IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

Automatic Analysis of Consistency
between Requirements and Designs

Marsha Chechik, Member, IEEE Computer Society, and
John Gannon, Senior Member, IEEE

Abstract—Writing requirements in a formal notation permits automatic assessment of such properties as ambiguity, consistency, and
completeness. However, verifying that the properties expressed in requirements are preserved in other software life cycle artifacts
remains difficult. The existing techniques either require substantial manual effort and skill or suffer from exponential explosion of the
number of states in the generated state spaces. “Light-weight” formal methods is an approach to achieve scalability in fully automatic
verification by checking an abstraction of the system for only certain properties. This paper describes light-weight techniques for
automatic analysis of consistency between software requirements (expressed in SCR) and detailed designs in low-degree-polynomial
time, achieved at the expense of using imprecise data-flow analysis techniques. A specification language SCR describes the systems
as state machines with event-driven transitions. We define detailed designs to be consistent with their SCR requirements if they
contain exactly the same transitions. We have developed a language for specifying detailed designs, an analysis technique to create a
model of a design through data-flow analysis of the language constructs, and a method to automatically generate and check properties
derived from requirements to ensure a design’s consistency with them. These ideas are implemented in a tool named CORD, which we

used to uncover errors in designs of some existing systems.

Index Terms—SCR requirements, static analysis, formal specification, finite-state abstraction, data-flow analysis.

1 INTRODUCTION

HE keys to winning acceptance for employing formal

methods during system development include demon-
strating that their use improves software quality, amortiz-
ing the cost of their creation across several different analysis
activities, and reducing the cost of their application through
automation. Software quality can be improved by eliminat-
ing errors arising from inconsistencies within the descrip-
tion of a system or between two different descriptions of a
system.

The problem of checking consistency between different
program artifacts has been worked on since the early
days of computer science. Attempts at verifying that a
program corresponds to its specifications were first made
by Hoare, Mills, and Dijkstra in 1960s. Their methods
typically suffered from the necessity to guess program
invariants—a difficult task for all but the smallest
programs. Theorem-proving [53], allows for checking if
a property is implied by the program. This approach,
although it requires considerable skill and time invest-
ment, is useful in ensuring correctness of software and
has been applied in a variety of verification efforts, e.g.,
[16], [4], [59], [63]. Another approach is to check proper-
ties via state exploration (model-checking [18]). This

o M. Chechik is with the Department of Computer Science, University of
Toronto, 10 King’s College Rd., Toronto, ON, Canada M5S 3G4.
E-mail: chechik@cs.toronto.edu.

o |. Gannon was with the Department of Computer Science, University of
Maryland, College Park, MD 20774.

Manuscript received 4 May 1998; revised 22 July 1999; accepted 19 May
2000.

Recommended for acceptance by M. Young and A. Andrews,

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 106806.

approach is typically limited to finite-state systems but
its main attractiveness is that the verification is fully
automated. Model-checking has been effectively applied
to verifying hardware [22], [19], [15], [49] and distributed
systems, including network and security protocols [34],
[47], [48], [43], [3]. Model-checking has also started to be
applied to requirements engineering [6], [23], [60], [7],
[64]. However, the size of the state-space grows exponen-
tially compared to the number of variables in the
problem, making all but the most trivial programs too
large to analyze. Various researchers have been proposing
checking abstractions of programs [66], [42], [35]. Unfortu-
nately, coming up with useful abstractions and interpret-
ing counter-examples remains difficult.

Motivated by the necessity to create highly scalable
analysis techniques, we have developed a low-degree-
polynomial-time approach to check low-level designs
against requirements, summarized in this paper.

Requirements for embedded systems often describe a
system as a set of concurrently executing state machines
(see [2], [30], [46], [28]) which respond to events in their
environment. Designs are frequently expressed in a
program design language (PDL) [9] consisting of a concrete
outer syntax of basic statement types and an inner syntax of
comments. We define a design to be consistent with its
requirements if the design’s state transitions are enabled by
the same events as those of the requirements and all the
requirement’s state transitions appear in the design. In a
large project, these properties may be checked by design
and code inspections conducted by human reviewers [45].
This process may be effective in catching local inconsis-
tencies, but the bookkeeping tasks needed to determine all
the possible system states at a particular program point
make it difficult to ensure that global properties hold. In

0098-5589/01/$10.00 © 2001 IEEE

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

(R

SCR

Requirements
+
Safety
Properties

Detailed
Design

nsformation
Igorithm

Finite State
Machine r

1st Order
Logic
Formulas

4 KX

Specialized
Model Checker

_

Fig. 1. Verification using CORD.

this paper, we define a notation which can be used as a PDL
and describe a prototype tool, called CORD [12], [13], [11],
which automatically determines if a design written in this
notation is consistent with its requirements.

The inputs to our tool are a tabular requirements
specification and a detailed design written in the PDL.
The PDL’s outer syntax is comprised of C control con-
structs, and its inner syntax is a set of special comments
which describe local properties of values of requirements
variables. As Fig. 1 illustrates, the tool generates a set of
first-order logic formulas corresponding to our notion of
consistency between a design and its requirements and a
finite-state machine (FSM) abstraction of the design. A
special-purpose model checking algorithm determines if the
formulas hold in the abstraction.

The rest of the paper is organized as follows: Section 2
describes the formal model of SCR requirements. Section 3
presents a language for creating detailed designs. Section 4
presents our notion of consistency between SCR require-
ments and designs. Section 5 describes a process of
building a finite-state machine from the detailed design.
Section 6 describes an approach for checking automatically
generated properties. Section 7 presents a case study
during which we analyzed an existing detailed design of
a water-level monitoring system [62] with respect to its
SCR requirements. Finally, Section 8 summarizes our
approach and compares it to related work.

2 REQUIREMENTS NOTATION

The SCR requirements notation was developed by a
research group at the US Naval Research Laboratory as
part of the Software Cost Reduction project [2], [33]. The

project resulted in SCR requirements and design standards,
as well as guidelines for software development using SCR.
A complete SCR requirements specification contains beha-
vioral, functional, precision, and timing requirements of a
software system, as well as assumptions about the
environment in which the system will operate. The
specification language is precise, can be understood by
engineers and software developers, and is easy to use and
modify. The initial language lacked an underlying formal
semantics. A number of semantics have been proposed [5],
[30], [26], [54], [62], some of which became bases of tools
performing consistency and completeness checks [31] and
enabling simulations [21], [55] of requirements. In this
section, we briefly describe SCR behavioral requirements
and environmental assumptions. A more formal description
can be found in [31].

The SCR model is used to specify reactive systems. The
environment contains monitored and controlled variables.
Monitored variables are quantities that influence the system
behavior, and controlled variables are quantities that the
system regulates. The required behavior of the system is
specified as a black box by two relations, REQ and NAT,!
both from monitored to controlled variables. Relation NAT
specifies the natural constraints on the system behavior,
imposed by physical laws and the system environment, e.g.,
“the system can never encounter temperatures less than
0°C.” REQ describes the ideal behavior of the system to be
built. The system is considered correct if it behaves like
REQ in all cases specified by NAT.

The SCR model is based on discrete-time event-driven
state-transition systems. The software samples the sensors
periodically or receives their values through interrupts.
Changes to monitored variables may cause the system to
change its state or to alter the values of its controlled
variables.

Definition 2.1. SCR requirements R is a tuple R = (B,€),
where B is a set of behavioral requirements and & is a set of
environmental assumptions.

B is the required relation between the monitored and the
controlled quantities, and £ C NAT represents constraints
on these quantities.

2.1 Behavioral Requirements

The input language of each machine is a set of conditioned
events. A condition is a predicate on monitored or mode
class variables. For example, conditions SwitchOn and
PumpFail can represent predicates [On/Off switch = On]
and [Pump failure = true], respectively. Representing
conditions as predicates allows us to assume that all
monitored and controlled entities are Boolean variables. A
state of the monitored environment is a mapping of
variables to values, and a state space is the set of possible
combinations of values of variables. We assume that the
system takes one “unit of time” to move between its states.
The behavior of the system is rarely affected by the values
of all the variables at once. A mode class defines a set of
states, called modes, that partition the monitored envir-
onment’s state space. Each mode class specifies one aspect
of the system’s behavior, and the system’s global behavior

1. These definitions have been coined by Parnas and Madey in [54].

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 3

is defined to be the composition of the specification’s mode
classes. At all times, the system is in exactly one mode of
each mode class. One mode of each mode class is
designated as the initial mode. Assumptions about the
initial state of the environment are specified with the initial
modes. In addition to Boolean entities, we use expressions
in the form mc=m as conditions indicating that the
system is in mode m of modeclass mc; thus, we can think
of a mode class as an enumerated type whose values are
modes of that mode class.

The system moves between its modes and changes values
of its controlled variables in response to events— changes in
the environment. We use notation “@T” and “@F” to denote
various events. A primitive event is an event @T/@F (a),
where a is a condition. For example, @T(Running) and
@F(Running) represent a condition Running becoming true
and becoming false, respectively, whereas @T(Operating=0ff)
represents a mode class Operating moving to mode Off. A
simple conditioned event is denoted @QT(a) WHEN [b], where
@T(a) is a primitive event, and b is a simple condition or a
conjunction of simple conditions, called the event’s WHEN
condition. Any primitive event @QT(a) can be represented as
@T(a) WHEN [true]. A conditioned event is composed of
simple conditioned events connected by logical connectors
A and V. A simple conditioned event can be represented by
a logical expression [32]:

QT(a) WHEN [b] = —7aAd AD,

where the unprimed version of a condition a denotes the
value of a in the previous state, and the primed version
denotes the value of a in the current state. Compound events
can be specified using Boolean operators, connecting
primitive events, or multiple conditions. Some formal
semantics, e.g., [30], exclude simultaneous events. We
assume that simultaneous events can occur only between
variables related by environmental assumptions, defined
below. Any event can be expressed as a logical statement;
an event occurs if the logical statement that the event
represents evaluates to true for a pair of consecutive states.
For example, the conditioned event @T(Running) WHEN
[Operating=0ff] can be rewritten as

- Running A Running’ A Operating = Off.

