disable, enable, . . .

or the possibility of the User receiving messages after she
has been disabled:

sc3 = authenticate, disable, sendMsg, logoutMsg, . . .

Such behaviours, although not explicitly required, could
still be possible.

Synthesis from scenarios aims to build models that pre-
cisely capture the traces described by the scenarios. For
example, Figure 4 depicts the LTS L(sc) synthesized from
the Webmail scenario sc using the algorithm described in
[49]. Since scenario descriptions are partial, it is expected
that the final LTS for the Webmail system will include
all traces of L(sc) as well as others. Hence, L(sc) can be
thought of as providing a lower bound of the intended
system behaviour. The problem is, however, that not all LTS
models that include the traces of L(sc) are reasonable. For
instance, the final LTS may include the trace sc2 but not sc3
since the latter violates the requirement (p1 ∧ p2 ∧ p3) of

Fig. 4. LTS synthesized from scenario sc.

A: B: C:

Fig. 5. Example MTSs where A + B = B and A‖B = C.

the system. LTSs synthesized from scenarios cannot capture
such restrictions.

To summarize, a major limitation of synthesis approaches
is that the models being synthesized are assumed to be
complete descriptions of the system behaviour with respect
to a fixed alphabet of actions. Given the partial nature of
the synthesis inputs (i.e., properties and scenarios), this
forces the models to be interpreted as either lower or
upper bounds of the intended system behaviour. Traditional
behaviour models such as LTSs cannot capture in one model
the middle ground, i.e., the behaviour that does not violate
safety properties yet has not been required by scenarios,
and this hinders validation, analysis and elaboration of
behaviour models.

In this paper, we show how the limitations of existing
synthesis techniques can be overcome by synthesizing more
expressive behaviour models, namely, Modal Transition
Systems (MTSs) [35], which are capable of distinguishing
possible from required behaviour. We also show how anal-
ysis of possible but not required behaviour modeled in an
MTS can support behaviour model elaboration.

III. BACKGROUND

In this section, we review the notion of transition systems
and operations over them, fix the notation and review
merging of MTSs. For the ease of presentation, we assume
that all transition systems have the same alphabet and
do not use non-observable (τ) actions. For a treatment of
models with different alphabets, please refer to [3].

A. Transition Systems

Definition 1: (Labelled Transition System) Let States be a
universal set of states, and Act be a universal set of ob-
servable action labels. An LTS is a tuple L = (S,Act,∆, s0),
where S ⊆ States is a finite set of states, Act is the set of
labels, ∆ ⊆ (S ×Act× S) is a transition relation, and s0 ∈ S

is the initial state. We write L
ℓ

−→ L′ if (s0, ℓ, s
′
0) ∈ ∆ and

L′ = (S,Act,∆, s′0).

UCHITEL, BRUNET, CHECHIK 4

An LTS models the interactions of a (sub-)system with
its environment. An example LTS is shown in Figure 3.
We use a convention that the initial state is labeled as 0.
Otherwise, the numbers on states are for reference only and
have no semantics. Transitions labelled with several actions
is a shorthand for representing an individual transition on
each action.

Definition 2: (Simulation) Let ℘L be the universe of all
LTSs. An LTS L0 simulates an LTS K0, written K0 ≤ L0,
if there exists some simulation relation R ⊆ ℘L × ℘L such
that (K0, L0) ∈ R and ∀ℓ ∈ Act , ∀(K,L) ∈ R,

(K
ℓ

−→ K′) =⇒ (∃L′ · L
ℓ

−→ L′ ∧ (K′, L′) ∈ R)

Modal Transition Systems (MTSs) [35], which allow for
explicit modelling of what is not known, extend LTSs with
an additional set of transitions that model interactions with
the environment that the system cannot be guaranteed to
provide, and equally cannot be guaranteed to prohibit.

Definition 3: (Modal Transition System) An MTS M is a
structure (S,Act,∆r,∆p, s0), where ∆r ⊆ ∆p, (S,Act,∆r, s0)

is an LTS representing required transitions of the system
and (S,Act,∆p, s0) is an LTS representing possible (but not
necessarily required) transitions.

Every LTS (S,Act,∆, s0) can be embedded into an MTS
(S,Act,∆,∆, s0). An MTS (or LTS) is deterministic when no
state has more than one outgoing transition on the same
action. We refer to transitions in ∆p\∆r as maybe transitions.
In figures, maybe transitions are denoted with a question
mark following the label. Example MTSs are shown in
Figure 5 and Figure 9 as well as many other figures in this
paper.

Definition 4: An empty MTS (LTS), denoted E , is the MTS
(LTS) with a single state and an empty transition relation.

An MTS M = (S, Act, ∆r , ∆p, s0) has a required

transition on ℓ (denoted M
ℓ

−→r M ′) if M ′ = (S, Act,
∆r , ∆p, s′0) and (s0, ℓ, s

′
0) ∈ ∆r . Similarly, M has a maybe

transition on ℓ (denoted M
ℓ

−→m M ′) if (s0, ℓ, s
′
0) ∈ ∆p−∆r.

M
ℓ

−→p M
′ means (s0, ℓ, s

′
0) ∈ ∆p.

Definition 5: (Traces) A trace π = a0,a1,. . . where ai ∈ Act

is a required trace in an MTS M if there exists a sequence

{si} such that M0 = M and Mi
ai−→r Mi+1 for all i ∈ N. A

trace π is a maybe trace in M if π is not a required trace, but
there exists an infinite sequence {Mi} such that M0 = M

and Mi
ai−→p Mi+1 for all i ∈ N. A trace π is a possible trace

in M if π is a maybe or required trace in M . Finally, a trace
π is a false trace in M if it is not a possible trace.

We denote the set of required, maybe, possible, and false
traces over a given MTS M by REQTR(M), MAYBETR(M),
POSTR(M), and FALSETR(M), respectively. For an LTS L =

(S,Act,∆, s0), we denote by TR(L) the set of required
traces of its embedding into MTS, M = (S,Act,∆,∆, s0),
so that TR(L) = REQTR(M). We annotate these sets with
“∞” to mean that they capture only infinite-length traces,
e.g., REQTR∞(M) denotes the set of infinite-length required
traces of M .

We use refinement to capture the notion of elaboration
of a partial description into a more comprehensive one, in
which some knowledge of the maybe behaviour has been
gained. Refinement can be seen as being a “more defined
than” relation between two partial models. Intuitively, an

MM
M

ℓ
−→mM ′, N

ℓ
−→mN ′

M‖N
ℓ

−→mM ′‖N ′

TT
M

ℓ
−→rM ′, N

ℓ
−→rN ′

M‖N
ℓ

−→rM ′‖N ′

MT
M

ℓ
−→mM ′, N

ℓ
−→rN ′

M‖N
ℓ

−→mM ′‖N ′

Fig. 6. Rules for parallel composition.

MTS N refines M if N preserves all of the required and all
of the proscribed behaviours of M . Alternatively, an MTS
N refines M if N can simulate the required behaviour of
M , and M can simulate the possible behaviour of N .

Definition 6: (Refinement) Let ℘M be the universe of all
MTSs. An MTS N0 is a refinement of an MTS M0, written
M0 � N0, if there exists some refinement relation R ⊆ ℘M ×

℘M such that (M0, N0) ∈ R and ∀ℓ ∈ Act, ∀(M,N) ∈ R , the
following holds:

1. (M
ℓ

−→r M
′) =⇒ (∃N ′ ·N

ℓ
−→r N

′ ∧ (M ′, N ′) ∈ R)

2. (N
ℓ

−→p N
′) =⇒ (∃M ′ ·M

ℓ
−→p M

′ ∧ (M ′, N ′) ∈ R)

For example, A in Figure 5 is refined by B via the relation
{(0, 0), (0, 1)} since A has no required behaviour for B to
simulate, and A can simulate the possible behaviour of B.

Definition 7: (Equivalence) Models M and N are equivalent,
written M ≡ N , if M � N and N �M .

LTSs that refine an MTS M are complete descriptions of
the system behaviour and thus are called implementations
of M . So, an MTS M can be thought of as a model that
represents the set of LTSs that implement it, denoted I(M).

Definition 8: (Implementation) An LTS L is an implementa-
tion of an MTS M if and only if M � L.
For example, the LTS in Figure 3 is an implementation of
an MTS in Figure 10.

An implementation is deadlock free if all states have
outgoing transitions. We refer to the set of deadlock-free
implementations of M as I∞(M).

Definition 9: (Deadlock-free Implementation) An LTS L =

(SL, Act, ∆L, s0L) is a deadlock-free implementation of an
MTS M if and only if M � L and for all s ∈ SL, there exists
a ∈ Act and s′ ∈ SL such that Ls

a
−→ Ls′ .

Parallel composition [35] captures the notion of MTSs that
run asynchronously but synchronize on shared actions.

Definition 10: (Parallel Composition) Let M =

(SM , Act,∆r
M ,∆p

M
, s0M) and N = (SN , Act,∆

r
N ,∆

p
N
, s0N)

be MTSs. parallel composition (‖) is a symmetric operator
and M‖N is the MTS (SM × SN , Act,∆

r,∆p, (s0M , s0N)),
where ∆r and ∆p are the smallest relations that satisfy the
rules in Figure 6.

For example, the parallel composition of MTSs A and B,
C = A‖B, is depicted in Figure 5.

B. MTS Merging

Merging MTSs [48] is the process of combining what is
known from each partial behaviour description; in other
words, it is the construction of an MTS that includes all the
required and all the prohibited behaviours from each MTS,
and is as least refined as possible. Formally, merging MTSs
is the process of finding their minimal common refinement.

Definition 11: (Minimal Common Refinement) Let Q,M , and
N be MTSs. Q is a common refinement (CR) of M and N if
M � Q and N � Q. Q is a minimal common refinement (MCR)

UCHITEL, BRUNET, CHECHIK 5

of M and N if Q is a CR of M and N , such that Q ≡ Q′

whenever Q′ is a CR of M and N , and Q′ � Q.
That is, a minimal common refinement of two models,
when it exists, is a least refined model that contains all
information present in either model. Often, there are several
MCRs of two partial models.

Definition 12: [34] Let M and N be MTSs. If they have
an MCR and it is unique, it is called their least common
refinement (LCR).

Two MTSs are consistent if and only if they have common
deadlock-free implementations:

Definition 13: (Consistency) MTSs M and N are consistent
if and only if I∞(M) ∩ I∞(N) 6= ∅.
In other words, two MTSs are consistent if there is an MTS,
that allows infinite behaviours, that is a common refinement
of both.

Although previous work on refinement and merge does
not restrict these notions to MTSs with deadlock-free im-
plementations, we introduce this additional constraint to
enable us to define the notion of satisfaction of temporal
logic over infinite traces (see Section IV and Section X-B).

Given two MTSs M and N that are consistent, it is
possible to construct their minimal common refinement
using the + operator defined in [11]. Although this operator,
in contrast to [31], can be applied to arbitrary consistent
models, the models we merge in this paper are deterministic,
allowing us to use a simpler version of this operator, first
defined in [3] and reproduced below. It follows from the
proofs in [11] that for a pair of consistent and deterministic
MTSs, their least common refinement exists, and the + op-
erator defined below constructs it. The constructed common
refinement is based on the consistency relation.

Definition 14: (Consistency Relation) [11] Let M0 = (SM ,
Act, ∆r

M , ∆p
M , s0M) and N0 = (SN , Act, ∆r

N , ∆p
N , s0N) be

MTSs. A consistency relation is a binary relation R ⊆ ∆r
M ×

∆r
N , such that the following conditions hold for all (M,N) ∈

R:
1. (∀ℓ,M ′)(M

ℓ
−→r M

′ =⇒ (∃N ′)(N
ℓ

−→p N
′ ∧ (M ′, N ′) ∈ R))

2. (∀ℓ,N ′)(N
ℓ

−→r N
′ =⇒ (∃M ′)(M

ℓ
−→p M

′ ∧ (M ′, N ′) ∈ R))

Theorem 1: (Consistency Implies Consistency Relation) [11]
For every pair of consistent MTSs M and N , there exists a
consistency relation R such that (M,N) is contained in R.

Definition 15: (The + Operator [11], [3]) Let M = (SM ,
Act, ∆r

M , ∆p
M

, s0M) and N = (SN , Act, ∆r
N , ∆p

N
, s0N) be

deterministic and consistent MTSs. In addition, let CMN be
the largest consistency relation such that (M,N) ∈ CMN .
Then + is a symmetric operator, and M + N is the MTS
(CMN , Act,∆

r,∆p, (s0M , s0N)), where ∆r and ∆p are the
smallest relations satisfying the rules in Figure 7.

Theorem 2: [11] For every pair of consistent and deter-
ministic MTSs M and N , the + operator produces their
LCR.