This event occurs if in the previous state, Operating is Off
and Running is false, whereas, in the current state, Running
is true. Finally, we assume that controlled variables cannot
be part of an event since they are outputs of the system and
other entities cannot depend on them.

SCR requirements use tables to define changes of values
of controlled variables and mode transitions. There is one
table for each controlled variable and for each mode class.
Each entry in a controlled variable table defines a value of the
corresponding controlled variable as a function of a system’s
modes and events. Such tables are called event tables. Each
entry in a mode transition table maps a mode and an event to
another mode in the same mode class.> In cases when a

2. In addition to controlled and monitored variables, the SCR method
described in [31] can also include terms—results of intermediate computa-
tions. We do not currently handle terms, although our analysis technique
can be easily augmented to do so. The SCR method also contains condition
rather than event tables which allow the specification of a value of a variable
or a term with regard to a set of conditions. Condition tables can be
textually translated into event tables.

conditioned event can trigger two or more transitions, the
exact transition is chosen nondeterministically.

A more formal definition of SCR behavioral require-
ments is given below:

Definition 2.2. Behavioral requirements B expressed in SCR is a
tuple B=(R,V,T,MT,CV,L,I), where

e R=(M,C,MD,) is a set of system variables, M is a
set of monitored, C is a set of controlled, and MD is a
set of mode class variables.

o Visa set of values that variables in R can attain. Thus,
VM, VC, and VMP indicate the respective values that
monitored, controlled, and mode class variables can
attain.

e T: R — 2V isamapping of variables to ranges of their
values:

Vr;e MUC,T(r;) = {true, false}
A4 mdj €]\4D7 T(md]) = {mjﬁl, M2y .eey m]-‘n},

where myj; is a mode in the mode class md;.

e L is the set of events,

o MT:VMP x I — VMP s g relation describing mode
transitions,

o OV :VMP x [— VY isarelation describing changes
of values of controlled variables, and

o [:VM L yMPUC s g relation describing the initial
state of the system.

Since all our variables have finite values, our state space is
also finite. Monitored and controlled variables are Boolean,
and mode class variables are enumerated types. If |T(r)]
indicates the number of values that a variable r € R can
attain, the state space S described by the requirements is
bounded above by:

S = QIMUC‘ X H1§j§|1\,ﬂ)‘|T(mdj)|.

We will use SCR to specify requirements of a
simplified Water-Level Monitoring System (SWLMS). A
switch controls whether the system is on or off. If the
system is on and its sensors detect too much (too little)
water, a pump is turned on for a fixed period to remove
(add) some water. If the sensor or the pump fails, the
system enters an error state. This simplified version of the
system has no error recovery, so there are no transitions
from the error state. This system has one mode class MC
with modes Off, Operating, and Error; four monitored
variables SwitchOn, PumpFail, TooHigh, and TooLow;
and a single controlled variables PumpOn. Table 1 shows
a mode transition table for SWLMS. Mode class MC starts
in mode Off, and all monitored variables are initially
false. MC transitions from Off to Operating when Switch-
On becomes true (indicated by “@T”) while PumpkFail is
false (indicated by “f”) and transitions to Error when
PumpkFail becomes true. Once it enters mode Operating,
MC remains there until SwitchOn becomes false (“@F”)
while PumpFail is false, or until PumpFail becomes true.
Entries marked by “-” are the “don’t care” values,
although some values can be inferred from environmental
assumptions about variables (see below).

4
TABLE 1
Mode Transition Table for Mode Class MC of SWLMS
Current Mode | SwitchOn PumpFail | New Mode
Off aT f Operating
- @r Frror
Operating ar [ofr
- @T Error

Initial: O (=SwitchOn A =Pumplail A =Toolligh A = ToolLow)
TooLow —>> —TooHigh

Assumptions:

Values of controlled variables change in response to
events when the system is in particular modes. Table 2
shows an event table for the controlled variable PumpOn,
which represents the pump being turned on or off. This
variable starts with value false and becomes true when MC
is in mode Operating and either event @T(TooHigh) or
@T(TooLow) occurs.

2.2 Environmental Assumptions

An assumption specifies constraints on the values of
variables, imposed either by laws of nature or by other
mode classes in the system. As such, assumptions are
invariant constraints that must hold in all system states.
For example, the water in a container cannot be too high
and too low at the same time, and buttons can be either
pressed or released but not both. Many environmental
assumptions can be expressed by declaring relationships
between conditions [5]. Some sample relationships are
discussed below.

implication (a—> b). The state space in which « is true is a
subset of the state space in which b is true.

strict implication (a—>> b). This assumption is similar to
implication except that when a becomes true, b should
already be true, and when b becomes false, a should
already be false.

timeline (a < b). Conditions a and b represent lengths of
time that a particular environmental condition has been
true, where b represents a longer length of time than a.
The timeline assumption is a strict implication assump-
tion whose contrapositive is nonstrict implication. There-
fore, a must already be true when b becomes true and
must become false when b becomes false.

enumeration (ag | a1 | - - - | a,). The state space is partitioned
such that exactly one member of the enumeration is true
in each partition.

The assumptions about environmental conditions can be
found in the section of an SCR requirements document that
describes the system’s controlled and monitored variables.
A human requirements analyzer is responsible for accu-
rately interpreting the environmental assumptions as they
are stated in the specification and translating them into the
appropriate syntax. The assumption specified in Table 1:
TooLow—3> ~TooHigh, states that the water level cannot be
too high and too low at the same time, i.e., if TooHigh is
true, TooLow is false, and vice versa.

We could do away with some of the environmental
assumptions if we choose to represent variables as
enumerated types. For example, having a variable valued

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

TABLE 2
Event Table for Controlled Variable PumpOn
Mode Triggering Event
Operating | @QT(TooHigh) -
@T(TooLow)
- @F (TooHigh)
@F(TooLow)
- @T(PumpkFail)
Off - @T(PumpkFail)
PumpOn = true false

Initial: false

TooLow, TooHigh, and Neither would automatically satisfy
the above assumption. However, some of the other
assumptions, like timeline, are not satisfied this easily.

3 DETAILED DESIGN

A Program Design Language (PDL) [9] is a language used
to specify designs. We have defined our own PDL to reason
about designs for SCR requirements. Our PDL was
motivated by the following factors:

e Designs should look like real programs, i.e., specify
control flow via programming language constructs
for sequence, selection, and iteration.

e Designs should capture the essence of what is
happening in the code, rather than details [8]. When
writing designs, we want to reason about require-
ments-level variables rather than implementation-
level structures.

e Finally, designs should be able to deal with sensors
and actuators of the system [54].

After a detailed design is complete and verified, it can be
further refined into an implementation.

3.1 Design Constructs
Typically, control-flow-based PDLs [9] are defined by an
outer syntax of control structures and inner syntax of other
statements. Our PDL’s outer syntax is a set of C-like
control structures. Our PDL’s inner syntax consists of
annotations—special statements describing values of re-
quirements variables. The use of annotations was inspired
by Howden’s work on QDA [38], [61].

We define four types of annotations:

e An Initial annotation indicates the starting state of
each mode class. It unconditionally assigns values to
variables. This annotation corresponds to initializa-
tion information specified in the requirements,
assigning a value to every SCR variable.’

e An Update annotation assigns values to variables,
identifying points at which the program changes its
state.

e An Assert annotation reflects a programmer’s knowl-
edge that variables have particular values in the

3. This is checked automatically by CORD.

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 5

current state. Our analysis usually gives imprecise
results because we utilize aggressive state folding.
Assert annotations reduce the amount of informa-
tion in the state to what the programmer belicves to
be true.

e A Read annotation indicates that a variable has been
assigned some input value. Given that all values are
equally possible, the semantics of Read is that the
variable receives the value corresponding to the
union of all values of its type (denoted T).

Variables in Update and Read annotations may be
combined using the & (AND) operator, indicating that all
variables receive their values at the same time. The syntax
of Assert annotations is the same as that of Update
annotations, except that variables may also be combined
using the | (OR) operator, indicating that the programmer
knows (or assumes) that at least one of the disjuncts is true.
We do not process statements other than annotations and
control flow constructs since they do not reflect changes of
values of requirements variables. To differentiate between
statements and annotations, our verification tool, CORD,
assumes that the latter start with @@. For the complete
syntax of our PDL, see [10].

Consider the following design fragment:

READ_DEVICE() ;

@@ Read PumpFail;

if (PUMP_FAIL()) {
@@ Assert PumpFail=true;
break;

}

@@ Assert PumpFail=false;

In this fragment, the function READ_DEVICEY) is called to
determine the status of a pump. The Read annotation
reflects this action for the requirement’s variable PumpFail.
The function PUMP_FAIL() determines if the value read
corresponds to the failure of the pump. In the Then clause,
we assert that the pump did fail (i.e., the value of PumpFail
is true rather than T), and exit an enclosing loop.
Otherwise, we assert that the value of PumpkFail is false
rather than T and continue processing the next statement.

3.2 How to Write Designs

Designs of programs implementing SCR requirements are
very stylized: An Initial annotation marks the starting state
and is followed by a loop in which the system reads
relevant monitors, tests their values, and then decides to
change either its mode or the values of some controlled
variables. Read annotations correspond to reading moni-
tors, Assert annotations are used to document the results of
testing predicates, and Update annotations mark changes in
the program’s state. Potentially, such designs can be
automatically generated [29].

It is often necessary to hand-optimize designs for better
performance or to reduce redundancy by “factoring out”
common actions for different states. Fig. 2 shows the result
of such an optimization for SWLMS. Here, we notice that
the pump can be turned on only when the system is in
mode Operating. So, the design has an inner WHILE loop in
which the system reads the water level and determines the

state of the pump. The system exits the loop when the
pump fails or when the switch is turned Off. Since the
SWLMS has no error recovery, transitions to mode Error are
done outside the main WHILE loop.

CORD can also be used to verify consistency of existing
programs. To do so, we can annotate existing code with
annotations corresponding to changes and tests of values of
requirements variables. We followed this approach to verify
an implementation of the Water-Level Monitoring System
(see Section 7). This approach is similar to that of QDA [36],
[38], where the code is annotated with comments specifying
user assertions (representing known information) and
hypotheses (representing information to be verified).

In annotating implementations, we inevitably run into
the problem of verifying the consistency of the require-
ments with that of the annotations rather than the source
code. If annotations are done carefully, their correctness
provides some assurance about the correctness of the source
code. However, in order to suppress diagnostic messages
from our analysis, a programmer may add or change
annotations without making corresponding changes in the
source code. Annotations and source code may also
“diverge” as modifications to the program are being made.
We have certainly noticed that ourselves: We often modify
the annotations to get CORD to give us a correct answer,
forgetting to update the source code. To remedy this
problem, we have recently implemented a tool SAC [14],
[11] that checks consistency between annotations and
source code. The programmer specifies correspondences
between annotation and code variables; these correspon-
dences are not necessarily one-to-one. We will refer to code
variables in the correspondences as relevant variables. The
tool goes through the annotated code, checking the
following four conditions:

1. Every Assert annotation corresponds to a test of the
appropriate source code variable(s).

2. Every Update/Read annotation corresponds to an
assignment of the appropriate source code variable(s).

3. Every change of a relevant source code variable
corresponds to an Update/Read annotation with the
appropriate annotation variable(s).

4. Every test of a relevant source code variable
corresponds to an Assert annotation with the
appropriate annotation variable(s).

The closer the relationship between annotation and source
code variables is to one-to-one, the less spurious warnings
SAC gives. Note that SAC does not check if variables are
assigned correct values; instead, it just checks if an assign-
ment to an appropriate variable takes place.

4 CoNsISTENCY WITH SCR REQUIREMENTS

Definition 4.1. Let a set of SCR requirements R = (B,E) be
given. A program artifact A constrained by environmental
assumptions & (called Ag) is consistent with its requirements
R if

1. Ag and B have the same starting state,

2. Ag does not implement any state transitions which are
not specified in B, and

3. Ag implements all state transitions specified in B.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

6
1: R
2: @@ Initial MC=0ff & SwitchOn=false & PumpFail=false &
TooHigh=false & ToolLow=false & PumpOn=false;
3: while(1) {
4: READ_DEVICE() ;
5: @@ Read PumpFail;
6: if (PUMP_FAIL()) {
7: Q@ Assert PumpFail=true;
8: break;
9:
10: @@ Assert PumpFail=false;
11: READ_SWITCH(Q);
12: @@ Read SwitchOn;
13: if (SWITCH_ON() && IN_OFF(System)) {
14: @@ Assert SwitchOn=true & MC=0ff;
15: 0@ Update MC=0Operating;
16:
17: else if (IN_OPERATING(System)) {
18: Q@ Assert MC=Operating;
19: while(1) {
21: READ_DEVICE();
22: @@ Read PumpFail;
23: if (PUMP_FAIL()) {
24: @@ Assert PumpFail=true;
25: break;
26: T
27: @@ Assert PumpFail=false;
28: READ_SWITCH();
29: @@ Read SwitchOn;
30: if (!SWITCH_ON()) {
31: @@ Assert SwitchOn=false;
32: @@ Update MC=0ff;
33: break;
34: ¥
35: @@ Assert SwitchOn=true;
36: GET_WATER_LEVEL (&Water); /* compute water level */
37: Q@ Read TooHigh & TooLow;
38: if (IS_HIGH(Water) || IS_LOW(Water)) {
39: @@ Assert TooHigh=true | TooLow=true;
40: TURN_PUMP (ON) ;
41: @@ Update PumpOn=true;
42:
43: else {
44: @0 Assert TooHigh=false & TooLow=false;
45: TURN_PUMP (OFF) ;
46: @@ Update PumpOn=false;
47 T
48: T
49: }
50: I
b1: @@ Assert PumpFail=true;
52:) @@ Update MC=Error & PumpOn=false;
53:

/* assume no device failures */
/* read switch monitor */

Fig. 2. Design of SWLMS.

This is a very restricted definition. Typically, artifacts are
considered consistent with requirements when they imple-
ment at least what is specified. SCR was developed to
specify high-assurance systems and was intended to
capture all allowed system behaviors. Indeed, it is clearly
a fault if an artifact implements an unspecified transition to

a state representing a failure.

SCR tables can be transformed into a list of properties
which capture this notion of consistency. To prove that an
artifact is consistent with its requirements, we demonstrate
that it is a model of all these properties. We express these
properties as first-order logic formulas.

A property capturing the first part of our definition of
consistency, the fact that requirements and design have the
same starting state, can be obtained from I. I is a
conjunction of initial conditions associated with each mode

class and controlled variable. If sy is the initial state of a
model of the design, then this property, called START, is

START = s = I.

There is one START property generated for an
SCR specification. In Section 2.1, we introduced a simple
Water-Level Monitoring System (SWLMS). For SWLMS,
the START property is

so | (MC = Off A = SwitchOn A = PumpFail A
= TooHigh A — TooLow A = PumpOn).

This property was generated from initial conditions of
Tables 1 and 2.

The remaining parts of our definition of consistency deal
with events. We use states to denote points at which
variables change values. Thus, three states need to be

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 7

@T(a) WHEN [b]

mM=m-
b=true J

a=true
a=false

mzml-

Fig. 3. Pictorial representation for a mode transition.

considered in determining if an event caused a mode
change: the state in which the variable involved in the
triggering condition had its original value, the state in
which this variable was assigned a new value, and the state
in which the mode change occurred. Generally, we might
know which value has been assigned to a variable more
exactly after this variable has been tested. For example,
consider lines 38-47 of the design in Fig. 2. The exact values
of TooHigh and TooLow, read on line 36, are not known
until the test on line 38 has been performed. In particular,
the exact values of variables are available at the arcs
emanating from the test node. As the result, we define
formulas as being true on arcs as well as in states. A
transition between modes m; and m; of modeclass m,
triggered by @QT(a) WHEN [b], is formalized as

(a = false) A (m' =m;) A (b = true)

A (d =true) A (m" =my),

where a condition represents its value on the previous edge,
a primed condition represents its value on the current edge,
and the double-primed condition represents its value in the
adjacent state. Fig. 3 gives a pictorial representation of this
semantics.

For a state n and a formula f, we use the notation n | f
to indicate that f is true in n. For a pair of states (n, s), we
use the notation (n,s) | f to indicate that f is true on an
edge between n and s. We also assume that for each state n
we have functions pred(n) and succ(n) returning a list of all
predecessor and successor states of n, respectively (this list
can be empty). We express all properties using statements
about three-state sequences (p € pred(n), n, s € succ(n)).
For example, a property “there exists a transition from m =
m; to m = m; on QT (a) WHEN [b]” is expressed as

J(p € pred(n),n, s € succ(n)), (s (m=m;))A
((n,s) E ((a= true) A (b = true)
A (m=m;))) A ((p;n) E (a = false)).

For brevity, we will write (p,n,s) to indicate (p € pred(n),
n, s € succ(n)). Properties quantified on all of (p,n,s) are
considered vacuously true when pred(n) or succ(n) are
empty. A number of properties generated from SCR have
the notion of an event in them. We say that an event QT (a),
where a is a Boolean variable, has occurred on a three-state
sequence (p,n, s), i.e., (p,n,s) F QT(a), if

((n,s) E (a=true)) A ((p,n) E (a= false)).

A set of properties capturing the second and the third
parts of our definition of consistency can be obtained by
composing rows and columns of SCR tables. We use the
SWLMS requirements to illustrate the kinds of properties
which are generated to capture our notion of consistency
with SCR requirements. For example, in SWLMS, we have a
property asserting that the only way for mode class MC to
be in mode Off in its next state is if MC is currently in Off,
or if a transition from mode Operating occurs in response to
an event @F(SwitchOn) WHEN —PumpkFail. This property
was obtained by composing the rows of the MC mode
transition table which have Off in their right columns (in
this case, only row three). We write this property as

P, =VY(p,n,s), (s E(MC = Off)) — (((n, s) E (MC = Off))
vV (((p,n, s) E QF(SwitchOn))
A ((n,s) E ((PumpFail = false) A (MC = Operating))))).

We generate properties similar to P, for each value of
controlled variables and every mode in the right columns
of mode transition tables. These properties capture the
second part of our notion of consistency and are called
“only legal transitions” (OLT) properties. OLT properties
generated from requirements of SWLMS are shown in
Fig. 4. Property P, was generated from row three of Table 1,
P, from row one, and P; from a composition of rows two
and four. Properties P, and P; were generated for the
controlled variable PumpOn from Table 2. There are two
OLT properties generated for each controlled variable,
reflecting changes of value to false (P;) and to true ().

Another property asserts that there exists a transition
from mode Off to mode Operating on an event @T(Switch-
On) WHEN [PumpFail=false]. This property corresponds to
the first row of Table 1. We express this property as

Ps =3(p,n,s), (s E (MC = Operating))
A ((p,n,s) EQT(SwitchOn)) A ((n,s) E (MC = Off)
A (PumpFail = false))).