The merge operator, +, differs from parallel composi-
tion in two aspects. First, the state space of the merge is
restricted to pairs of states that are consistent, as defined
via the consistency relation (Definition 14). Second, merge
differs in the rule MT, used when synchronizing a maybe
with a required transition (the TT and MM rules for both
operators are the same). Merging these transitions results in
a required transition instead of a maybe. For example, the

MM
M

ℓ
−→mM ′, N

ℓ
−→mN ′

M+N
ℓ

−→mM ′+N ′

TT
M

ℓ
−→rM ′, N

ℓ
−→rN ′

M+N
ℓ

−→rM ′+N ′

MT
M

ℓ
−→mM ′, N

ℓ
−→rN ′

M+N
ℓ

−→rM ′+N ′

Fig. 7. Rules for the + operator.

model B = A+ B, shown in Figure 5, differs from C = A‖B
on the a-transition between states 0 and 1.

The intuition is that knowledge is being added, so when
a transition is required in one of the models, it is required
in the merge.

IV. 3-VALUED FLTL

In this paper, we assume that properties are specified
using Fluent Linear Temporal Logic (FLTL) [13]. Linear
temporal logics are widely used to describe behaviour
requirements [13], [52], [25]. The motivation for choosing
FLTL is that it provides a uniform framework for specify-
ing and model-checking state-based temporal properties in
event-based models [13].

In this section, we first review the 3-valued Kleene
logic [26] and use it to define a 3-valued variant of Fluent
Linear Temporal Logic (FLTL) [13]. We then prove that FLTL
properties are preserved by MTS refinement and define a
model-checking procedure for this logic.

A. 3-Valued Logic

The truth values t (true), f (false), and ⊥ (maybe, unknown)
form the Kleene logic, which we refer to as 3. These truth
values can have two orderings, ⊑ (truth), which satisfies f ⊑
⊥ ⊑ t, and ⊑inf (information), which satisfies ⊥ ⊑inf t and
⊥ ⊑inf f (i.e., maybe gives the least amount of information),
and both orderings are idempotent. With respect to the truth
ordering, the values t and f behave classically for ∧ (and),
∨ (or), and ¬ (negation). The following identities hold for
⊥:

⊥ ∧ t = ⊥ ⊥ ∧ f = f ⊥ ∨ t = t ⊥ ∨ f = ⊥ ¬⊥ = ⊥.

B. Models and Implementations

FLTL [13] is a linear-time temporal logic for reasoning
about fluents. A fluent Fl is defined by a pair of sets IFl,
the set of initiating actions, and TFl, the set of terminating
actions:

Fl = 〈IFl, TFl〉 where IFl, TFl ⊆ Act and IFl ∩ TFl = ∅.

A fluent may be initially true or false as indicated by the
InitiallyFl attribute, where a lack of this attribute indicates
that the fluent is initially false.

Every action a ∈ Act induces a fluent, namely, a means
〈a,Act \ {a}〉. For example, consider the property p3 for the
Webmail system described in Figure 2. It uses fluents logout
and logoutMsg derived from the actions with the same name
and defined as above.

Given the set of fluents Φ, an FLTL formula is defined
inductively using the standard boolean connectives and
temporal operators X (next), U (strong until), W (weak
until), 3 (eventually), and 2 (always), as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | Xϕ | ϕUψ | ϕWψ | 3ϕ | 2ϕ,

UCHITEL, BRUNET, CHECHIK 6

π |= Fl , π0 |= Fl
π |= ¬ϕ , ¬(π |= ϕ)

π |= ϕ ∨ ψ , (π |= ϕ) ∨ (π |= ψ)

π |= ϕ ∧ ψ , (π |= ϕ) ∧ (π |= ψ)

π |= Xϕ , π1 |= ϕ

π |= ϕUψ , ∃i ≥ 0 · πi |= ψ ∧ ∀ 0 ≤ j < i · πj |= ϕ

π |= ϕ W ψ , π |= (ϕ U ψ) ∨ 2ϕ

π |= 3ϕ , π |= t U ϕ

π |= 2ϕ , π |= ¬3¬ϕ

Fig. 8. Semantics for the satisfaction operator.

where Fl ∈ Φ.
Let Π be the set of infinite traces over Act. For π ∈ Π,

we write πi for the suffix of π starting at ai. π
i satisfies a

fluent Fl, denoted π |= Fl, if and only if one of the following
conditions holds:

• InitiallyFl ∧ (∀j ∈ N · 0 ≤ j ≤ i⇒ aj /∈ TFl)

• ∃j ∈ N · (j ≤ i∧aj ∈ If)∧ (∀k ∈ N · j < k ≤ i⇒ ak /∈ TFl)

In other words, a fluent holds at a time instant if and only if
it holds initially, or some initiating action has occurred, and
in both cases, no terminating action has yet occurred. The
interval over which a fluent holds is closed on the left and
open on the right, since actions have an immediate effect on
the value of fluents.

Given an infinite trace π, the satisfaction operator |= is de-
fined as shown in Figure 8. This definition is standard [13]
and yields a 2-valued operator.

In classical semantics, a formula ϕ ∈ FLTL holds in a
deadlock-free LTS L (denoted L |= ϕ) if ∀π ∈ Π · π |= ϕ.

The 3-valued semantics of FLTL over an MTS M is given
by the function ‖ · ‖M that, for each formula ϕ ∈ FLTL,
returns the truth value of ϕ in M , i.e., t, f or ⊥.

We restrict the function to those MTSs M that have at
least one deadlock-free implementation, i.e., I∞(M) 6= ∅.
With this restriction, when M is an LTS, our 3-valued
semantics reduces to the standard 2-valued semantics of
FLTL.

Assumption: In the remainder of the paper, we consider
only those MTSs which have at least one deadlock-free
implementation.

If a property evaluates to true in M , it is true in all
deadlock-free implementations of M , and if a property eval-
uates to false in M , it is false in all deadlock-free implemen-
tations of M . Furthermore, if a property evaluates to maybe
in M , it is true in some deadlock-free implementations of
M and false in others. This semantics of a 3-valued logic is
referred to as thorough [4].

Definition 16: (3-valued Semantics of FLTL) The function
‖ · ‖M : FLTL −→ 3 is defined as follows:

‖ϕ‖M = t , ∀π ∈ POSTR∞(M) · π |= ϕ

‖ϕ‖M = f , (∃π ∈ REQTR∞(M) · π 6|= ϕ) ∨
(∀π ∈ POSTR∞(M) · π 6|= ϕ)

‖ϕ‖M = ⊥ , ¬(‖ϕ‖M = t) ∧ ¬(‖ϕ‖M = f)

A formula ϕ is true in M (denoted ‖ϕ‖M = t or M |= ϕ),
if every trace in POSTR∞(M) satisfies ϕ. A formula ϕ is false
in M (denoted ‖ϕ‖M = f or M 6|= ϕ) if there is a trace in
REQTR∞(M) that refutes ϕ or if all traces in POSTR∞(M)

refute ϕ. Otherwise, a formula ϕ evaluates to maybe in M

(denoted ‖ϕ‖M = ⊥).

For example, a formula 3a is true in B (see Figure 5)
because every trace in POSTR∞(B) satisfies 3a, whereas 2b

is false in B because every trace in POSTR∞(B) refutes 2b.
Finally, 3b is maybe in A: it is not true in A because not all
possible traces satisfy 3b (e.g., a, a, . . . does not); it is not
false in A because there is no required trace that refutes the
property and there is a possible trace that does not refute
it (e.g. b, b, . . .).

The information ordering of this 3-valued variant of FLTL
is preserved by refinement, i.e., refinement preserves all true
and false properties.

Definition 17: For an MTS M and a trace π in it, let M(π)

be the value of π in M , defined as follows: M(π) = t iff π ∈

REQTR(M), M(π) = ⊥ iff π ∈ POSTR(M) ∧ π 6∈ REQTR(M).
M(π) = f , otherwise.

We begin with the following lemma which states that the
information ordering on the values of traces is preserved
under refinement.

Lemma 1: (Preservation of Trace Values) Let M and N be
MTSs over the same vocabulary. Then,

M � N ⇒ ∀π ∈ Π ·M(π) ⊑inf N(π)

Proof: Let π = a0, a1, a2 . . . and let M(π) = t. By
Definition 17, there exists a sequence {Mi} such that M =

M0 and Mi
ai−→r Mi+1 for all i ∈ N. Since M � N , there

exists a sequence {Ni} such that N = N0 and Ni
ai−→r tN+1

for all i ∈ N. Therefore, N(π) = t by Definition 17.

Let π = a0, a1, a2, . . . and let M(π) = f . Suppose that
N(π) = ⊥. Then π is a possible trace in N . Therefore, by
Definition 17, there exists a sequence {Ni} such that N0 = N

and Ni
ai−→p Ni+1 for all i ∈ N. Since M � N , there exists a

sequence {Mi} such that M = M0 and Mi
ai−→p Mi+1 for all

i ∈ N. By Definition 17, M(π) = ⊥, contradicting M(π) = f .
Therefore, N(π) = f .

Stating Lemma 1 in terms of sets of traces, we obtain the
following corollary:

Corollary 1: Let M and N be MTSs over the same
vocabulary, and let M � N . Then, REQTR(M) ⊆

REQTR(N), FALSETR(M) ⊆ FALSETR(N), and MAYBETR(M)
⊇ MAYBETR(N).

The above lemma and its corollary are fundamental for
proving preservation of any linear time logic property.

We are now ready to state the preservation theorem.

Theorem 3: (Preservation of FLTL) Let M and N be MTSs
such that M � N . Then, ∀ϕ ∈ FLTL · ‖ϕ‖M ⊑inf ‖ϕ‖N .

Proof: Let ϕ ∈ FLTL. We do a proof by contradiction
for value t.

(‖ϕ‖M = t) ∧ ¬(‖ϕ‖N = t)

(Definition 16 on negation of 1st conjunct)

= (‖ϕ‖M = t) ∧ ∃π ∈ POSTR∞(N) · π 6|= ϕ

(Definition 16 on 1st conjunct)

= ∀π ∈ POSTR∞(M) · π |= ϕ ∧ ∃π ∈ POSTR∞(N) · π 6|= ϕ

(Corollary 1 and Law of Contradiction)

= f

Therefore, from above and the definition of refinement, if

UCHITEL, BRUNET, CHECHIK 7

(‖ϕ‖M = t) then (‖ϕ‖N = t).

‖ϕ‖M = f

(Definition 16)

= (∃π ∈ REQTR∞(M) · π 6|= ϕ)

∨(∀π ∈ POSTR∞(M) · π 6|= ϕ)

(Corollary 1)

⇒ (∃π ∈ REQTR∞(N) · π 6|= ϕ)

∨(∀π ∈ POSTR∞(N) · π 6|= ϕ)

(Definition 16)

= ‖ϕ‖N = f .

Definition 18: An FLTL formula ϕ is satisfiable if and only
if there exists a (deadlock-free) LTS L such that L |= ϕ;
otherwise, ϕ is unsatisfiable.

For example, no deadlock-free LTS satisfies a ∧ ¬a, and
thus it is unsatisfiable.

Note that instead of requiring non-deadlocking imple-
mentations in order to define FLTL over infinite traces, we
could have defined the satisfaction operator to allow for
finite traces. However, this brings the issue of preserving
properties containing disjunction through refinement (see
Section X-B for more detail).

C. Model-Checking

Let M+ be the LTS obtained from an LTS M by converting
all maybe transitions to required and then removing all
transitions that are not part of an infinite trace and all states
that are not reachable from the initial state. It is easy to
show that TR(M+)=POSTR∞(M). Similarly, let M− be the
LTS obtained from converting all maybe transitions to false
and then removing all transitions that are not part of an
infinite trace and all states that are not reachable from the
initial state. M− represents the required traces of M , i.e.,
TR(M−)=REQTR∞(M). Recall (see Definition 4) that the
LTS M with an empty set of traces (i.e., TR(M) = ∅) is the
empty LTS, denoted E .

Theorem 4: (Model-checking) For every MTS M such that
I∞(M) 6= ∅, the following holds:

1. ‖ϕ‖M = t ⇔M+ |= ϕ

2. ‖ϕ‖M = f ⇔

(

M+ |= ¬ϕ, if M− ≡ E

M− 6|= ϕ, otherwise

3. ‖ϕ‖M = ⊥ ⇔ ‖ϕ‖M 6= t ∧ ‖ϕ‖M 6= f .

Proof: Consider condition 1. ‖ϕ‖M = t means that all
traces in POSTR∞(M) satisfy ϕ. Since we assume that M has
deadlock-free implementations, M+ 6≡ E . As a consequence,
M+ |= ϕ iff POSTR∞(M)=TR(M+).

Consider condition 2, from left to right. If ‖ϕ‖M = f , then
either there is an infinite required trace of M that refutes ϕ,
or all infinite possible traces of M refute ϕ. If π is a required
infinite trace of M that refutes ϕ, then REQTR∞(M) 6= ∅

and M− 6≡ E . In addition, π ∈ TR(M−) which entails that
M− 6|= ϕ. If ∀π ∈ POSTR∞(M) · π 6|= ϕ, then either one of
these is a required trace, which takes us to the previous
case, or there are no infinite required traces, in which case
M− ≡ E . Given that all infinite traces of M refute ϕ and
that POSTR∞(M)=TR(M+), we have M+ |= ¬ϕ.