Such properties ensure that all transitions specified in the
requirements should appear in the design, capturing the
last part of our notion of consistency. We call them “all legal
transitions” (ALT) properties. One ALT property is gener-
ated for every row of transition tables for mode classes and
controlled variables. Other ALT properties for SWLMS are
shown in Fig. 5. Properties P;-P) were generated from
Table 1 (rows 1-4, respectively). Properties Pjo-Pi5 were
generated from Table 2 (rows 1-6, respectively). Of course,
these properties mean that there may be a path to a
transition. Although we are able to find unreachable states,
we are not always able to find and eliminate infeasible
paths.

The total number of properties is proportional to the total
number of rows in SCR tables.

5 CREATING THE ABSTRACTION

We construct a Design-Flow Graph (DFG) from annotations
and control-flow information and compute an approxima-
tion of the possible system states at each node of the DFG
using data-flow analysis techniques. The DFG is abstracted
into a finite-state machine (FSM) by removing nodes that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27,

NO. 7, JULY 2001

8

P = V(p,ns), (sE= (MC=0ff)) —
V (((p,n, s) E @QI'(SwitchOn))
A(n, s) E ((Pumpliail=false) A

P, = V(p,n,s), (s = (MC=0Operating)) —
(((p,n s) E QT (SwitchOn)) A ((n,s) E

Py = V¥(pn,s), (s (MC=Error)) = (((n,s)
((p,n,s) £ QT (Pumplail)) A ((n,s) E
((p,n s) = QT (PumpFail)) A ((n,s)

P, = VY(pn,s9), (s (PumpOn=false)) — (((n,
((p, n, s) = @QF(TooHigh)) A (
((p,n,s) £ @F(ToolLow)) A s) E (
((p,n,s) E @QT(Pumplail)) A ((n s) E
((p,n s) | QT (Pumplail)) A ((n,s)

P = V¥(pn,s), (s (PumpOn=true)) — (((n,
((p, n,5) = T (TooHigh)) A ((n,) I (
((p,n,s) E QT (TooLow)) A ((n,s) E

(((n,s) | (MC=0T1f))

(MC=Operating)))))
(((n, s) E (MC=Operating)) Vv

s) E (I\/I(J—Operating))) Y
MC=Operating))) Vv

MC=Operating))) V
(MC=Operating))))

((Pumplail=false) A (MC=0fF)))))
E (MC=Error)) v
(MC=0perating))) Vv
(MC=OfT))))

5) = (PumpOn=false)) Vv

(MC=0perating))) Vv
(MC=0Mm))))
s) £ (PumpOn=true)} V

Fig. 4. OLT properties for SWLMS.

are unreachable or do not correspond to annotations that
indicate a state change. Section 6 describes how the FSM is
compared to properties generated from requirements.

nodes are reachable”). Fig. 6 depicts the steps needed to
create and check an abstraction:

During the analysis, five kinds of properties are checked: ¢ Eg:ﬁ: Zii;gg;ﬁi?;t%ggg;fjﬂ?;se:;daszlout :;
START (“starting state is correct”), OLT (“only legal generated by related variables and report any
transitions”), ALT (“all legal transitions”), ENV (“environ- violations of the assumptions caused by inconsistent
mental assumptions are preserved”), and REACH (“all annotations.

Py = 3(p,n,s), (s E (MC=Operating)) A ((p,n,s) = QT(SwitchOn)) A
((n,s) = (MC=0ff) A (PumpFail=false)))

P, = 3J(p,n,s), (s E (MC=Error)) A ({p,n,s) | QT(PumpFail)) A ((n,s) E (MC=0ff))

Py = 3p,n,s), (s E (MC=01l)) A ((p,n,s) = QF(SwitchOn)) A
((n, s) E ((MC=Operating) A (PumpFail=false)))

Py, = 3F(p,n,s), (s E MC=Error)) A ((p,n,s) F QT(PumpFail)) A
((n, s) = (MC=Operating))

Py = 3F(p,n,s), (s E (PumpOn=false)) A ((p,n,s) E @F(TooHigh)) A
((n, s) F ((MC=Operating) A (PumpOn=true)))

Pi1 = 3(p,n,s), (s E (PumpOn=false)) A ((p,n,s) E @QF(TooLow)) A
((n,s) E ((MC=Operating) A (PumpOn=true)))

Py, = 3(p,n,s), (s |E (PumpOn=false)) A ((p,n,s) = QT(PumpFail)) A
((n, s) = ((MC=O0Operating) A (PumpOn=true)))

Pis = 3F(p,n,s), (s E (PumpOn=false)) A ((p,n,s) E @T(PumpFail)) A
((n,s) F (MC=0ff) A (PumpOn=true)))

Py = 3(p,n,s), (s = (PumpOn=true)) A ((p,n,s) = QT (TooHigh)) A
((n,s) = ((MC=O0Operating) A (PumpOn=false)))

P = 3(p,n,s), (s E (PumpOn=true)) A ((p.n,s) F QT(TooLow)) A
((n, s) = ((MC=O0Operating) A (PumpOn=false)))

Fig. 5. ALT properties for SWLMS.

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 9

Detailed Design
(DD)

Compute and refine
gen and known sets
(Section 5.1.1)

—> ENV violations

Perform constant—
propagation algorithm
(Section 5.1.1

Design Flow Graph
(DFG)

Remove non-update
and unreachable nodes

(Section 5.2)

—>1 REACH violations

Finite—State Machine

(FSM)
Check starting states
(Section 6.1)
Compute transitions
(Section 6.2)

™ START violations

= ENV violations

verity OLT and ALT
OLT and ALT properties)=+ olati
(Section 6.3) violations

Fig. 6. Analysis roadmap.

e Propagate values throughout the DFG.

e Remove nodes not corresponding to Initial, Read,
and Update annotations to create a FSM. Report and
remove nodes which cannot be reached.

e Check that the initial state of the design is correct
(START property). If an error is found, stop the
processing.

e For each FSM node, compute the set of events
causing transitions from predecessor nodes and
verify OLT and ALT properties.

5.1 Design Flow Graphs

Definition 5.1. A Design-Flow Graph (DFG) is a directed
graph G = (V, E, Vi), where

e Vs a finite set of nodes corresponding to splits, joins,
and annotations of the design.

o E CV xVisa set of directed edges, s.t. (v),v3) € E
iff vy can immediately follow v, in some execution
sequence, and

o V€V isan entry node.

A state is associated with every DFG node. Each variable
in a state is associated with a set of values it may attain if
the control reaches that node.

Definition 5.2. A state at node n of a design implementing an
SCR specification R is a set of variable-value pairs
{(rj,v.,) | j € R}, where ¥ r; € R, v,, € 2700) (v, is a set
consisting of values in the domain of r;).

The values for controlled and monitored variables are {},
{true}, {false}, and {true, false}, which form a U-lattice on set-
inclusion. These values have the following meanings:

{ }. On all paths leading to this node, the value of the
variable is unknown.

{true}. On some paths leading to this node, the variable is
true. On others it may be unknown.

{false}. On some paths leading to this node, the variable is
false. On others it may be unknown.

{true, false}. On some paths the variable is true, and on
some others it is false. It may be unknown on some
paths.

The values of mode class variables also form a U-lattice on

set-inclusion.

We require that there is exactly one variable-value pair
for each variable in the requirements and, thus for a state s,
we can define a function v(r;, s) which returns the value of
rjin s:

v(rj, s) = ps.t.(rj,p) € s.

In addition, we define a function repl(r;, i, s) to replace the
current value of r; by p in s:

repl(rj, s 8) = (S \ {(7"]'7 /U(T]ﬁ S))}) U {(r.h :U‘)}7
and a special state EMPTY:
s =EMPTY =Vr; € R, v(rj,s) = {}.

Operations on states include “LJ” (union), “M” (intersection),
“=" (equality), “]|” (superset), “\” (difference) and “3”
(superset or equal to). These operations are defined in Fig. 7.
Note that we overloaded the function repl to take two states
as parameters. States form a complete U-lattice under the
partial ordering of inclusion "].

5.1.1 Computing Values of States

Our computation of states at each node of the DFG is
similar to that of constant propagation—a compiler technique
whose goal is to discover values that are constant for all
possible executions of a program and to propagate these
constant values as far forward through the program as
possible [65], [1]. For every node n in the graph, we keep the
following sets of variable-value pairs:

gen(n). Pairs with values generated in the annotation at
node n.

known(n). Pairs with values assumed by the designer at
node n.

in(n). Pairs that may exist when control reaches n.

out(n). Pairs that may exist when control leaves n.
gen and known sets for each node are computed using the
following rules:

e For nodes corresponding to Update, Read, and
Initial annotations, gen sets contain variable-value
pairs with the specified value (T for Read), and with
empty set values for all other variables.

e For nodes corresponding to Assert annotations,
known sets contain variable-value pairs with the
specified value and with empty set values for all
other variables.

e For all other nodes, gen and known sets are EMPTY.

An Assert annotation may also include a disjunction of
several clauses. For these nodes, known contains sets of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

s$s1 U 559

881 11 889 =

881\ 882

881 = 889

$51 - 589

581 _] 889

repl(ssq, ss2)

{(rjy 1) |V € Rypy = v(rj,ss1) Uo(rj, ssz)}
{("'j,,llj) | \V/rj € R, Mi = /”(r.i? 5“"1) N ’”(".7'7 “"“"2)}
i ps) | Vrs € Ropg = w(rj,ss1) \ o(rj, s82)}
Vr; € Ryv(ry, ss1) = v(r, 882)

Vr; € Ryv(rj,ss1) 2 v(ry,ss2)

(ss1 dssy) A (ss1 # ss2)

Vr; € R, il o(ry, sse) £ {}

repl(rj, v(r;, ss2), s51)

Fig. 7. Operations on system states for set-based approximation.

states, one for each clause. Operations on states are
extended in a natural way to handle sets of states. In the
examples below, we omit variable-value pairs in which the
value is {}. For an annotation @@Update MC=Operating &
PumpkFail=true,

gen = {(MC, {Operating}), (PumpFail, {true})}.

For an annotation @@Assert SwitchOn=false | PumpFail=
true,

known = {{(SwitchOn, {false})}, {(PumpFail, {true})}}.

Once the initial gen and known sets are constructed, we
use environmental assumption information (i.e., the £ part
of the SCR requirements) to make these sets more precise.
For example, environmental assumption TooLow —>>
= TooHigh is used to add information to the known set for
an annotation @@Assert TooLow=true, resulting in

known = {(TooLow, {true}), (TooHigh, {false})}.

Environmental assumptions can also be used to make sure
that contradictory variable values are not asserted. Errors
are considered violations of the ENV property. Details of
this processing are presented in [10].

The system state for each DFG node is the value we
compute for its out set. We initialize in and out sets of
every node to EMPTY and propagate information
throughout the DFG until a least fixed point is reached.
A join operator for combining information coming into
the node is U, so

in(n) = Uy, st. (k) € EOUt(k)'

A set F of transfer functions describing the transformation
between in and out sets at each node, is defined as follows:

Annotation at node n

Transfer function

Initial
Update, Read
Assert (single disjunct)

out(u) = gen(n)

(
out(n) = repl(in(n), gen(n))

out(n) = in(n) M known(n)
out(n) = in(n)

none

If the known set for a node n containing an Assert annotation
consists of several disjuncts, i.e., known(n) = {di,ds, ..., dx},
then

out(n) = Ui<i<r(in(n) Md;).

Our framework is strictly monotonic, i.e., in and out sets
at the end of each iteration of our algorithm have at least as
many values associated with each variable as at the
beginning. Since all variables in R have a finite number of
abstract values, our states do not have an infinite increasing
chain of values, and the fixed point can be achieved in a
finite number of steps. The height of the lattice of states is
the length of the longest increasing chain of values, i.e., the
maximum number of times that information for each node
can be changed before the fixed point is achieved, is

H =% er|T(r;)| + 1.

Thus, the entire computation of in and out sets for the DFG
can take at most

OV % (SrenlT(r))[+1))
steps, where |V] is the number of nodes in the DFG.

5.1.2 Example: DFG of SWLMS

Consider computing DFG for the design of SWLMS
(Fig. 2). Fig. 8 shows a fragment of this DFG correspond-
ing to lines 38-47 of the SWLMS design. gen and known
sets computed at each node are shown in bold font in this
figure; variables with values {} are omitted. The Assert on
the left branch (node 2) generates information that either
TooLow or TooHigh is true. If TooLow is true, then, via
environmental assumptions, TooHigh is false, and vice
versa. The resulting known set consists of two disjuncts,
one for each possibility. The Update on that branch
(node 3) generates the value {true} for PumpOn. The
Assert on the right branch (node 4) generates the value
{false} for TooLow and TooHigh, and the following
Update (node 5) generates the value {false} for PumpOn.
We did not include in sets in Fig. 8 because these sets are
equal to the out sets of their predecessors for nodes 2-5
and to their out sets for nodes 1 and 6. To compute out
sets, CORD uses the multiple disjunct transfer function for
Assert nodes. Each of the disjuncts of known(2) is
intersected with in(1), and the union of the results is
computed. So, the values for TooHigh and TooLow in
out(2) become {true, false}. The Update annotation
PumpOn=true (node 3) changes the value of PumpOn in
out(3) to {true}. The right branch is processed similarly. At
the join, we compute the union of the possible values for
each variable in the out sets of the predecessor nodes
(nodes 3 and 5).

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS

11

Assert TooHigh=true
| TooLows=true

out(2) = {(MC, {Operating}), (SwitchOn,

(XX}
out(1) = {(MC, {Operating}), (SwitchOn, {true,false}),
(PumpFail, {false}), (TooHigh, {true,false}),
(TooLow, {true,false}), (PumpOn, {true,false})}
1
known(2) = {{(TooHigh, {true}), TooLow, l A4 1 Kknown(d) = {(TooHigh, {false})
(TooLow, truehpy > 5 ; (TooLow, {false}}

Assert TooHigh=false

& Toolow=false |out(4) = {(MC, {Operating}), (SwitchOn,

{true,false}), (PumpFalil, {false}),
(TooHigh, {true,false}), (TooLow,
{true,false}), (PumpOn, {true,false})}

{true,false}), (PumpkFail, {false}),
(TooHigh, {false}),(TooLow, {false}),
(PumpOn, {true false})}

gen(3) = {(PumpOn, {true})}

|Update PumpOn=true

) en(5) = {(PumpOn, {false})
|Update PumpOn=false 8 { PO, { D

out(3) = {(MC, {Operating}), (SwitchOn,
{true,false}), (PumpFail, {false}),
(TooHigh, {true,false}), (TooLow,
{true,false}), (PumpOn, {true})}

out(6) = {(MC, {Operating}), (SwitchOn, {true,false}),
(PumpFail, {false}), (TooHigh, {true,false}),
(ToolLow, {true,false}), (PumpOn, {true,false})}

out(5) = {(MC, {Operating}), (SwitchOn,
{true false}), (PumpkFail, {false}),
Toong , {false}),(TooLow, {false}),
(PumpOn, {false})}

Fig. 8. A fragment of DFG of SWLMS.

5.2 Constructing a Finite-State Machine

Our DFG contains nodes which do not reflect state changes
(e.g., decision nodes, joins, and nodes containing Assert
annotations) and possibly some unreachable nodes. We
construct a Finite-State Machine (FSM) which only contains
reachable nodes representing state changes. The resulting
FSM is used as a model for verifying system properties.

Definition 5.3. A Finite-State Machine (FSM) over a program
design is a structure M = (A, S,L, N, sq), where

e Aisa set of labels,

e S=UUIURA is a finite set of nodes,

e L :S5— Aisa function associating each node with a
label,

e N C S x Sisatransition relation, where N is obtained
by connecting nodes of S, s.t., there is an Update- and
Read-clear path between them in DFG, and

e 59 € S is an entry node.

To build a FSM from a DFG, we remove all nodes except
those corresponding to Initial (1), Update (U), and Read (Rd)
annotations, and connect all predecessors of a removed
node to the node’s successors. Let S = I U U U Rd be the set
of these nodes. We assume that all variables are initialized
by an Initial annotation, so for every node, we check an
implicit property (REACH):

Vn € S(Vr; € R, v(rj,out(n)) # {}).

Note that this property could have been checked after the
DFG had been constructed. However, checking it while
building the FSM limits the reported violations to lines
containing annotations. If the REACH property is violated
in a node, an error is reported and the node is removed
from the FSM. The running time to build the FSM is
proportional to |E|, the number of edges in the DFG, and
the number of nodes in the resulting FSM is bounded above
by |S|, the number of state changes in the design.

Fig. 9 shows the FSM created for the SWLMS design in
Fig. 2 depicting out and gen sets for every node. The

number of each node of the FSM indicates the line of the
design at which the corresponding Update, Read, or Initial
annotation can be found. For example, nodes 41 and 46
correspond to @@Update PumpOn=true and @@Update
PumpOn=false, respectively. The algorithm for computing
out sets ensures that the effects of Assert annotations are
preserved in system states, even though Assert nodes
themselves are removed.

6 VERIFYING PROPERTIES

Our method for constructing finite-state abstractions pro-
duces sets of values for each program variable. Model
checkers [18] process states whose variables have scalar
values. Transforming our FSM to correspond to an
acceptable input for an existing model-checker would have
resulted in an exponential increase in the number of nodes
in the FSM. So, we developed our own technique for
verifying properties.

The semantics of an SCR event, given in Section 2.1,
indicates that some formulas need to hold on states or
edges. However, our FSM consists of just states, with in,
gen and out sets. Formally, we say that an atomic formula f
(f: variable = value) holds in a state s if f holds in out(s), i.e.,
out(s) f. Also, we say that f holds on an edge between
nodes n and s if (out(n) Min(s)) = f. By construction of the
FSM, if a formula holds on the exit from the node but does
not hold on the entrance, then it has been generated at this
node, i.e., for a node n,

(out(n) = f) A (in(n) F f) — (gen(n) F f).

We also note that an event occurs at a node if a value of
some variable on an edge entering the node is different
from its value on an edge leaving the node. Thus, the
variable is changed in the node’s gen set.