Consider condition 2, from right to left. We first assume
that M− ≡ E and that M+ |= ¬ϕ. This means that all traces
of M+ refute ϕ. Because POSTR∞(M)=TR(M+), all infinite
possible traces of M refute ϕ, which by Definition 16 means
that ‖ϕ‖M = f . We now assume that M− 6≡ E and that
M− 6|= ϕ. Then there is a trace in π ∈ Tr(M−) that refutes
ϕ. As REQTR∞(M)=TR(M−), there is an infinite positive
trace of M that refutes ϕ, which by Definition 16 means
that ‖ϕ‖M = f .

The above theorem shows that 3-valued FLTL model-
checking essentially reduces to classical FLTL model-
checking, and thus can be supported by the LTSA tool [40]
(see Section VIII). Such a reduction has already been spec-
ified for branching-time temporal logics and partial models
of Kripke structures in [4].

Note that in the above theorem, we assumed that M

has deadlock-free implementations. This assumption can be
checked by simply constructing M+ and checking that it is
not the empty LTS.

V. SYNTHESIS FROM PROPERTIES

In this section, we describe and analyze an algorithm
for synthesizing an MTS for a safety property given as
an FLTL formula. Safety properties are those that specify
that “nothing bad can happen” and that can be falsified
by a finite sequence of events. In addition, we prove
that the algorithm builds an MTS that characterizes all
deadlock-free LTS models that satisfy the property used
for synthesis. The algorithm is an extension of an existing
algorithm for synthesizing LTSs [37], which is based on
the algorithm for Büchi automaton construction from FLTL
properties, given in [13]. We first present the LTS synthesis
algorithm from [37] and discuss its limitations, and then
extend it to synthesize MTSs. Finally, we prove correct-
ness,completeness and a number of useful properties of the
synthesis algorithm. We leave to Section X the discussion
on the ramifications of restricting our approach to safety
properties.

A. LTS Synthesis from Properties

The technique for model-checking an FLTL property ϕ

over an LTS L involves constructing a Büchi automaton
B(¬ϕ) that recognizes all infinite traces over the alphabet
Act that violate ϕ and checking that the synchronous prod-
uct of B(¬ϕ) with L is empty [13]. This method is based on
the treatment of ordinary LTL [53].

In this paper, we fix the alphabet to be the universe of
actions of the system under construction, namely, Act, so
that the synthesis procedure always produces models with
the same alphabet, regardless of whether the actions appear
in ϕ (see Section X for a discussion on this).

As pointed out in [37], when ϕ is a safety property, B(¬ϕ)

has only one accepting state. All of the outgoing transitions
from this state are self-loop transitions, reflecting the fact
that safety properties are violated by a finite sequence of
actions and that this violation cannot be remedied. Thus,
B(¬ϕ) can be viewed as a property LTS for ϕ, i.e., an LTS
with an error state which corresponds to the accepting state
of B(¬ϕ). All traces that reach the error state correspond

UCHITEL, BRUNET, CHECHIK 8

(a) (b)

Fig. 9. (a) the property LTS for p3; (b) the MTS M(p3).

to undesired behaviours, i.e., no infinite trace with a finite
suffix that leads to the error state satisfies ϕ.

For example, the property LTS for p3 of the Webmail
system, which states that a logout message must be sent
to the user as soon as it logs out, is shown in Figure 9(a),
where the error state is denoted by −1. In this LTS, the
trace logout, authenticate is illegal (it leads to state −1), so
no infinite trace starting with logout, authenticate satisfies p3.
For details on constructing a property LTS, see [13].

Once the property LTS has been constructed, all transi-
tions not corresponding to an infinite trace are removed.
Subsequently, all states that are unreachable from the initial
state are removed. This last step is guaranteed to remove
at least the error state. The resulting system is an LTS
that captures all infinite traces on the system alphabet that
satisfy ϕ, because the property LTS contains all infinite
traces over the alphabet that do not violate ϕ, and the finite
traces that are removed correspond to all infinite traces in
B(¬ϕ) that refute ϕ. We denote by L(ϕ) the LTS generated
by this procedure (e.g., L(p3) is the LTS in Figure 9(a)
with state −1 removed). Note that by construction, L(ϕ)

is deterministic and deadlock free.
An automaton for an unsatisfiable property ϕ does not

have any infinite traces, since they refute ϕ. Since all finite
traces in the property LTS are removed, L(ϕ) ≡ E .

Theorem 5: (LTS parallel composition is conjunction) [1] If ϕ1

and ϕ2 are safety FLTL properties over the same universe
of actions Act such that ϕ1 ∧ ϕ2 is satisfiable, then

L(ϕ1)‖L(ϕ2) ≡ L(ϕ1 ∧ ϕ2).

B. MTS Synthesis from Properties

In order to overcome the limitations described in Sec-
tion II, we extend the synthesis procedure for LTSs to
synthesize an MTS from a safety property ϕ, expressed in
FLTL. The algorithm is called MTSprop:

1) let L = L(ϕ) (constructed as described in Section V-A);
2) return M(ϕ), where M(ϕ) is the MTS obtained from L

by converting all outgoing transitions for each s ∈ SL

to maybe transitions, whenever s has more than one
outgoing transition.

For a satisfiable safety property ϕ, L(ϕ) contains all
infinite traces that satisfy ϕ and no traces that refute ϕ.
When a state in L(ϕ) has more than one outgoing transition,
there is more than one way to satisfy ϕ at that point in
the trace. Thus, not all such transitions are necessary to
satisfy ϕ, but any LTS that satisfies ϕ must contain at least
one of them. Such choices should be modelled with maybe
instead of required behaviour, as in step 2 of MTSprop. Note
that although a valid refinement of the synthesized MTS

Fig. 10. M(p1 ∧ p2 ∧ p3) or M(p1) + M(p2) + M(p3).

could remove all the outgoing maybe transitions from a
state, we will not be considering such refinements; instead,
we restrict our results to deadlock-free implementations of
the synthesized MTS. Along the same lines, if a state has
only one outgoing transition, then this transition should
be required because we are interested in deadlock-free
implementations.

For example, M(p3) is shown in Figure 9(b). The only
required behaviour in this system is from state 1 to state 0

on action logoutMsg, because this is the only event required
by this property. A possible refinement of M(p3) is M(P)

depicted in Figure 10 (i.e., M(p3) �M(P) via the refinement
relation {(0, 0), (0, 1), (0, 2), (1, 3), (1, 4)}). Following the dis-
cussion of Section II, note that M(P) distinguishes required
from maybe logoutMsg transitions while L(P) of Figure 3
does not.

We now study properties of the algorithm MTSProp, in-
cluding correctness (all deadlock-free implementations of
M(ϕ), the result of the algorithm, satisfy ϕ) and complete-
ness (all deadlock-free LTSs that satisfy ϕ are refinements
of M(ϕ)).

We begin by showing that ϕ holds in the MTS M(ϕ)

computed by the algorithm.
Lemma 2: For every satisfiable safety property ϕ,

‖ϕ‖M(ϕ) = t.

Proof: L(ϕ) contains all traces that satisfy ϕ and no
traces that refute ϕ. Therefore, every trace in POSTR(M(ϕ))

satisfies ϕ and so ‖ϕ‖M(ϕ) = t by Definition 16.
Lemma 2 is essential for proving correctness of MTSprop,

namely, that all deadlock-free implementations of M(ϕ)

satisfy ϕ:
Theorem 6: (Correctness of MTSprop) For every satisfiable

safety property ϕ and every LTS L ∈ I∞(M(ϕ)), L |= ϕ.
Proof: Follows from Lemma 2 and Theorem 3.

Since MTSprop is effectively doing an LTL tableaux con-
struction [39], its complexity is exponential in the size of
the FLTL formula and linear in the size of the global MTS.

We now turn our attention to proving completeness of
the algorithm MTSprop, and begin by showing that every
MTS satisfying ϕ is a refinement of M(ϕ).

Lemma 3: For every satisfiable safety property ϕ,

∀M ∈ ℘M · ‖ϕ‖M = t ⇒M(ϕ) �M.

Proof: We show how to build a refinement relation
R between M(ϕ) and M . Let (M(ϕ),M) ∈ R, i.e., initial
states are related. Consider any (M(ϕ)′,M ′) ∈ R. Suppose

UCHITEL, BRUNET, CHECHIK 9

M(ϕ)′
a

−→r M(ϕ)′′ for some a ∈ Act. Then M(ϕ)′
b

6−→

for any b 6= a by step 2 of MTSprop. Since ‖ϕ‖M ′

= t,
by Definition 16, ∀π ∈ POSTR(M ′) · π |= ϕ. Thus, every
π must start with a; otherwise, L(ϕ) would have more
than one outgoing transition, and hence so would M(ϕ)′.
Thus, ∃M ′′ ·M ′ a

−→r M
′′, so (M(ϕ)′′,M ′′) ∈ R. Therefore,

Condition (1) in Definition 6 holds.
M(ϕ) contains all traces that satisfy ϕ, and therefore

POSTR(M) ⊆ POSTR(M(ϕ)). In addition, for an action ai

in π, ∃M(ϕ)i,M(ϕ)i+1 ·M(ϕ)i
ai−→p M(ϕ)i+1. Additionally,

there is no b 6= ai such that M(ϕ)i
b

−→r , because step 2

of algorithm MTSprop would have converted it to a maybe
transition. Thus, the sequence of states in M corresponding
to π can be identified in R with the corresponding sequence
of states in M(ϕ), and therefore Condition (2) in Definition 6
holds.

We are ready to prove completeness of MTSprop: all
deadlock-free LTSs that satisfy ϕ are refinements of M(ϕ),
formalized as follows:

Theorem 7: (Completeness of MTSprop) For every satisfiable
safety property ϕ,

∀L ∈ deadlock-free LTSs · L |= ϕ⇒M(ϕ) � L.

Proof: Follows from Lemma 3 and the fact that 3-
valued FLTL semantics over MTSs reduces to 2-valued
FLTL semantics over LTSs (see Section IV).

Hence, by Theorems 6 and 7, given a safety property ϕ,
the synthesis procedure described above characterizes all
MTSs and deadlock-free LTSs that satisfy ϕ. Formally,

Corollary 2: (Characterization of ϕ) If ϕ is a satisfiable
safety property, then ∀M ∈ ℘M · M |= ϕ ⇔ M(ϕ) � M .
In particular, for LTSs L, L |= ϕ ⇔ L ∈ I∞(M(ϕ)).

The practical implication of the above theorem is that
the synthesis procedure effectively constructs an MTS from
which all possible system models that satisfy the given
properties can be reached through the elaboration of the
maybe behaviour. For example, recall from Section II that
the LTS model, L(P), of the Webmail system cannot be
refined to a model which requires the trace sc2. In contrast,
the MTS M(P) supports this refinement by replacing the

maybe transitions 0
authenticate
−→m 1, 1

sendMsg
−→m 1, 1

disable
−→m 2,

2
logoutMsg
−→m 2, with the required transitions.
We now prove two theorems that relate property syn-

thesis, merge and 3-valued FLTL semantics. First, we show
that consistency of MTSs synthesized from two properties
is equivalent to satisfiability of these properties.

Theorem 8: (Consistency) M(ϕ1) and M(ϕ2) are consistent
if and only if ϕ1 ∧ ϕ2 is satisfiable.

Proof: From left to right: If M(ϕ1) and M(ϕ2) are
consistent then there is a deadlock-free LTS such that
M(ϕ1) � L and M(ϕ2) � L. Thus, L |= ϕ1 ∧ ϕ2, and ϕ1

∧ ϕ2 is satisfiable.
From right to left: If ϕ1 ∧ ϕ2 is satisfiable, then there is a

deadlock-free LTS L such that L |= ϕ1 ∧ ϕ2. Hence, L |= ϕ1

and L |= ϕ2. From Corollary 2, M(ϕ1) � L and M(ϕ2) � L.
Hence, from Definition 13, M(ϕ1) and M(ϕ2) are consistent.

Theorem 8 provides a procedure for determining the
satisfiability of ϕ1 ∧ ϕ2. It also provides the basis for logical
conjunction, because if ϕ1 ∧ ϕ2 is satisfiable and M(ϕ1)

and M(ϕ2) are consistent, then, given that both MTS are
deterministic, their merge, M(ϕ1) + M(ϕ2), is guaranteed
to exist and be unique (see Theorem 2). Therefore, for a
satisfiable safety property ϕ1 ∧ ϕ2, building the MTS for
ϕ1∧ϕ2 using the algorithm MTSprop is equivalent to building
the MTSs for ϕ1 and ϕ2 individually and then merging
them, as formalized below.

Theorem 9: (Conjunction) For every satisfiable FLTL safety
property ϕ1 ∧ ϕ2, M(ϕ1 ∧ ϕ2) ≡M(ϕ1) +M(ϕ2).