We cannot verify properties exactly, i.e., claim that a
property is violated if and only if we find a violation. So, we
have carefully designed our verification algorithms so that
the results can be correctly interpreted. Properties may be
checked optimistically or pessimistically.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

gen(2) = {(MC, {Off}), (SwitchOn, {false}), (PumpFail,
{false}), (TooHigh, {false}), (TooLow, {false}),
(PumpOn, {false})}}

out(2) = {(MC, {Off}), (SwitchOn, {false}), (PumpkFail,
{false}), (TooHigh, {false}), (TooLow, {false}),
(PumpOn, {false})}

gen(12) = {(SwitchOn, {true.false})}

out(12) = {(MC, {Operating,Off}), (SwitchOn,
{true,false}),(PumpkFail, {false}), (TooHigh,
{true,false}),(TooLow,{true.false}), (PumpOn,
{true.false})}

gen(15) = {(MC, {Operating})}

out(15) = {(MC, {Operating}), (SwitchOn,
{true}),(PumpkFail, {false}), (TooHigh, {true,
false}), (TooLow, {true.false}), (PumpOn,
{true,false})}

gen(29) = {(SwitchOn, {true.false})}

out(29) = {(MC, {Operating}), (SwitchOn, {true,
false}), (PumpFail, {false}), (TooHigh, {true.
false}), (TooLow, {true.false}), (PumpOn, {true,
false})}

een(32) = {(MC, {Off})}
out(32) = {(MC, {Off}), (SwitchOn, {false}),

(PumpkFail, {false}), (TooHigh, {true false}),
(TooLow,{true.false}), (PumpOn, {true,false})}

gen(52) = {(MC, {Error}), (PumpOn, {false})}

out(52) = {MC, {Error}), (SwitchOn, {true,false}),
(PumpFail, {true}), (TooHigh, {true.false}),
(TooLow, {true.false}), (PumpOn, {false})}

gen(5) = {(PumpFail, {truefalse})}

out(5) = {(MC, {Operating,Off}), (SwitchOn, {true.false}),
(PumpkFail, {true.false}), (TooHigh, {true.false}), (TooLow,
{true,false}), (PumpOn, {true,false})}

gen(22) = {(PumpkFail, {true.false})}

out(22) = {(MC, {Operating}), (SwitchOn, {true,
false}), (PumpkFail. {true.false}), (TooHigh, {true,
false}), (TooLow, {true,false}), (PumpOn, {true false})}

gen(37) = {(TooLow, {true,false}),(TooHigh,
{true,false})}

out(37) = {(MC, {Operating}), (SwitchOn, {true}),
(PumpFail, {false}), (TooHigh, {true,false}),
(TooLow:. {true.false}), (PumpOn, {true,false})}

gen (46) = {(PumpOn, (false})}

out(46) = {(MC, {Operating}), (SwitchOn, {true}),
(PumpkFail, {false}), (TooHigh, {false}),
(TooLow, {false}), (PumpOn, {false})}

gen (41) = {(PumpOn, {true})}
out(41) = {(MC, {Operating}), (SwitchOn, {true}),

(PumpkFail, {false}), (TooHigh, {true.false}),
(TooLow, {true,false}), (PumpOn, {true})}

Fig. 9. Finite-state abstraction.

Definition 6.1. A property is checked pessimistically if all of its
violations in the design are detected, but the analysis may
incorrectly identify violations at points in the design at which
the property actually holds. A property is checked optimisti-
cally if all detected violations are present in the design, but the
analysis may be unable to find all violations of the property.

6.1 Checking Starting States

We use exact checking so that the initial conditions of the
SCR requirements and the design are the same, i.e., an error
is reported if and only if there is a violation. By construction
of the FSM, s, the starting state, is a node corresponding to
the Initial annotation of the design. Thus, verifying the
START property reduces to checking that the variable-value
assignment of the gen set of the starting state is a model of
the requirements’ initial condition. However, if the START
property is violated, we report an error and halt the rest of
the analysis since in this case the behavior of the rest of the

system is undefined.
For example, the START property of the SWLMS is

so E (MC = Off A =SwitchOn A =PumpFail
A = TooHigh A =TooLow A =PumpOn).

In the FSM corresponding to the design of the SWLMS, s, is
node 2 (see Fig. 9). gen(2) is

{(MC, {Off}), (SwitchOn, {false}), (PumpFail, {false}), }
(TooHigh, {false}), (TooLow, {false}), (PumpOn, {false}).

So, we check that this assignment satisfies

MC = Off A =SwitchOn A =PumpFail
A —=TooHigh A =TooLow A =PumpOn,

which it does.

6.2 Computing Transitions

OLT and ALT properties involve state transitions which
occur only in response to events. Our techniques over-
estimate the number of transitions in the design, i.e., if a
transition is present in the design, we compute it, but some
of the computed transitions might not be present in the
design. Overestimation of the number of transitions occurs
from state-folding during construction of the FSM, de-
scribed in Section 5, and does not invalidate the verification
of automatically generated properties. For OLT properties,
we want to check if all transitions in the design are present
in the requirements, and overestimating the transitions
might cause the tool to report some false negatives, which is

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS

TABLE 3
Results of Analysis

13

Row Transition cxists Analysis reports
Requirements | Computation | Design | ALT properties | OLT properties

1 T T T no violation no violation
2 T T s false positive no violation
3 T F T - -

4 T F F violation no violation
5 I T T no violation violation

6 F T F no violation false negative
7 I I T - -

8 F F F no violation no violation

a correct treatment of pessimistic analysis. For
ALT properties, we want to check if all transitions in the
requirements are present in the design, and overestimating
the transitions might cause the tool to report some false
positives, which is a correct treatment of optimistic
analysis.* Table 3 summarizes our analysis. For example,
when a transition in the requirements is not implemented in
the design and is not computed by our tool (row 4), then the
tool reports a violation of a corresponding ALT property
and does not report a violation of an OLT property. Our
computation finds all transitions present in the design.
Thus, the cases described by rows 3 and 7 in Table 3 cannot
occur, so the analysis results are not defined for them.

To determine if an event occurred at a node s, we use
information generated at each predecessor node n and
check it against in(s) and the out sets of the predecessors of
n. The algorithm to compute transitions leading to a node s
is shown in Fig. 10. The output of this algorithm is a set of
transitions {(n,to, from, trigger, when)}, where

e nis a predecessor of s,

e to and from are in the form r; =4/ and r; = Ur;,
respectlvely, indicating the change of value of T
from v,, to v, for a transition between n and s,

e trigger is a logical expression—a disjunction of
simultaneously occurring triggering conditions, or
NONIE, if no events can occur, and

e when is a set of variable-value pairs indicating the
When condition for this transition. We assume that
controlled variables cannot be part of Triggering
conditions and that variables which are part of a
Triggering condition cannot be part of a correspond-
ing When condition.

In summary, the algorithm constructs transitions into
node s by joining when conditions from each node n, a
predecessor of s, with triggering conditions from the
changes between n and its predecessors. The running
time of this algorithm is

OISI* x i) e RIT(rj)| + k % (Zy, € rIT(r)])?),

4. OLT properties are “universal,” whereas ALT properties are
“existential”, and in principle can be considered to be the “dual” of the
former. Thus, if OLT properties are to be checked pessimistically,
ALT properties will be checked optimistically.

where k is the number of disjuncts in triggs. In our
experience, k < 10 and does not depend on the size of the
specification or the design. The maximum number of
transitions generated by this algorithm for node s is

Transs = O(|S| x k x S, e muc(|T(r;)])?).

The function events(r;, s1, s2) checks values of a variable 7;
in states s; and s, to determine if an event involving r; has
occurred. If s; is a node containing the Initial annotation,
events returns none(r;). “none” here is a symbolic constant
to indicate that the variable did not change its value.
Otherwise, for a Boolean r;, events(r;, s1, s2) is defined in
Table 4. Thus, for a Boolean variable r;, events returns a
disjunction of @T(r;), QF(r;) or none(r;).

For a mode class mec, events(mec,sy,ss) returns a
disjunction of all possible event combinations (conjunctions
of events which can occur simultaneously) which could
occur between the two nodes. For example, if v(mec, s1) =
{ml, m2} and v(mc, s3) = {m2, m3}, then

events(me, s1, 52) = ((Q@T(mc = m2) A QF (mec = m1))

V none(me) V (@T(mc = m3)
A@QF(mc =ml)) vV (@T(mc = m3)

A @QF (mc = m2))).

Finally, a function partof(r;, trigger) returns true if
trigger contains a conjunct corresponding to r; and false
otherwise.

In our SWLMS example, consider calculating the event
which causes MC to be set to Error at node 52 of the FSM in
Fig. 9. Fig. 11 shows a fragment of this FSM. when is out(5)
M in(52), namely,

{(SwitchOn, {true, false}), (TooHigh, {true, false}),
(TooLow, {true, false}), (MC, {Operating, Off}),
(PumpOn, {true, false}), (PumpFail, {true})}.
gen(5) (node 5 is a predecessor of 52) is (PumpkFail,
{true false}), so in order to compute triggs, we call events
for PumpFail:
triggs =

events(PumpFail, out(p), gen(5) Mwhen).
p € {2,15,22,32}

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27,

Inputs: Iinite state machine (I'SM) and
node s for which to compute the transitions.
Outputs: A set of transitions to node s. Each transition is in the form (n, to, from,
trigger, when), where n € pred(s) and to # from.
Algorithm:
all_transitions = {}
For each n € pred(s) {
/* triggs is a logical expression A, eryo Vi €zpje ™/
triggs = true
when = out(n) M in(s)
For each r; € R\ C', where v(r;, gen(n)) # {}
/¥ Controlled variables cannot be part of the triggering condition */
triggs = triggs A events(rj, Uvpepred(n)0ut(p), gen(n) M when)
/* Rewrite triggs to be in form \x A, epeapr; */
For each of the k disjuncts dj, of triggs {
Evaluate dj, interpreting none(r;) as true
If di = true, then replace dj with special value NONE
trigger[k] = di
when[k] = when
/¥ remove trigger values from WHEN condition */
For each r; € R\ C
If partof(r;, di)
when[k] = repl(r;, when[k], {})
/¥ compute to and from values for mode class and controlled variables */
For each r; € R\ M s.t. v(rj,gen(s)) #4{} {
/* remove values changed between source and destination nodes */
when[k] = repl(r;, when[k], {})
For each value; € v(rj, gen(s)) {
to = (r; = valuey) /* final value of r; */
For each value,, € v(r;, out(n) M in(s)) {
from = (r; = value,,) /* starting value of r; */
Il value; # value,, /* otherwise there is no transition */
all_transitions = all_transitions U
(n, to, from, trigger[k], when[k])

——

Fig. 10. Algorithm for computing transitions.

gen(5) M when =

the designer assumed that PumpFail is true in node 52.