Proof: ‖ϕ1‖
M(ϕ1∧ϕ2) = t and ‖ϕ2‖

M(ϕ1∧ϕ2) = t implies
that M(ϕ1) � M(ϕ1 ∧ ϕ2) and M(ϕ2) � M(ϕ1 ∧ ϕ2) by
Theorem 7. Therefore M(ϕ1∧ϕ2) is a common refinement of
M(ϕ1) and M(ϕ2), and thus M(ϕ1) + M(ϕ2) � M(ϕ1 ∧ϕ2)

by Definition 15.

By the previous argument, M(ϕ1) and M(ϕ2) are consis-
tent and ϕ1 ∧ ϕ2 is satisfiable. Thus ‖ϕ1∧ϕ2‖

M(ϕ1)+M(ϕ2) =

t by Theorem 3 and Definition 15. By Theorem 7, M(ϕ1∧ϕ2)

� M(ϕ1) + M(ϕ2).
Theorem 9 is the 3-valued counterpart to Theorem 5.
Putting Theorems 8 and 9 together, we conclude that

merging in the realm of MTSs that have at least one
deadlock-free implementation is precisely the logical con-
junction. Hence, as depicted in Figure 10, building the
MTS for the property p1 ∧ p2 ∧ p3 is equivalent to building
individual MTSs M(p1), M(p2) and M(p3) and merging
them.

VI. SYNTHESIS FROM SCENARIOS

In this section, we describe an algorithm for synthesizing
MTS models from scenario-based specifications. A number
of alternative scenario notations, semantics and synthesis
techniques exist [49], [29], [27], each with its own ad-
vantages and disadvantages. However, the discussion and
results presented in this section are not specific to any par-
ticular existing approach, and the MTS synthesis algorithm
we provide can be used in combination with many of the
existing LTS synthesis approaches. The only requirement
is that the semantics for the scenario-based description
be existential, i.e., that scenarios describe behaviour that
the system is expected to exhibit, as opposed to universal
properties that all system traces are expected to satisfy. To
ground our presentation and provide concrete examples, we
use a syntactic subset of the Message Sequence Charts from
the ITU standard [24] and the synthesis algorithm presented
in [49].

A. LTS Synthesis from Scenarios

The semantics of a scenario-based specification σ can be
thought of as a set of traces, i.e., sequences of messages that
system components exchange, referred to as TR(σ).

The requirements for LTS synthesis from a scenario-
based specification can vary depending on the assumptions
that are made. However, a basic requirement is that the
synthesized LTS must be capable of exhibiting the set of
traces that are described by the scenarios.

Definition 19: (Soundness of LTS Synthesis from Scenarios)
An LTS L(σ) is sound with respect to a scenario specification
σ if and only if TR(σ)⊆ TR(L(σ)).

UCHITEL, BRUNET, CHECHIK 10

Fig. 11. The MTS M(sc).

For example, the synthesis algorithm described in [49]
constructs a sound deterministic LTS model for each com-
ponent of the scenarios. Each LTS can exhibit exactly the
sequence of message exchanges that occur by following the
vertical line of the component modelled by this LTS. For
example, the LTS for the Server component synthesized
from the scenario sc in Figure 1 is shown in Figure 4. Finally,
once LTSs for all components have been synthesized, an
LTS for the entire system is obtained by composing them
in parallel. In the Webmail example, the System LTS is
equivalent to that of the Server component.

B. MTS Synthesis from Scenarios

We now provide a synthesis algorithm MTSscen that
constructs an MTS M(σ) from a scenario specification σ.
A precondition for this algorithm is the existence of a
synthesis algorithm that constructs an LTS L(σ) that is
sound w.r.t. a scenario specification σ.

1) let M(σ) = L(σ);
2) add a new state sink to M(σ) and looping transitions

sink
a

−→m sink for every label a ∈ Act;
3) for every state s in M(σ) such that there is no outgoing

transition s
a

−→r, add s
a

−→m sink to M(σ);
4) return M(σ).

MTSscen extends L(σ) by turning all traces not explicitly
described by σ into maybe traces. It does so by adding
a sink state to which all events disallowed by L(σ) lead.
For instance, L(sc) of Figure 4 is converted into M(sc) of
Figure 11, where state 2 is the sink state.

The running time of this algorithm is linear in the number
of states in L(σ) and the number of labels in Act.

We now show that the MTS synthesized from a scenario
specification σ is refined by the LTS synthesized from σ,
i.e., M(σ) � L(σ), and that its required traces subsume the
traces specified by σ:

Theorem 10: (Correctness of MTSscen) Let σ be a scenario
specification and L(σ) be a deadlock-free LTS sound w.r.t.
σ. Furthermore, let M(σ) be the result of algorithm MTSscen

given L(σ). Then, TR(σ) ⊆ REQTR(M(σ)).
Proof: Let Mi(σ) be the MTS resulting from step i

of MTSscen with M(σ) = M4(σ). Step 1 of the algorithm
establishes TR(L(σ)) = REQTR(M1(σ)), and steps 2-4 do not
add required transitions. Thus, TR(L(σ)) = REQTR(M2(σ))
= REQTR(M3(σ)) = REQTR(M4(σ)). Finally, because L(σ) is
sound w.r.t. σ, we conclude that TR(σ) ⊆ REQTR(M(σ)).

More importantly, we can show that M(σ) characterizes
all models that require at least the traces of TR(L(σ)).
In other words, if the LTS synthesis algorithm guaran-
tees that TR(σ) = TR(L(σ)), then refining M(σ) guarantees
preservation of the scenarios, and every implementation that
preserves the behaviour of L(σ) can be reached by refining
M(σ).

Theorem 11: (Characterization of σ) Let σ be a scenario
specification, L(σ) and LTS such that TR(σ) = TR(L(σ)), and
M(σ) be the corresponding result of MTSscen. Then, for all
LTSs L, L ∈ I(M(σ)) if and only if L(σ) ≤ L.

Proof: From left to right: if L ∈ I(M), then there
is a refinement relation R such that (M(σ), L) ∈ R. In
addition, L(σ) ∈ I(M(σ)) with refinement relation R′ =

{(M(σ)s, Ls) | s is a state of L and M }. We now show
that S = {(A,B) | ∃M · (M,A) ∈ R′ ∧ (M,B) ∈ R} is a
simulation relation and that (L(σ), L) ∈ S. The latter holds
as (M(σ), L) ∈ R ∧ (M(σ), L(σ)) ∈ R′}. Let (A,B) ∈ S

and A
ℓ

−→ A′. From definition of S we have M · (M,A) ∈

R′ ∧ (M,B) ∈ R, and consequently, M
ℓ

−→p M ′ such that
(M ′, A′) ∈ R′. In addition, because R′ requires the initial
states of M ′ and A′ to be the same, from step 1 of MTSscen

it must be the case that M
ℓ

−→r M
′. As (M,B) ∈ R, then

there exists B′ such that B
ℓ

−→ B′ and (M ′, B′) ∈ R. Hence,
by construction, (A′, B′) ∈ S.

Returning to the Webmail system, the MTS of Figure 11
characterizes all LTS models that are capable of exhibiting
at least the scenario sc. All other system behaviours are
possible. The addition of safety properties would result in
the removal of some of the possible transitions of the MTS,
to capture the fact that such behaviours are not allowed, as
we show in Section VII.

VII. SYNTHESIS FROM PROPERTIES AND SCENARIOS

In this section, we discuss how to synthesize behaviour
models from both safety properties and scenarios. The
process consists of merging together a model synthesized
from safety properties, described in Section V, and a model
synthesized from scenarios, described in Section VI. Key to
this process is Theorem 2: the merge operator builds the
least common refinement of two MTS models when they
are consistent, deterministic and have the same alphabet.
In other words, the merge operator builds a model that
preserves the required (by scenarios) and the proscribed
(by properties) behaviours of the MTSs being composed.
Intuitively, both the upper and the lower bounds of the
intended system behaviour are preserved by merge; fur-
thermore, both bounds are captured in the same merged
MTS model. Note that Theorem 2 is applicable since the
synthesis procedures described in Sections V and VI result
in deterministic models that have the same alphabet. Fur-
thermore, the merge yields a deterministic MTS as well,
allowing composing results of a merge with other synthe-
sized models.

The fact that + builds the least common refinement of
the original MTSs (Theorem 2) together with Theorem 12
below means that merging prunes the space of acceptable
implementations of two partial descriptions given as MTSs
to exactly those that satisfy both partial descriptions. Fur-
thermore, given that an MTS synthesized from a property

UCHITEL, BRUNET, CHECHIK 11

sc5 enable?, . . .
sc6 authenticate, logout, logoutMsg, enable?, . . .
sc7 disable?, enable?, authenticate?, . . .
sc8 disable?, logoutMsg?, . . .
sc9 logout?, . . .
sc10 disable?, disable?, . . .

Fig. 13. Maybe traces of Mboth + M(p4).

characterizes all deadlock-free implementations that satisfy
the property (Theorem 7) and that an MTS synthesized
from a scenario description characterizes all deadlock-free
implementations that preserve the scenarios (Theorem 11),
we can conclude that the merge operation characterizes all
deadlock-free implementations that satisfy the properties
used for synthesis and that capture the scenarios used for
synthesis.

Theorem 12: If MTSs M and N have the LCR Q, then
I∞(Q) = I∞(M) ∩ I∞(N).

Proof: Let L ∈ I∞(Q). As Q is the LCR of M and N ,
then M � Q and N � Q. Given that L ∈ I∞(Q) implies Q �
L and that the operator � is transitive, L ∈ I∞(M)∩I∞(N).

Let L ∈ I∞(M)∩ I∞(N). Since M � L and N � L, L is a
common refinement. As Q is the least common refinement
of M and N , it must be the case that Q � L and thus L ∈

I∞(Q).
The running time of the algorithm for

constructing the consistency relation for MTSs
M = (SM , Act,∆r

M ,∆p
M , s0M) and N =

(SN , Act,∆
r
N ,∆

p
N , s0N) is O(m × n4 × log(n)), while

its space complexity is O(n2), where n = max(|SM |, |SN |)

and m = max(∆p
M ,∆p

N) [11]. When M and N are
deterministic, the algorithm for constructing M + N is
O(|R| × |Act|), where R is the consistency relation between
M and N .

We now illustrate the utility of these results using the
running Webmail example. The MTS that results from merg-
ing the MTSs synthesized from properties and scenarios
(Mboth = M(P) + M(sc)) is depicted in Figure 12. This
MTS characterizes all implementations that are deadlock
free, satisfy property P and capture the scenarios described
in sc. Further, it can be used to reason about the remaining
maybe behaviour, that is, behaviour that does not violate
safety property P but has not been explored in the scenario
description sc. Consider the maybe trace sc4 = authenticate,
sendMsg, authenticate?, . . . of Mboth. This behaviour is not
included in the Webmail scenario specification sc but does
not violate the system property P either. Scenario sc4
may prompt elicitation of a missing precondition for the
authenticate action: “A user can only be authenticated if he
is not already logged in”, formalized as

p4 = 2 (X authenticate ⇒ !LoggedIn)

By construction, the result of merging deterministic MTSs
is deterministic, and thus we can apply Theorem 2 to
build the minimal common refinement of Mboth and M(p4).
Furthermore, this reasoning can be used to iteratively merge
in new MTSs synthesized from elicited scenarios and prop-
erties.

Consider the selection of maybe traces of Mboth +M(p4)

shown in Figure 13. These traces are not included in the
Webmail scenario specification sc and do not violate the
system properties P or p4.

We now hypothesize the decisions that may be made
when validating these scenarios with a stakeholder to il-
lustrate how explicit modeling of possible but not required
behaviour can help elicit requirements and reason about the
system behaviour.

Scenarios sc5 and sc6 may elicit a precondition (p5) for
the action enable: “A user can only be enabled if he was
currently disabled”, formalized as

p5 = !enable ∧ 2 (X enable ⇒ !Registered)

while sc7 may be identified as a required behaviour, i.e.,
the system should be capable of allowing users to be
disabled before they get authenticated and gain access to
the system. In this case, a new scenario could be elicited and
added to the existing scenario specification sc, yielding sc′

(Figure 14). Note that having an operational model allows
us to elicit such scenarios by “walking” the model and
guarantees that the new scenarios will satisfy existing safety
properties. In our example, the scenario is obtained from the
merged MTS by walking through states 0, 1, 3, 4,

On the other hand, scenario sc8 may prompt a more
complex property requiring logoutMsg to be sent only if the
user logs out or is disabled while being logged in:

p6 = !logoutMsg ∧ 2 (X logoutMsg ⇒ (logout ∨ disable)),

whereas sc9 and sc10 may prompt missing preconditions
for actions disable and logout:

p7 = 2 (X disable ⇒ Registered)

p8 = !logout ∧ 2 (X logout ⇒ LoggedIn)

Figure 15 depicts a new MTS synthesized from the ex-
isting and the newly elicited properties (p1 − p8) and the
new scenario specification sc′. This MTS still has maybe
behaviour that can be used to prompt further elaboration,
eventually leading to an MTS that covers the complete
behaviour of the system up to the alphabet Actweb. In
practice, it may not be necessary or even desirable to refine
the MTS to a single LTS, and instead, certain aspects of
behaviour may be left open to decisions further down the
development process.