Since PumpkFail

{true false} in node 22,

vp € {2,15,22,32}

NO. 7, JULY 2001

{(PumpbFail, {true})}, which indicates that The call to events yields @T(PumpFail) V none(PumpFail).

The second disjunct corresponds to paths on which

is {false} in nodes 2, 15, and 32, and PumpFail becomes true on line 22 and is set to true again

out(p) = {(PumpkFail, {true, false})}.

on line 5. The Triggering condition has two disjuncts,
@T(PumpFail) and NONE. For the event triggered by
@T(PumpFail), we replace PumpFail’s and MC’s values

with {} in when[k] (since MC is in gen(52)). On the first
iteration of the loop, to is (MC=Error) and from is

TABLE 4
Definition of events(r;, s1, s2)
o(r;, s1) \ olr, s9) {true} {lalse} {true,false}
{truc} none(r;) QF(r;) @T(r;) V none(r;)
{false} @(r;) none(r;) @b'(r;) V none(r;)
{true false} Q@QT(r;) V none(r;) QF(r;) V none(r;) QT(r;) vV @F(r;) V none(r;)

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 15

out(32) = {(MC, {Off}), (SwitchOn, {false}), (PumpFail,
{false}), (TooHigh, {true, false}), (TooLow, {true,false}),
(PumpOn, {true,false})}

out(22) = {(MC, {Operating}), (SwitchOn, {true,false}),
(PumpFail, {true,false}), (TooHigh, {true, false}),
(TooLow, {true.false}), (PumpOn, {true,false})}

out(15) = {(MC, {Operating}), (SwitchOn, {true}), (PumpFail,
{false}), (TooHigh, {true, false}), (TooLow, {true,false}),
(PumpOn, {true,false})}

out(2) = {(MC, {Off}), (SwitchOn, {false}), (PumpFail,
{false}), (TooHigh, {false}), (TooLow, {false}),
(PumpOn, {false})}

gen(5) = {(PumpkFail, {true.false})}

out(5) = {(MC, {Operating, Off}), (SwitchOn, {true,
false}), (PumpFail, {true,false}), (TooHigh, {true,false}),
(TooLow, {true.false}), (PumpOn, {true,false})}

in(52) = {(MC, {Operating,Off}), (SwitchOn, {true,false}),
(PumpFail, {true}), (TooHigh, {true,false}), (TooLow,
{true,false}), (PumpOn, {true,false})}

gen(52) = {(MC, {Error}), (PumpOn, {false})}

out(52) = {(MC, {Error}), (SwitchOn, {true,false}),
(PumpFail, {true}), (TooHigh, {true,false}), (TooLow,
{true,false}), (PumpOn, {false})}

Fig. 11. Calculating transitions for SWLMS.

(MC=0ff); on the next iteration, from becomes (MC=Oper-
ating). The result is four transitions, I;-I;, for each
combination of triggers and starting values of MC. These
transitions are shown in Fig. 12.

6.3 Checking Automatically Generated Properties

Once the FSM has been created, ALT and OLT properties
are checked in a single traversal of the FSM. Proofs of
correctness of the algorithms shown below appear in [10].

6.3.1 Verification of OLT Properties
OLT properties have the general form

P = V(p, n, 5)7 (5 ': (7' = UWLE’LL')) - (((nv S) ': (T = U’WLU))
v \/(((p7 n,s) | trcond;)

A ((n,s) E ((r = vjqa) A wheondy)))),

where vy, and vj,q are the new and the old values,
respectively, for the mode class or controlled variable 7.
trcond; and whcond; are conjuncts representing the Trigger-
ing and the When conditions of the jth row of the table
entry corresponding to a change of r;’s value from v; 4 to
Unew. OLT properties are verified pessimistically and their
violations are reported as soon as they are discovered. Since
we compute a number of transitions for a single Update or
Read annotation, we can report a number of OLT violations
for a given line in the design, as outlined by the algorithm in
Fig. 13. If Trans is the total number of transitions computed

for the FSM (Trans < Transs; x |S|), Py, the set of
OLT properties, and D, the maximum number of disjuncts
in P,;, then the running time of the algorithm is

O(|Pi| x D % % e r|T(r;)| x Trans).

We take advantage of the fact that all properties have
been generated from SCR tables and, thus, trcond; consists
of a conjunction of one or more simple Triggering
conditions (e.g., @T(a)). Our algorithm for computing
transitions also results in a conjunction of simple Triggering
conditions. To check that trigger — trcond;, we check that
each conjunct in trcond; is present in trigger.

Before checking that when C whcond;, we first represent
whcond; as a set of variable-value pairs. For example,
PumpOn = true is treated as (PumpOn, {true}), and
—(MC = Operating) means that MC can be either Off or
Error and is treated as (MC, {Off, Error}). If a variable r; €
R is not part of whcond;, then it was specified as a “don’t
care” condition in the tables. The value for this variable is
considered to be a set of all of its attainable values, i.e., it is
treated as (ry,T(r;)). One of the OLT properties for
SWLMS is

Py =

Y(p,m,s), (s E (MC = Error)) — (((n, s) E (MC = Error))
V ((p,n, s) E QT (PumpFail)) A ((n, s) E (MC=Operating)))
V ((p,n,s) E QT (PumpFail)) A ((n, s) | (MC = Off)))).

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

I Transition [rom MC=0Il to MC=Error:
@T (PumpFail) when [{(SwitchOn, {true,false}), (Toolligh, {true,falsc}),
(TooLow, {true,false}), (PumpOn, {true,false}),
(PumpFail, {}), (MC, {})}]

I Trangition from MC=01f to MC=Lrror:
NONE WHEN [{(SwitchOn, {true,false}), (TooHigh, {true,lalse}),
(TooLow, {true,falsc}), (PumpOn, {true,falsc}),
(PumpFail, {true}), (MC, {})}]

I3: Transition from MC=Operating to MC=FError:
QT (PumpFail) whoEN [{(SwitchOn, {true,false}), (TooHigh, {true,false}),
(TooLow, {true false}), (PumpOn, {true false})
(PumpFail, {}), (MC, {})}]

Iy Transition from MC=Operating to MC=Error:
NONE WHEN [{(SwitchOn, {true,false}), (TooHigh, {true,false}),
(TooLow, {true false}), (PumpOn, {true,false}),
(PumpkFail, {true}), (MC, {})}]

Fig. 12. Transitions discovered for node 52.

In this property,

r = MC

Vnew = Error

V1 0ld = Operating

V2 0ld = Off

trcond; and trconds = QT(PumpFail)

whecond; and whcond, = {(SwitchOn, {true, false}),

(TooHigh, {true, false}),
(TooLow, {true, false}),
(PumpOn, {true, false})}.

For all nodes other than 52, MC # Error, so P; holds
vacuously. The transitions generated for node 52 are I;-14,
as shown in Fig. 12. For I;, the from part is (r = vy),
trigger — trcond,, and when C whconds, SO no errors are
reported. The case for I3 is similar: the from part is
(r = v104), trigger — trcond;, and when C whcond;. The
triggers for transitions I, and I, are NONE, indicating that
no Triggering conditions were found, so CORD reports an

error message:

Algorithm:

Else {

If not found

—

Inputs: A set {F;} of OLT properties, where
P = V(p, n,s), (S ': (T‘ = vnew)) - (((n7 S)): (T‘ = Lnew))v .
V,(((p,n, s) = treond;) A ((n, s) = ((r = vj014) A wheond;)))),
Node 7 in finite state machine FSM

Outputs: Error messages indicating violations of F’s at n.

Compute a set of transitions for node n.
For each transition (p, to, from, trigger, when) s.t. to # from
If trigger is equal to NONL

Report error “no triggering conditions”

For each property P, s.t. to = (r = Upew){
[ound = lalse
For each disjunct P ;
If from = (r = v;,14) AND
trigger — trcond; AND
when L whcond;
Then found = true

report a violation of P; al node n.

Fig. 13. Algorithm for verifying OLT properties.

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 17

Then mark P,

A sel {P;} of ALT properties, where
P = 3(p,1,), (5 b= (1 = tpeu) A (5,1, 5) |- trcond)

Error messages indicating violations of P;s at n.

Inputs:
A((n, 8) E ((r = vo14) A wheond)),
Finite state machine

Outputs:

Algorithm:

Unmark all ALT properties
For each node n reachable from sy in depth-first order
Compute a sct of transitions for n.
For each transition (p, to, from, trigger, when)
If there is an unmarked property P; s.t.
(r = Vpew;) = to AND
(r = vo1q) = from AND
trcond — trigger AND
whcond C when

Report all unmarked ALT properties

Fig. 14. Algorithm for verifying ALT properties.

Error on line 52 of function main

in mode class MC:
no triggering condition for transition
from mode (s) {Operating,Off} to mode(s)
{Error}

None of the messages reported by CORD for SWLMS are
spurious, but this is not true in general. Spurious messages
come from checking that when C whcond, and often con-
stitute a fair share of all reported messages (see Section 7).

“Don’t care” conditions in SCR turned out to be ideal for
set-based approximation that we use as the basis of CORD.
Attempts to implement exact analysis—a technique that
keeps track of intervariable dependencies [10]—quickly
showed that not only does the running time of the
algorithm go from polynomial to exponential, the rate of
spurious messages does not decrease. The reason is that
many states of the system result from infeasible paths, and
the exact analysis lists every combination that is not correct,
including variables which are not relevant to a property
being verified, overwhelming the user.