In summary, we have shown how to synthesize models
from safety properties and scenarios by using the merge
operation on MTSs. In addition, we have illustrated how
a merged model that captures both scenarios and require-
ments may support behaviour model elaboration, and sce-
nario and requirements elicitation.

VIII. TOOL SUPPORT

We have developed a prototype implementation of a tool
that supports construction and analysis of MTS models:
the Modal Transition System Analyzer (MTSA) [9] (avail-
able at http://www.doc.ic.ac.uk/˜su2/MTSA.html).
MTS models are described in a textual language that in-
cludes traditional process algebra operators such as sequen-
tial and parallel composition, and hiding, in addition to the
MTS merge operator. The tool also supports visualization

UCHITEL, BRUNET, CHECHIK 12

Fig. 12. MTS Mboth: A merge of M(P) in Figure 10 and M(sc) in Figure 11.

Fig. 14. Extended Webmail scenario specification (sc′).

Fig. 15. Final model for Webmail: MP +M(p4)+M(p5 ∧ . . .∧ p8)+
M(sc′).

of MTSs in a graphical format, and various analyses such
as animation, model checking of FLTL properties, consis-
tency checking as well as deadlock freedom and refinement
checks.

The tool builds upon the Labelled Transition System Ana-
lyzer (LTSA) [40] which supports specification and analysis
of LTS models. MTSA extends the FSP process algebra to
allow specification of MTSs. The compositional construction
procedure that builds behaviour models from FSP has been
adapted to construct MTS models, extending the semantics
of existing FSP operators such as parallel composition and
hiding. In addition, the graphical environment has been
adapted and the visualization functionality extended to
support depiction of MTSs.

MTSA implements 3-valued FLTL model checking of
MTSs by reducing the problem to two classical FLTL model-
checking runs on LTS models (see Theorem 4). Hence,
MTSA builds on top of the model checking features of
LTSA.

MTSA also provides a number of features which are
specific to MTS models, such as checking MTS refinement
and equivalence, consistency checking, merge of two MTSs,
as well as the synthesis procedures described in this paper.

IX. CASE STUDY: THE MINE PUMP

In this section, we discuss one of the case studies we
have conducted: a pump controller system in a mine [28]. In
this system, a pump controller is used to prevent the water
in a mine sump from passing some threshold, and hence
flooding the mine. To avoid the risk of explosion, the pump
may only be on when there is no methane gas present in the
mine. The pump controller monitors the water and methane
levels by communicating with two sensors, and controls
the pump in order to guarantee the safety properties of the
pump system.

The case study presents a number of challenges when
compared to the Webmail example used throughout the
paper. First, the mine pump system requires a timed model
in order to capture the urgency of actions such as switching
the pump off to avoid an explosion when there is methane
present. Consequently, properties must make use of an
explicit tick event, signalling the successive ticks of a global

UCHITEL, BRUNET, CHECHIK 13

m e d W a t e rh i g h W a t e r s w i t c h O nt i c k m e d W a t e rt i c k m e t h a n e A p p e a r s s w i t c h O f fd a n g e r L i g h t O nt i c kt i c k d a n g e r L i g h t O f ft i c k m e t h a n e L e a v e s

W a t e rS e n s o r M e t h a n eS e n s o r C o n t r o l l e r P u m pC l o c k

Fig. 16. A simple scenario for the mine pump system.

clock to which components with timed requirements syn-
chronize. This corresponds to a standard approach to mod-
eling discrete-time in event-based formalisms [44]. Second,
Server is the only component with non-trivial behaviour
in the Webmail example: there are no constraints on the
behaviour of the User and the Admin. In contrast, the case
study requires eliciting assumptions on the environment
such as how the water and the methane level change.
Finally, the initial requirements, described informally above,
leave open a number of significant decisions in terms of
the problem domain; these need to be made in order to
elaborate the synthesized MTS.

The case study was conducted by iterating over a
synthesize-analyze-elicit cycle: First, an MTS is synthesized
from known properties and scenarios. Second, the maybe
behaviour of the resulting MTS is analyzed to identify
missing required and proscribed behaviour. The exploration
of the maybe behaviour leads to the third stage, in which
new scenarios and properties are elicited based on the user
understanding of the problem domain. This process contin-
ues until a model with no maybe transitions is reached. In
this case study, this occurred after the sixth iteration.

The synthesis phase of each iteration was conducted
using the algorithms described in Sections V and VI and
the MTS merge. The analysis phase was performed with
the help of MTSA (see Section VIII): the maybe behaviour
of the resulting MTS was inspected, both in its graphical
and textual form, and then animated. To cope with the
scale, abstraction and minimization features of MTSA were
also used. Finally, given that the elicitation phase of the
case study was conducted by the authors themselves rather
than by analysts well familiar with the problem domain, we
relied on the substantial amount of reference material that
exists on the mine pump problem (e.g., [28]) in order to
guide the elicitation process in each iteration.

We now describe the case study in more detail, pre-
senting the initial properties that were used, some of the
MTSs produced throughout the various iterations, and all

Act = {switchOn, switchOff, methAppears, methLeaves, lowWater,
medWater, highWater, switchDLOff, switchDLOn, tick}

HighWater = 〈 highWater,{lowWater,medWater} 〉 initially False
LowWater = 〈 lowWater,{medWater,highWater} 〉 initially True
PumpOn = 〈 switchOn,switchOff 〉 initially False
MethanePresent = 〈 methAppears, methLeaves 〉 initially False

Fig. 17. Actions and fluents for the mine pump case study.

/* The pump shall be switched on if there is high water and
no methane present */
φ1 = 2((HighWater ∧ ¬MethanePresent) ⇒ X PumpOn)

/* The pump must be switched off if there is low water or
there is methane present */
φ2 = 2((LowWater ∨ MethanePresent) ⇒ X ¬PumpOn)

/* If the pump is off, it should not be switched off */
φ3 = 2(¬PumpOn ⇒ X(¬switchOff W PumpOn))

/* If the pump is on, it should not be switched on */

φ4 = 2(PumpOn ⇒ X(¬switchOn W ¬PumpOn))

Fig. 18. Initial properties of the mine pump case study.

of the properties and scenarios elicited. We also discuss
the insights we gained of the problem domain and of the
elaboration process.

A. The First Iteration

The case study starts with a scenario specification, σ,
which includes scenarios such as the one depicted in Fig-
ure 16 and interpreted as follows:

“After receiving messages from the water sensor
indicating that the water level has gone over the
medium and high water thresholds, the controller
switches the pump on. As a consequence of the
pumping, the water level goes down to medium.
Later, the methane sensor informs the controller
that there is a dangerous amount of methane in the
mine. Hence, the controller switches the pump off
to avoid an explosion and turns the danger light
on to indicate that a dangerous level of methane
is present in the mine. Once the methane sensor
indicates that the level of methane has gone down,
the danger light is switched off.”

The system behaviour specified by σ can be depicted as
an LTS shown in Figure 19, which has been synthesized
from this set of scenarios, including the one in Figure 16.

The first iteration also includes four safety properties
expressed in terms of the set of communicating actions of
the mine pump controller (see Act in Figure 17) and four
fluents (HighWater, LowWater, PumpOn, and MethanePresent,
defined in Figure 17). The first two properties correspond
to the key safety requirements of the mine pump system:
prevent flooding (φ1 in Figure 18) and prevent an explosion
(φ2 in Figure 18). The other two properties, φ3 and φ4, state
that the pump must not be turned on (respectively, off)
when it is already on (respectively, off).

UCHITEL, BRUNET, CHECHIK 14

Fig. 19. LTS synthesized from the original scenario specification of the mine pump system (L(σ)).

The first iteration of the case study results in a partial
operational model of the mine pump, M1, which is the
merge of the MTSs synthesized from the properties and
the scenario specification: M1 = M(φ1) +M(φ2) +M(φ3) +

M(φ4) + M(σ). Due to the size of M1 (34 states and over
100 transitions), we present its textual rather than graphical
representation for clarity (see Figure 20).

Note that M1 predominantly contains maybe behaviour
due to the fact that the scenario specification does not
constrain behaviour (it only introduces required behaviour),
and properties φ1 to φ4 form a rather loose specification of
the intended system. Refinements of such a system result
from the analysis of the maybe behaviour and elicitation of
further properties and scenarios.

Although the textual representation of M1 is more com-
pact than its graphical counterpart, both remain unsatisfac-
tory artifacts for supporting validation and analysis, due to
their size. Going through the various states and transitions
by hand even in the model this small leads to numerous
confusions. This is why an automated tool, such as MTSA,
that provides multiple techniques for supporting analysis is
fundamental. To analyze M1, we first animated the model
using MTSA (see Figure 21), walking through a number of
traces and inspecting the portions of the MTS that were
reached by these traces.

Analysis of M1 resulted in several findings. First, we
identified a number of traces that exhibited undesired be-
haviour of the environment-controlled actions. For instance,
M1 exhibits the trace

tr1 = highWater?, switchOn, lowWater?, switchOff?,
highWater?, . . .

which has water levels changing from HighWater to LowWa-
ter and back without going through medium water.

Given that an assumption for this system is that the water
sensor of the mine pump does not fail to detect changes
in the water level, and that water level cannot go from
a low to a high level without going through a medium
level, such traces should be prevented by the environment.
Figure 22(a) depicts a transition system Mwater describing

(a) (b)

Fig. 22. (a) An MTS describing the water level environment; (b) An
MTS describing the methane environment.

the expected behaviour of water levels. Composing M1 in
parallel with Mwater , prevents tr1 from happening. Note
that here we use parallel composition rather than merge,
as we are composing models of different components (the
controller and its environment) rather than two models of
the same component.

Another trace which prompted further elicitation of the
environment behaviour models is

tr2 = methAppears,methAppears?,methAppears?, . . .

The resulting environment model, Mmethane, shown in Fig-
ure 22(b), describes the assumption that the methane sensor
signals readings to the controller only in those cases when
the methane levels go above or below a certain threshold.

Further analysis and validation of M1 prompted elici-
tation of preconditions for switching the danger light on
and off, formalized as properties φ5 and φ6 in Figure 23.
The danger light can be turned on to reflect that there is
a dangerous level of methane present in the mine only if
MethanePresent is true (φ5). Analogously, the danger light
can be turned off to reflect that the level of methane is not
dangerous only if MethanePresent is false (φ6). Note that
these properties, together with the domain assumptions
modelled in Mmethane, guarantee that the danger light
is not turned on (respectively, off) when it is already on
(respectively, off).

B. The Remaining Iterations

Mmethane and Mwater are the only two models elicited
for the environment of the mine pump controller. In the

UCHITEL, BRUNET, CHECHIK 15

M1 = Q0,
Q0 = ({lowWater?, methLeaves?, switchDLOn?, switchOff?} - > Q15

|{switchDLOff, tick} -> Q19
|medWater -> Q20
|methAppears -> Q21
|highWater? -> Q24
|switchOn? -> Q28),

Q1 = (switchDLOff -> Q5
|medWater -> Q18
|{highWater?, methLeaves?, switchDLOn?, tick?} -> Q27
|lowWater? -> Q28
|methAppears -> Q31),

Q2 = (switchOn -> Q1),
Q3 = ({switchDLOn, tick} -> Q3

|lowWater -> Q14
|{medWater?, methAppears?, switchDLOff?} -> Q16
|methLeaves -> Q25
|highWater -> Q33),

Q4 = (switchOff -> Q3),
Q5 = ({switchDLOff, tick} -> Q5

|medWater -> Q10
|methAppears -> Q26
|{highWater?, methLeaves?, switchDLOn?} -> Q27
|lowWater? -> Q28),

Q6 = ({medWater?, methLeaves?, switchDLOff?, switchDLOn? , tick?} -> Q6
|switchOn? -> Q8
|lowWater? -> Q15
|methAppears? -> Q16
|highWater? -> Q24),

Q7 = (switchOff -> Q23),
Q8 = (switchOff? -> Q6

|{medWater?, methLeaves?, switchDLOff?, switchDLOn?, ti ck?} -> Q8
|highWater? -> Q27
|lowWater? -> Q28
|methAppears? -> Q29),

Q9 = (switchOff -> Q19),
Q10 = (highWater -> Q5

|switchOff? -> Q6
|methAppears -> Q7
|{medWater?, methLeaves?, switchDLOn?} -> Q8
|lowWater -> Q9
|{switchDLOff, tick} -> Q10),

Q11 = ({highWater?, methAppears?, switchDLOff?, switchDL On?, tick?} -> Q11
|lowWater? -> Q12
|medWater? -> Q16
|methLeaves? -> Q24),

Q12 = (highWater? -> Q11
|{lowWater?, methAppears?, switchDLOff?, switchDLOn?, t ick?} -> Q12
|methLeaves? -> Q15
|medWater? -> Q16),

Q13 = (methAppears -> Q14
|{lowWater?, methLeaves?, switchDLOn?, tick?} -> Q15
|switchDLOff -> Q19
|highWater? -> Q24
|medWater -> Q25),

Q14 = (medWater -> Q3
|highWater? -> Q11
|{lowWater?, methAppears?, switchDLOff?} -> Q12
|methLeaves -> Q13
|{switchDLOn, tick} -> Q14),

Q15 = (medWater? -> Q6
|methAppears? -> Q12

|{lowWater?, methLeaves?, switchDLOff?, switchDLOn?, ti ck?} -> Q15
|highWater? -> Q24),

Q16 = (methLeaves? -> Q6
|highWater? -> Q11
|lowWater? -> Q12
|{medWater?, methAppears?, switchDLOff?, switchDLOn?, t ick?} -> Q16),

Q17 = (switchOff -> Q13),
Q18 = (highWater -> Q1

|methAppears -> Q4
|switchOff? -> Q6
|{medWater?, methLeaves?, switchDLOn?, tick?} -> Q8
|switchDLOff -> Q10
|lowWater -> Q17),

Q19 = ({lowWater?, methLeaves?, switchDLOn?} -> Q15
|{switchDLOff, tick} -> Q19
|medWater -> Q20
|methAppears -> Q21
|highWater? -> Q24),

Q20 = ({medWater?, methLeaves?, switchDLOn?} -> Q6
|switchOn? -> Q8
|lowWater -> Q19
|{switchDLOff, tick} -> Q20
|methAppears -> Q23
|highWater -> Q32),

Q21 = (highWater? -> Q11
|{lowWater?, methAppears?, switchDLOff?, tick?} -> Q12
|switchDLOn -> Q14
|methLeaves -> Q19
|medWater -> Q23),

Q22 = ({highWater?, methAppears?, switchDLOff?, tick?} -> Q11
|lowWater? -> Q12
|medWater -> Q23
|methLeaves -> Q32
|switchDLOn -> Q33),

Q23 = (switchDLOn -> Q3
|{medWater?, methAppears?, switchDLOff?, tick?} -> Q16
|methLeaves -> Q20
|lowWater -> Q21
|highWater -> Q22),

Q24 = (switchOn? -> Q27),
Q25 = (highWater -> Q2

|methAppears -> Q3
|{medWater?, methLeaves?, switchDLOn?, tick?} -> Q6
|switchOn? -> Q8
|lowWater -> Q13
|switchDLOff -> Q20),

Q26 = (switchOff -> Q22),
Q27 = (medWater? -> Q8

|{highWater?, methLeaves?, switchDLOff?, switchDLOn?, t ick?} -> Q27
|lowWater? -> Q28
|methAppears? -> Q30),

Q28 = (switchOff? -> Q15),
Q29 = (switchOff? -> Q16),
Q30 = (switchOff? -> Q11),
Q31 = (switchOff -> Q33),
Q32 = (switchOn -> Q5),
Q33 = (methLeaves -> Q2

|medWater -> Q3
|{highWater?, methAppears?, switchDLOff?} -> Q11
|lowWater? -> Q12
|{switchDLOn, tick} -> Q33).

Fig. 20. Textual representation of the MTS synthesized from the initial scenario specification and properties of the mine pump system (M1).

/* Methane present is a precondition for switchDLOn */
φ5 =
2(¬MethanePresent ⇒ (¬switchDLOn W MethanePresent))

/* Methane not present is a precondition for switchDLOff */

φ6 =

2(MethanePresent ⇒ (¬switchDLOff W ¬MethanePresent))

Fig. 23. Properties elicited during the first iteration.

remainder of the case study, we performed the analysis
and validation of successive refinements of the mine pump
controller (M1, . . . ,Mn) in the context of parallel composi-
tion with Mmethane and Mwater , i.e., Mi||Mwater ||Mmethane.
However, to simplify the presentation, we shall simply refer
to Mi rather than Mi||Mwater ||Mmethane.

The second iteration of the case study starts with the
synthesis of M2 = M1 + M(φ5) + M(φ6), and the analysis
of the resulting model prompts elicitation of two additional
properties.

Event switchOff is enabled in M2 through a maybe transi-
tion, even though the property φ3 requires switchOff not to
happen if PumpOn is false in the previous state. However,

this property makes no restrictions on the first state of
any execution (there is no previous state in which a pump
could be on); thus, we add a property φ7. Although this
is an artefact of the semantics of FLTL which could have
been avoided had we used an alternative semantics or
introduced a beginning of time event, the example does
show that the proposed approach can help identify the
impact that the (inevitable) subtleties of formal property
specification languages have on the system model.

A useful analysis of complex MTSs is to construct and
validate M+ and M−, which can sometimes be significantly
smaller than M and hence simpler to validate. Analyzing
M+ is particularly useful for identifying missing precon-
ditions for actions, as all maybe transitions are converted
to required transitions in such models. For instance, M+

2
has 13 states against 34 states of M2, and its analysis leads
to strengthening the precondition for switchOn: It is not
sufficient that the pump be off as required by φ4; there
should be water in the mine sump. Property φ8 models this
requirement by asserting that if LowWater is true, switchOn
does not occur until LowWater becomes false.

The third iteration is based on the analysis of M3 = M2 +

UCHITEL, BRUNET, CHECHIK 16

Fig. 21. Animation of M1.

/* Initially, the pump may not be switchedOff */
φ7 = ¬switchOff

/* Water not low is a precondition for switchOn */

φ8 = 2(LowWater ⇒ (¬switchOn W ¬LowWater))

Fig. 24. Properties elicited during the second iteration.

M(φ7) +M(φ8). A maybe trace that M3 exhibits is

tr3 = medWater, highWater, switchOn,
medWater, switchOff?, . . .

This trace leads to the question of exactly when the pump
should be turned off. There are a number of different
strategies that can be considered at this point. The first is to
make the pump “eager”, i.e., if there is any water to pump
out, then the pump should remain on. A second strategy is
a “lazy” pump: as long as there is no high water, the pump
should be off. A third is a pump that minimizes its state
changes: if it is on, it continues to be on until the water is
low, and if it is off, it continues to be off until water is high.
The loose initial specification for the controller allows other
strategies as well.

We experimented with several of these strategies by
exemplifying them in a scenario description, merging them
with M3 and analyzing the resulting behaviour. Automated
synthesis and merging, supported by MTSA, significantly
aided us with this exploration. For instance, when synthe-
sizing some of the proposed strategies resulted in MTSs that
were inconsistent with M3, this was automatically flagged
by the tool. Other strategies were perfectly consistent, could
guarantee the high-level goals described at the beginning of

Fig. 25. An “eager” pump scenario, σ1.

this section, and would have allowed us to reach LTS mod-
els for the mine pump controller that are valid alternatives
to the one presented here. In this paper, we report on the
choice to create an “eager” pump. Hence, we merged M3

with another scenario, σ1, described in Figure 25, resulting
in a model M4 = M3 +M(σ1).

Analysis of M4 led to a declarative description of when to
switch the pump off that is consistent with σ1: We found the
need to strengthen the precondition of switchOff, as encoded
in φ9.

In addition, we elicited a complex property for the danger
light resulting from the analysis of maybe traces such as

tr4 = medWater, highWater, switchOn,methaneAppears,
switchOff, tick?, . . .

The trace shows that the controller is not reacting suffi-
ciently fast to keep the state of the danger light appropri-

UCHITEL, BRUNET, CHECHIK 17

/* The pump must remain open as long as there is water to
be pumped and no methane is present */
φ9 = 2(X switchOff ⇒ (LowWater ∨ MethanePresent))

/* At each tick, the danger light shall be on if methane is

present */

φ10 = 2(tick ⇒ (MethanePresent ⇔ DangerLightOn))

Fig. 26. Properties elicited during the third iteration.

ately set to reflect the levels of methane in the pump. A
simplistic way to deal with this trace is to require that the
light to be set immediately after methane appears:

φwrong = 2(methaneAppears ⇒ X switchDLOn)

This property is inconsistent with M4. During the com-
putation of M4 + M(φwrong), MTSA reports presence of
a deadlock state reachable through a required trace. This
means that there are no deadlock-free implementations of
such a merge, or, equivalently, that construction of (M4 +

M(φwrong))− results in an empty MTS.

MTSA can also be used to pinpoint the cause for the
inconsistency between M4 and φwrong. In principle, φwrong

may not be inconsistent with any individual property (φ1 to
φ9) or scenario (σ) previously elicited but with an emergent
behaviour of a subset of these instead. The offending subset
can be found either by starting from an empty subset and
adding properties and scenarios into consideration, doing
the merge and checking for inconsistency with property of
interest, or by removing arbitrary properties or scenarios
from the set of elicited artifacts, re-merging the remaining
ones, and checking for inconsistency. In our case, it is
property φ2, which requires the pump to be immediately
switched off when methane appears, that is inconsistent
with φwrong: (φ2 + φwrong)− is the empty MTS. We dis-
cuss inconsistency identification and resolution further in
Section X.

A natural reaction to this inconsistency is to change the
“next” operator X into a “future” operator F in φwrong:

φ′wrong = 2(methaneAppears ⇒ F switchDLOn)

This property is too weak and does not describe the urgency
of keeping the danger light as aligned as possible with the
level of sensed methane.

A possible refinement is to require that if methane is
present and the danger light is off, then the light must be
switched on before the next tick. However, if an analogous
property for switching the danger light on is required, a
contradiction is reached: if methane appears and disappears
within one time unit what should the status be at the end of
this time unit? This was a mistake that we made ourselves.
We formalized the two properties for switching the light on
and off and merged them, using MTSA, with the remainder
of the properties and scenarios, resulting in an empty MTS.
As a result, we were forced to backtrack and define a
weaker property: the danger light should accurately reflect
the state of methane in the mine at the end of each time
unit, formalized as the property φ10.

The fifth iteration, over the model M5 = M4 + M(σ) +

/* Pump must be on at tick if water is not low and methane
not present */
φ11 =
2(tick ⇒ ((¬LowWater ∧ ¬MethanePresent) ⇒ PumpOn))

/* Danger light off is a precondition for switching the danger
light on */
φ12 =
2(DangerLightOn ⇒ X(¬switchDLOn W ¬DangerLightOn))

/* Danger light on is a precondition of switching the danger

light off */

φ13 =

2(¬DangerLightOn ⇒ X(¬switchDLOff W DangerLightOn))

Fig. 27. Properties elicited during the fifth iteration.

M(σ1) +M(φ9) +M(φ10), exhibits the trace

tr5 = medWater, switchOn?, . . .

which shows that the eager policy is not being enforced
fully (φ9 prevents the pump from being switched off but
does not force the pump to become on). Hence, φ11 is added
to force urgency over turning the pump on when the water
is not low. However, this property contradicts the original
scenario description σ (see Figure 19). This contradiction
is identified when constructing the model M5 + M(φ11)

and observing that it deadlocks. Iteratively removing the
previously elicited properties that comprise M5, the con-
tradiction between φ11 and the scenario specification σ is
pinpointed, since the MTS M(φ11) + M(σ) is deadlocking
as well. Finally, an example of the contradiction can be
produced by checking φ11 against M(σ). In this case, the
MTSA model checker returns a trace medWater, tick, which
is required by the scenario specification σ while violating
the property φ11.

Summarizing, the fifth iteration involved modifying the
scenario specification σ by removing the traces that violate
φ11. We call the resulting scenario description σ′.

The remaining two properties elicited in this iteration
are that the danger light cannot be switched on when it
is already on (φ12), nor off while it is off (φ13).

The final iteration involves analyzing

M6 = M(φ1) + · · · +M(φ13) +M(σ′) +M(σ1).

A careful analysis of M6 revealed that all remaining
maybe transitions should be converted to required transi-
tions. This led to a fully refined MTS and the conclusion of
the case study. We now explain why the decision to convert
remaining maybe transitions into required ones is in order.

The maybe transitions on actions controlled by the envi-
ronment (i.e., methLeaves, tick, methAppears, lowWater, med-
Water, and highWater) should be converted to required
transitions to ensure that the controller does not constrain
the behaviour of the environment unnecessarily. The maybe
transitions on actions controlled by the pump controller
(i.e., switchOn, switchOff, switchDLOn, and switchDLOff)
are either transitions whose initial state has one outgoing
transition, or states in which tick is not enabled but other
environment actions are. The former indicates that the
transition must be required; otherwise, the implementation

UCHITEL, BRUNET, CHECHIK 18

Fig. 28. A fragment of M6.

would deadlock. The latter indicates that there is some
urgency requirement that remains to be fulfilled. Consider
properties φ10 and φ11 which restrict the occurrence of the
tick event. These properties deliberately leave underspec-
ified when, within a time unit, the requirement must be
satisfied. Now consider the fragment of M6 depicted in
Figure 28 where the leftmost state is the one in which there
is no methane present, water level is medium and the pump
is off. Once methane appears (transition between states 10
and 11), time will not go forward until either the danger
light is switched on or methane leaves again (and hence,
there is no urgency for switching the light on). There can
be a number of ways to implement the maybe transitions
on switchDLOn from states 1 and 2: one, both, or neither of
these transitions can be implemented. However, the sensi-
ble choice is to require both transitions because removing
one of them would introduce unnecessary assumptions on
the environment (e.g., removing a transition from state 1
to 6 introduces a requirement that the environment will
exhibit lowWater, methLeaves, or highWater before the next
tick event).

In summary, the maybe behaviour of M6 is converted to
the required behaviour, resulting in the LTS in Figure 29,
which is a reasonable choice for the implementation model
of the pump controller.

C. Summary

In this section, we have reported on the use of scenario
and property synthesis in conjunction with analysis of MTS
models using MTSA to support model elaboration. We
described just one of the many elaborations which could
have been done as the result of analyzing the unknown
behaviour. The story we presented was somewhat sim-
plified. In reality, we made numerous incorrect decisions
in our understanding of the domain, in the formalization
of properties, and in the exemplification of the desired
behaviour. We have reported on some of these to show how
our approach supports exploring and validating decisions
regarding the system behaviour, how incorrect decisions
can lead to inconsistencies later on in the elaboration pro-
cess, and how these can be traced back to their source.

The model resulting from the first iteration is less refined
than models that have been previously constructed from the
analogous properties by hand (e.g., [3]) and automatically
(e.g., [36]), which indicates that hidden assumptions were
made at the modelling or synthesis time in both approaches.

For instance, in [36], the mine pump was modeled us-
ing LTSs, and thus the synthesis algorithm had to pick
one of the possible implementations for the initial set of
requirements. The LTS synthesized by this approach is a
“greedy” implementation that attempts to include as many
behaviours as possible without violating any properties.
Although the resulting model satisfies the properties known
initially, it does not promote (or allow) eliciting further
properties. For example, identification of different strategies
for keeping the pump on or off at intermediate levels of
water was one important outcome of avoiding arbitrary
decisions during the model synthesis.

The iterative refinement of the original behaviour de-
scription provided by the properties φ1 to φ4 and the
scenario specification σ, embodied in the MTS M1, is sound.
As proven in the previous sections, i) the MTS refine-
ment narrows down the set of implementations; hence, as
new properties and scenarios are elicited and merged, the
original properties and scenarios continue to hold (unless
inconsistency has been found and some of the proper-
ties or scenarios had to be removed); ii) the MTS merge
characterizes logical conjunction; hence, as the elicitation
process continues, the resulting MTS precisely captures all
deadlock-free implementations that satisfy the previously
elicited as well as the new properties.

It is worth mentioning that the elicited FLTL properties
coincide with well-known temporal patterns: urgency, in-
variance, precondition, etc. These or similar patterns have
been identified in goal-oriented requirements engineering
approaches such as KAOS [52] and property patterns such
as the Dwyer system [10]. We therefore expect that our ap-
proach can benefit from the use of patterns as well, making
it more accessible and decreasing the need of formality for
behaviour model elicitation.

We used a number of analysis techniques to support
eliciting properties and scenarios that would refine maybe
behaviour. We performed animations of the MTS models
using the MTSA tool, exploiting their operational nature.
We did not use graphical animation toolkits such as the
one described in [41], because these have been designed
for traditional behaviour models such as LTSs. However,
these approaches can be adapted straightforwardly if some
visual convention is used to distinguish between maybe
and required behaviour.

We also relied on inspection of synthesized MTSs, both in
their textual and graphical forms, as produced by the MTSA
tool. For larger models, validation of minimized M+ and
M− models was very helpful. A useful technique that could
be adapted to aid inspection is the conversion of MTSs into
some hierarchical representation, like Statecharts [15], and
visualization of abstractions of an MTS using action hiding
and minimization [40], [8]. The latter, although defined
and implemented for strong refinement [8], has yet to be
implemented for our case which requires weak refinement.

We used model-checking intensively to support the anal-
ysis. The introduction of an inconsistent property in an iter-
ation of the synthesize-analyze-elicit cycle is detected using
a deadlock freedom check. This amounts to checking that a
given MTS has at least one deadlock-free implementation,
which is done by MTSA. Having identified an inconsistency,

UCHITEL, BRUNET, CHECHIK 19

Fig. 29. The final behavioral model of the mine pump controller.

examples to aid comprehension can be produced by model
checking the elicited property against the system model.
MTSA produces a counter-example that may help identify
the source of the problem: either the elicited property is
incorrect, or it has been incorrectly formalized, or some of
the previously elicited properties or scenarios are incorrect
or incorrectly formalized. In the latter case, checking the
elicited property against a smaller subset of the previously
elicited properties or scenarios would help pinpoint the
source of inconsistency.

X. DISCUSSION AND RELATED WORK

In this section, we discuss the results presented in this
paper and some of the decisions we have made, comparing
our approach to related work.

A. On Safety Properties

In this paper, we limit our analysis to safety properties.
This restriction is reasonable from a requirements perspec-
tive (it is standard in such approaches as goal-oriented
requirements engineering [51]): instead of handling liveness
properties such as 3φ, we assume that if the system is
required to do something eventually, surely there is a
bound on the acceptable time in which this must occur.
The bounded response results in a safety property. Hence,
approaches such as [51] adopt bounded temporal operators,
such as in 3≤qφ, which means “φ holds eventually but
in less than q time units” to provide a richer syntax for
describing safety properties. Bounded temporal operators
can be easily expressed in FLTL.

From a practical perspective, the FLTL to MTS synthesis
algorithm identifies properties that are not safety automati-
cally, as these result in intermediate Büchi automata which
do not have a unique accepting trap state.

Should we choose to support synthesis from liveness
properties directly, we would require construction of mod-
els with non-trivial accepting criteria for infinite traces –
such as those provided by Büchi automata.

B. MTSs over Infinite Traces

In Linear Temporal Logic (LTL) [42] and thus in FLTL,
formulae are evaluated over infinite traces. Consequently,
checking satisfaction of an LTL formula over an opera-
tional model that has states with no outgoing transitions
requires a work-around: either finite traces are extended
with (implicit or explicit) self-loops [19], or LTL semantics is
extended to enable explicit reasoning about such traces [17].
When defining FLTL, we found that giving it semantics
w.r.t. finite traces lacks elegance and loses the intuitive
meaning behind many FLTL formulae. Instead, we chose to
restrict MTSs (and therefore LTSs) to those that do not have
finite traces altogether. This decision not only produces an
elegant formalism but also resolves an expressiveness issue
with MTSs, which we discuss below.

Consider an FLTL formula a ∨ b, and note the implicit
partiality: it is not known whether a or b should occur,
as long as one (or both) do. The MTS A in Figure 5 is
intended to capture the implementations that satisfy this
formula, where transitions on a and b are modelled with
maybe behaviour from the initial state.

Unfortunately, there is no way to specify within the MTS
formalism that a transition on either label can be refined to
false in the implementation, as long as at least one other
transition is true. Specifically, a possible refinement of A

is the empty LTS, i.e., a finite-trace model. Whether we
extend this trace to a self-loop or ignore the finite-trace
behaviour, this model does not preserve a∨b. By considering
just infinite-trace MTSs, we restrict the space of allowable
refinements, avoiding such “bad” implementations. The
infinite-state requirement ensures that a transition on either
a or b is required in the initial state of any implementation
of A (e.g., model B in Figure 5).

An alternative solution to the problem of synthesis of
properties with disjunctions is to build disjunctive modal
transition systems (DMTS) [32]. States in DMTSs have sets
of outgoing possible transitions where at least one transition
of each set must be provided in an implementation of the

UCHITEL, BRUNET, CHECHIK 20

DMTS. The cost of this solution is a more complex modeling
formalism that may encumber effective specification and
understanding of behaviour models.

C. 3-valued FLTL

In Section IV, we argued that our 3-valued FLTL has thor-
ough semantics. In contrast, conventional model-checking
approaches implement compositional semantics – computing
the value of the formula from the values of its subformu-
las. Compositional semantics is typically less precise than
thorough: the maybe value returned by the model-checkers
may not correspond to the existence of implementations in
which the property holds and those where it fails. However,
for a logic with just universal quantifiers, such as FLTL,
compositional and thorough semantics coincide [14], en-
abling Theorem 4 and thus the analysis with the complexity
of compositional model-checking.

The relation between MTSs and 3-valued modal µ-
calculus logics [3], [23] has been studied, and these logics
have been shown to be a good fit for characterizing the
notions of refinement, observational refinement, merging
and consistency. We have chosen a less expressive logic,
namely, FLTL, that is preserved by refinement but does
not characterize these notions. Our choice of a linear tem-
poral logic is in line with other requirements engineering
approaches [13], [52], [25] and property specification lan-
guages [10].

The motivation for choosing a fluent-based logic is that
it provides a uniform framework for specifying and model-
checking state-based temporal properties in event-based
transition systems [13]. The fluent definitions are therefore
useful for automatic synthesis of event-based operational
models from state-based declarative properties.

The 3-valued FLTL logic presented in this paper enables
specification and model-checking of both safety and live-
ness properties. Therefore, while Section V restricts the
synthesis of MTSs to safety properties, implementations ob-
tained via refinement will preserve all properties (including
liveness) that the synthesized MTSs may have.

D. Alphabet Extension

In this paper, we have so far ignored the issue of alphabet
extension, assuming instead that all properties are defined
over the same alphabet Act. In practice, fixing Act is not
practical, as the process of elaboration involves discovery
of new relevant actions. Hence, elaboration should support
augmenting the universe of known actions with new ones.
The results we present in this paper can be extended to
deal with alphabet extensions, relying mainly on the notion
of observational refinement and properties of merge with
respect to it [48], [3]. Specifically, our previous study of
merge handles different alphabets, as reported in [48], [3].

If Act is not fixed, we cannot guarantee that the result
of the merge is always unique. In other words, there may
not always be a unique minimal common refinement of
the models being merged. This can even occur for non-
deterministic models with the same alphabet [21], but does
not apply in this paper as we synthesize and merge deter-
ministic models.

Note that Theorem 5 in Section V which relates LTS
composition with logical conjunction, requires formulae to
be closed under stuttering [1] if each formula being used for
synthesis is allowed a different universe Act [37]. However,
this restriction is not needed for MTSs: Theorem 9, which
relates merge with conjunction, holds in all cases when the
minimal common observational refinement is unique.

E. Elaboration Process

The synthesis techniques presented in this paper are not
intended to be used in a one-off fashion. Rather, synthesis is
expected to be used iteratively, adding, va merge, more in-
formation to the partial behaviour model being constructed.
This elaboration process consisting of synthesis, merge,
analysis and elicitation, exemplified in the case study sec-
tion, is guaranteed to be monotonic with respect to the MTS
refinement. In other words, as new properties and scenarios
that are consistent with MTS under analysis are elicited,
merging-in the new properties and scenarios preserves the
required and proscribed behaviour specified up to that
point. If, however, an inconsistency is reached, the source
of inconsistency can be traced by decomposing the MTS
under analysis into the various models that represent the
scenarios and properties elicited previously.

We envisage that the result of the elaboration process
includes not only the properties and scenarios elicited
throughout, but also the MTS that characterizes these sce-
narios and properties. If the modeller has confidence that
all important scenarios and properties have been elicited,
an arbitrary implementation of the resulting MTS can be
chosen (easy choices are M+ and M−). Such implementa-
tion can be used to move towards a system design and
implementation supported by the variety of techniques
based on traditional behaviour models such as LTSs.

F. Related Work

A number of approaches to building event-based models
from properties exist [30], [50], [43], [25], [37], [38]. For
instance, [30] proposed a technique for automatically trans-
lating a goal-oriented requirements model into a tabular
event-based specification in the form of SCR [18]. [50],
[43] developed behaviour model synthesis techniques to
support animation and validation of property-based speci-
fications. In [25], Formal Tropos goal models are translated
into the event-based specification language Promela for
verification using the SPIN tool. All of these approaches,
as well as [37], build one of the many possible event-based
models that satisfy the given properties. We addressed
limitations of such approaches in Section II. An alternative,
presented in [38], requires that the set of properties be
strong enough to allow for a unique, up to bisimulation,
operational model that satisfies them. Our work aims to
support elaboration so as to potentially achieve such a
strong set of properties.

Operational models have also been built from scenario
descriptions (e.g. [49], [29], [27]). These approaches benefit
from simple, intuitive notations that are widely used and
well-suited for developing first approximations of the in-
tended system behaviour. The operational nature of scenar-
ios and the describe-by-example philosophy they embody

UCHITEL, BRUNET, CHECHIK 21

are both an advantage, in terms of ease of use and adoption,
and a disadvantage, in terms of having a generative seman-
tics in which all behaviours must be explicitly described,
and in terms of the number of scenarios that may be
required to describe complex behaviours. We discussed
limitations of such approaches previously.

The work by van Lamsweerde et al. [6] is related to ours
in that it also considers scenarios and safety properties
as an input to synthesis. A learning algorithm is used
to synthesize an LTS model from examples of intended
and proscribed system behaviour. The algorithm also pro-
vides feedback in terms of what-if questions in order to
avoid over-generalization while learning. Safety properties
are used to prune the number of what-if questions that
are presented to the user. The difference with our work,
however, is that the resulting LTS does not model the
safety properties; it is simply constructed from scenarios
that satisfy the safety properties. Hence, the LTS is a lower
bound on the intended behaviour of the system and as such
has the limitations discussed previously in the paper.

Live Sequence Charts (LSCs) [16] augment sequence
charts with the goal of describing existential and universal
behaviour. However, synthesis approaches for LSCs (e.g.,
[2], [45]) build traditional behaviour models and still do
not support modeling and reasoning about possible yet not
required system behavior. Extending LSC synthesis to char-
acterize all models representable by an LSC specification
would require a more expressive synthesis target (e.g., 3-
valued Büchi automata) than the one used in this paper to
allow to deal with liveness properties.

Modal Transition Systems [35] and their variants such as
Disjunctive MTSs [32] and Mixed Transition Systems [7],
have been studied from a theoretical standpoint for some
time (e.g., [20], [22]) and are increasingly being proposed for
modelling and reasoning about software systems from dif-
ferent perspectives such as program analysis [23], early re-
quirements and design [48] and software product lines [12],
[33]. These approaches assume the existence of a partial
behaviour model and do not focus, as the work in this
paper, on supporting the construction and elaboration of
such models.

Finally, there have been approaches, e.g., [31], for solv-
ing the problem complementary to ours, i.e., splitting the
merged model into individual models, to facilitate a rea-
soning task.

XI. SUMMARY AND FUTURE WORK

In this paper, we have presented an automated technique
for constructing behaviour models from both safety prop-
erties and scenario-based specifications. We have argued
that classical state machine models such as LTSs are insuf-
ficiently expressive to adequately support this procedure
and presented synthesis algorithms that produce models
in a more expressive formalism, namely, Modal Transition
System. We have shown how synthesis of MTS models sup-
ports behaviour model elaboration in addition to require-
ments and scenario elicitation. Our approach integrates well
with existing techniques such as goal- [5], [51] and scenario-
based [46] requirements engineering.

There are a number of research issues that we aim
to address in the future. We aim to provide automated
support for inconsistency detection and resolution, and
further integrate our work with existing work approaches
to requirements engineering such as goal-oriented RE [51].
In addition, we plan to further investigate techniques for
synthesis and merging of specifications that have different
vocabularies. Finally, the tool support for the processes
described in this paper requires additional work aimed to
improve its usability and efficiency.

Acknowledgements. We thank anonymous ICSE and
TSE referees for their comments first on a conference ver-
sion of this paper [47] and then on an earlier version of the
journal paper. We gratefully acknowledge the support of
CONICET, ERC StG 204853-2, PICT 11-32440, UBACYT and
NSERC. Nicolás D’Ippolito and Dario Fischbein contributed
to the development of the MTSA tool.

REFERENCES

[1] M. Abadi and L. Lamport. “The Existence of Refinement Map-
pings”. Theoretical Computer Science, 82(2):253–284, 1991.

[2] Y. Bontemps and P. Heymans. “From Live Sequence Charts to
State Machines and Back: A Guided Tour”. IEEE Transactions on
Software Engineering, 31(12):999–1014, 2005.

[3] G. Brunet. “A Characterization of Merging Partial Behavioural
Models”. Master’s thesis, Univ. of Toronto, 2006.

[4] G. Bruns and P. Godefroid. “Generalized Model Checking: Rea-
soning about Partial State Spaces”. In Proceedings of International
Conference on Concurrency Theory (CONCUR’00), volume 1877 of
LNCS, pages 168–182, 2000.

[5] J. Castro, M. Kolp, and J. Mylopoulos. “Towards Requirements-
Driven Information Systems Engineering: the Tropos Project”.
Journal of Information Systems, 27(6):365–389, 2002.

[6] C. Damas, B. Lambeau, and A. van Lamsweerde. “Scenarios,
Goals, and State Machines: A Win-Win Partnership for Model
Synthesis”. In Proceedings of ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE’06), pages 197–
207, 2006.

[7] D. Dams. Abstract Interpretation and Partition Refinement for Model
Checking. PhD thesis, Eindhoven University of Technology, The
Netherlands, July 1996.

[8] N. D’Ippolito. “MTSA: A Model Checker for Modal Transition
Systems”. Master’s thesis, University of Buenos Aires, Computing
Department, December 2007.

[9] N. D’Ippolito, D. Fischbein, M. Chechik, and S. Uchitel. “MTSA:
The Modal Transition System Analyzer”. In Proceedings of Tools
Track of International Conference on Automated Software Engineering
(ASE’08), September 2008.

[10] M. Dwyer, G. Avrunin, and J. Corbett. “Patterns in Property
Specifications for Finite-State Verification”. In Proceedings of
International Conference on Software Engineering (ICSE’99), pages
411–420, 1999.

[11] D. Fischbein and S. Uchitel. “On Correct and Complete Strong
Merging of Partial Behaviour Models”. In Proceedings of ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE’08), November 2008.

[12] D. Fischbein, S. Uchitel, and V. Braberman. “A Foundation for Be-
havioural Conformance in Software Product Line Architectures”.
In Proceedings of ISSTA’06 Workshop on Role of Soft. Arch. for Testing
(ROSATEA’06), pages 39–48, New York, NY, USA, 2006. ACM.

[13] D. Giannakopoulou and J. Magee. “Fluent Model Checking for
Event-Based Systems”. In Proceedings of Joint European Software
Engineering Conference and ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE’03), 2003.

[14] A. Gurfinkel and M. Chechik. “How Thorough is Thorough
Enough”. In Proceedings of 13th Advanced Research Working
Conference on Correct Hardware Design and Verification Methods
(CHARME’05), volume 3725 of LNCS, pages 65–80, 2005.

[15] D. Harel. “StateCharts: A Visual Formalism for Complex Sys-
tems”. Science of Computer Programming, 8:231–274, 1987.

UCHITEL, BRUNET, CHECHIK 22

[16] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Program-
ming Using LSCs and the Play-Engine. Springer, 2003.

[17] K. Havelund and G. Rosu. “Monitoring Programs Using Rewrit-
ing”. In Proceedings of International Conference on Automated Soft-
ware Engineering (ASE’01), pages 135–143, 2001.

[18] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. “Automated
Consistency Checking of Requirements Specifications”. ACM
Transactions on Software Engineering and Methodology, 5(3):231–261,
July 1996.

[19] G.J. Holzmann. “The Model Checker SPIN”. IEEE Transactions on
Software Engineering, 23(5):279–295, May 1997.

[20] A. Hussain and M. Huth. “On Model Checking Multiple Hybrid
Views”. In Proceedings of 1st International Symposium on Leveraging
Applications of Formal Methods, pages 235–242, 2004.

[21] A. Hussain and M. Huth. “Automata Games for Multiple-
model Checking”. Electronic Notes in Theoretical Computer Science,
115:401–421, 2006.

[22] M. Huth, R. Jagadeesan, and D. Schmidt. “A Domain Equation
for Refinement of Partial Systems”. Mathematical Structures in
Computer Science, 14(4):469–505, 2004.

[23] M. Huth, R. Jagadeesan, and D. A. Schmidt. “Modal Transition
Systems: A Foundation for Three-Valued Program Analysis”. In
Proceedings of European Symposium on Programming (ESOP’01),
volume 2028 of LNCS, pages 155–169, 2001.

[24] ITU. Recommendation z.120: Message sequence charts. ITU, 2000.
[25] R. Kazhamiakin, M. Pistore, and M. Roveri. “Formal Verification

of Requirements using SPIN: A Case Study on Web Services”. In
Proceedings of International Conference on Software Engineering and
Formal Methods (SEFM’04), pages 406–415, 2004.

[26] S. C. Kleene. Introduction to Metamathematics. New York: Van
Nostrand, 1952.

[27] K. Koskimies and E. MLkinen. “Automatic Synthesis of State
Machines from Trace Diagrams”. Software Practice and Experience,
24(7):643–658, 1994.

[28] J. Kramer, J. Magee, and M. Sloman. “CONIC: an Integrated
Approach to Distributed Computer Control Systems”. IEE Pro-
ceedings, 130(1):1–10, 1983.

[29] I. Krüger, R. Grosu, P. Scholz, and M. Broy. “From MSCs to
Statecharts”. In Distributed and Parallel Embedded Systems. Kluwer
Academic Publishers, 1999.

[30] R. De Landtsheer, E. Letier, and A. van Lamsweerde. “Deriving
Tabular Event-Based Specifications from Goal-Oriented Require-
ments Models”. In Proceedings of IEEE International Symposium on
Requirements Engineering (RE’03), pages 200–212, 2003.

[31] K. Larsen, B. Steffen, and C. Weise. “The Methodology of Modal
Constraints”. In Formal Systems Specification, volume 1169 of
LNCS, pages 405–435. Springer, 1996.

[32] K. Larsen and L. Xinxin. “Equation Solving Using Modal Tran-
sition Systems”. In Proceedings of the Fifth Annual Symposium on
Logic in Computer Science (LICS’90), pages 108–117, July 1990.

[33] K. G. Larsen, U. Nyman, and A. Wasowski. “Modal I/O Automata
for Interface and Product Line Theories”. In European Symposium
on Programming (ESOP’07), volume 4421 of LNCS, 2007.

[34] K. G. Larsen, B. Steffen, and C. Weise. “A Constraint Oriented
Proof Methodology based on Modal Transition Systems”. In
Proceedings of 1st International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’95), volume 1019
of LNCS, pages 17–40, 1995.

[35] K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In Pro-
ceedings of IEEE Symposium on Logic in Computer Science (LICS’88),
pages 203–210, 1988.

[36] E. Letier, J. Kramer, J. Magee, and S. Uchitel. “Fluent Temporal
Logic for Discrete-time Event-Based Models”. In Proceedings of
ACM SIGSOFT Symposium on Foundations of Software Engineering
(FSE’05), pages 70–79, 2005.

[37] E. Letier, J. Kramer, J. Magee, and S. Uchitel. “Deriving Event-
Based Transition Systems from Goal-Oriented Requirements Mod-
els”. Technical Report 02/2006, Imperial College, 2006.

[38] E. Letier and A. van Lamsweerde. “Deriving Operational Soft-
ware Specifications from System Goals”. In Proceedings of ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE’02), pages 119–128, 2002.

[39] O. Lichtenstein and A. Pnueli. “Checking that Finite State Concur-
rent Programs Satisfy Their Linear Specification”. In Proceedings
of the 12th Annual ACM Symposium on Principles of Programming
Languages (POPL’85), pages 97–107. ACM, 1985.

[40] J. Magee and J. Kramer. Concurrency - State Models and Java
Programs. John Wiley, 1999.

[41] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. “Graphical
Animation of Behavior Models”. In Proceedings of International
Conference on Software Engineering (ICSE’00), pages 499–508, 2000.

[42] Z. Manna and A. Pnueli. “Verification of Concurrent Programs:
A Temporal Proof System”. Technical report, Department of
Computer Science, Stanford University, 1983.

[43] Ch. Ponsard, P. Massonet, A. Rifaut, J.F. Molderez, A. van Lam-
sweerde, and H. Tran Van. “Early Verification and Validation
of Mission-Critical Systems”. In Proceedings of Formal Methods in
Critical Systems (FMICS’04), 2004.

[44] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and
Practice of Concurrency. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[45] J. Sun and J. Song Dong. “Design Synthesis from Interaction
and State-Based Specifications”. IEEE Transactions on Software
Engineering, 32(6), 2006.

[46] A. G. Sutcliffe, N. A.M. Maiden, S. Minocha, and D. Manuel.
“Supporting Scenario-Based Requirements Engineering”. IEEE
Transactions on Software Engineering, 24(12):1072–1088, 1998.

[47] S. Uchitel, G. Brunet, and M. Chechik. “Behaviour Model Synthe-
sis from Properties and Scenarios”. In Proceedings of International
Conference on Software Engineering (ICSE’07), pages 34–43, 2007.

[48] S. Uchitel and M. Chechik. “Merging Partial Behavioural Mod-
els”. In Proceedings of ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’04), pages 43–52, 2004.

[49] S. Uchitel, J. Kramer, and J. Magee. “Incremental Elaboration
of Scenario-Based Specifications and Behaviour Models using
Implied Scenarios”. ACM Transactions on Software Engineering and
Methodology, 13(1), 2004.

[50] H. Tran Van, A. van Lamsweerde, P. Massonet, and Ch. Ponsard.
“Goal-Oriented Requirements Animation”. In Proceedings of IEEE
International Symposium on Requirements Engineering (RE’04), pages
218–228, 2004.

[51] A. van Lamsweerde. “Tutorial: Goal-Oriented Requirements
Engineering: From System Objectives to UML Models to Precise
Software Specifications”. In Proceedings of International Conference
on Software Engineering (ICSE’03), pages 744–745, 2003.

[52] A. van Lamsweerde and E. Letier. “Handling Obstacles in
Goal-Oriented Requirements Engineering”. IEEE Transactions on
Software Engineering, 26(10):978–1005, 2000.

[53] M. Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to
Automatic Program Verification”. In Proceedings of 1st Symposium
on Logic in Computer Science (LICS’86), pages 322–331, Cambridge
MA, 1986.