6.3.2 Verification of ALT Properties
All ALT properties have the general form

P, =3 (p,n,s), (s (r=vpew)) A ((p,n,s) £ trcond)
A ((n,s) E ((r = voq) A wheond)),

where v,y and wv,., are the new and the old values,
respectively, for the mode class or controlled variable 7.
trcond and whcond are conjuncts representing the Triggering
and the When conditions for this transition. ALT properties
are verified optimistically, so we might not report all
unimplemented transitions. Once transitions are computed
for a given node, we look through the list of ALT properties
and mark those which are satisfied by this transition. Any
properties remaining unmarked at the end of analysis are
reported as errors. An algorithm to check ALT properties is
outlined in Fig. 14. For ALT properties, we translate “don’t
care” conditions in whcond to empty sets, so whcond T when
returns true if the computed When condition contains at

least the variable-value pairs specified in P,'s whcond. Our
model of SCR guarantees that there are no transitions in
which the source and the destination are the same, i.e., for
each PL‘, Unew 75 Vold-

If P,y is the set of ALT properties, then the running time
of this algorithm is

O(|Pair| x Xy, € r|T(ry)| X Trans).
Consider verifying property P; of the SWLMS:

P, =3 (p,n,s), (s = (MC = Error))
A ((p,n,s) E QT(PumpFail)) A ((n,s)E(MC = Off)).

In this property,

T = MC

Vold = Off

Unew = Error

trcond = QT(PumpFail)

whcond = {(SwitchOn, {}), (TooHigh, {}),

(TooLow, {}), (PumpOn, {})}.

Transitions generated for node 52, which is reachable from
the start state, enable the algorithm to mark P; as satisfied:
the from part of I; is MC=O0ff, the to part is MC=Error,
trcond — trigger, and whcond C when.

7 CASE STuDY

To demonstrate our analysis technique on a more realistic
application, we conducted a case study of a Water-Level
Monitoring System (WLMS) which had been specified
using SCR requirements notation and, subsequently, im-
plemented [62]. To create the design, we reverse engineered
an existing implementation of WLMS in order to determine
what types of errors can be detected with our methods.

A WLMS is a safety monitoring device which serves as
a component of a steam generator application. It ensures
that the water level is within a specified range while the
stream generator is in operation. Inside this allowable
water-level range, there is a specified hysteresis water-level

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27,

NO. 7, JULY 2001

TABLE 5
WLMS Modes
Mode Class | Mode Meaning
Normal Operating | The system is running properly.
Shutdown | The water level is out of range, and the system will be
shut down unless conditions change.
Standby The system is waiting for the operator to push a button
to select test or operating mode.
Test The system is not operating, but controlled variables are
being checked.
Failure AllIOK No device failures.
BadLevDev | The water level cannot be measured.
HardFail Unrecoverable failure.

range. The area inside the allowable water-level range but
outside the hysteresis range is used as a buffer to keep the
generator from toggling on and off when the water level is
near the limits of its allowable range. The system also
raises visual and audio alarms and shuts off its pump
when the level is out of range or when the monitoring
system fails. In addition, there are two buttons on the
system control console: the SelfTest button permits the
operator to test the system, and the Reset button permits
the operator to return the monitoring system (and the
stream generator) to normal operation, provided that the
water level is inside the hysteresis range. A complete
description of this system can be found in [62]. WLMS has
two mode classes, Normal and Failure, whose modes are
described in Table 5. The system starts in mode Standby of
mode class Normal and mode AlIOK of mode class Failure.
Monitored variables indicate the water level in the
container (both that it is within its limits and its more
stringent hysteresis range, InsideHysR —> WithinLimits),
the lengths of time that buttons have been pressed
(SlfTstPressed < SlfTstPressed500) or that the system has
been in a mode (InTest < InTest2000 < InTest4000 <
InTest14000), and device failures. Controlled variables are
set to trigger alarms and to display the water level to the
operator. A mode transition table for mode class Normal is
shown in Table 6. Environmental assumptions which
appear in this table have been deduced from descriptions
of the conditions in the requirements.

All together, the system specification consists of two
mode classes with three and four modes each, 18 monitored
and seven controlled variables. The number of potential
states for this system is

S =287 % 3 x 4 =292% x 12 = 4.026 x 10°.

To build a design, we reverse engineered an existing
implementation of the WLMS, originally consisting of
roughly 1,300 lines of FORTRAN and Assembler code.
First, we translated it into C and changed the Assembler
routines for manipulating the screen with a GUI written in
Xlib. Then, we manually reverse engineered the implemen-
tation. This process entailed determining the meaning of the
code in terms of requirements and capturing programmer
assumptions and state changes in our PDL. The resulting

design was about 300 lines long, with 45 Update, 22 Read,
and 56 Assert annotations. Out of 54 functions in the
original program, only eight had state changes and, thus,
were included into the design. The complete design can be
found in [10]. For this design, the DFG and the FSM
contained 216 and 64 states, respectively.

We ran the analysis on a SPARC 5 with 110 MHz
microSPARC II CPU and 64 megabytes of memory. The
time to analyze the design, as measured by the Unix time
command was 12.0s (real), 8.5s (user) and 1.3s (system). We
found it was necessary to rerun the analysis a number of
times before we could get the annotations right (SAC [14],
[11] did not exist yet) and, thus, a quick response was
appreciated.

After we eliminated annotation errors, CORD reported a
number of inconsistencies between the requirements and
the design (see Table 7). Messages produced by CORD are
organized in three columns: “Messages” indicates the total
number of reported messages, “Spurious Messages” in-
dicates messages that did not correspond to errors, and
“Violations” indicates the number of invalid mode transi-
tions or changes of values of controlled variables. Even after
subtracting spurious messages from all messages, the
numbers overestimate the actual errors in the design. Some
mode transitions and controlled variable value changes
resulted in a number of OLT properties violations. For
example, eight illegal mode transitions generated 15 viola-
tion messages because several illegal transitions were
detected at each location.

In this case study, all of the mode transition problems
can be attributed to four principal causes:

1. The wrong monitored variable was checked to
enable mode transitions (WithinLimits rather than
InsideHysR).

2. The times that the operator pressed the SelfTest and
Reset buttons were not calculated or checked.

3. Some events were computed several statements
before mode transitions triggered by them occurred.

4. No transitions to a mode corresponding to the
complete system failure were implemented.

Most of the illegal assignments to the controlled variables
occurred because the order of triggering events in the
design differed from that in the requirements. Finally, even

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 19
TABLE 6
Mode Transition Table for Mode Class Normal
Current | Inside Within SIfTst SIfTst In Reset Shutdown | New
Mode HysR Limits DPressed DPressed Test DPressed LockTime | Mode
500 14000 3000 200
Standby t - - - - QT - Operating
@T Test
Operating - QF f - - - - Shutdown
- - - @T - - - Test
Shutdown | @T f f Operating
f @T Standby
- - - QT - - - Test
Test - - - QT - - Standby
Initial: ~ Standby (—SIfTstPressed500 A —ResetPressed3000 A —InTest14000 A

—ShutdownLockTime200)
Assumptions:

SlfTstPressed < SlfTstPres:

InsideHysR -> WithinLimits

sed500

ResetPressed < ResetPressed3000

LDTestVal | LDO

InTest0 < InTest2000 < InTest4000 < InTest14000

though ALT properties were checked optimistically, we
found that a large portion of the specification was not
implemented. The WLMS design and the messages re-
ported by CORD are available in [10].

The case study showed that CORD can be applied to the
analysis of designs of realistic systems. It can find subtle
errors quickly and effectively, giving easy to interpret
messages. The code of WLMS has not been implemented
with as careful of a definition of events as we use in this
work. Thus, it led to several event-related errors. A more
careful way of treating events in designs can significantly
reduce the number of errors identified by CORD and lead to
better-quality programs.

8 CONCLUSION AND RELATED WORK

In this section, we describe related work and summarize the
paper.

8.1 Related Work

CORD contains features similar to those in several other

static analysis systems. To simplify the verification of
properties of programs, these systems restrict the forms of

their formal specification notations or create abstract
models from programs that could be analyzed with state-
exploration rather than theorem-proving techniques.

In Inscape [56], [57], [58], complex logical formulas are
abstracted to simple predicates which may be primitive or
defined in terms of other predicates (like our environmental
assumptions). Predicates form pre- and postconditions used
to specify implementations. A programmer constructs an
implementation with an editor that analyzes the imple-
mentation’s control flow and operation invocations to
calculate its pre- and postconditions. During the calculation,
Inscape uses pattern matching and simple deduction to
determine if the precondition of an operation has been
satisfied before its invocation. If not, unsatisfied predicates
are propagated backwards through the control-flow graph
until Inscape finds operations satisfying them. The pre-
dicates of an operation’s postconditions are propagated
forward through the graph so that they might satisfy a
subsequent operation’s precondition. To determine if an
implementation is correct, Inscape compares the calculated
and the specified conditions.

TABLE 7
Results of Analyzing the WLMS

Property T'ype Messages | Spurious Messages | Violations
REACH property 10
OLT properties for mode classes 21 6 8
OLT propertics for controlled variables 51 14 12
No events found 15
ALT properties for mode clagsses 13
ALT properties for controlled variables 21

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

LCLint [25] is a tool developed to do static checks on
C source code using LCL specifications. When no specifica-
tions are provided, LCLint behaves like lint, detecting
uninitialized variables and incorrect parameter-passing.
However, with more specifications, it is able to detect
violations of abstraction boundaries, undocumented uses of
global variables, incorrect dependencies between variables,
etc. LCLint was designed to provide “useful” information,
so some of the checks are neither sound nor complete. The
tool also has extensive facilities to control the kinds of
messages reported to the user. More recent work [24]
extends LCLint to detect a broad class of pointer-related
errors, like misuses of null pointers, uses of dead storage,
memory leaks, and dangerous aliasing. This approach takes
advantage of annotations which make certain assumptions,
like “pointer cannot have the value NULL,” explicit at
interface points.

Quick Defect Analysis (QDA) [36], [38] also uses a simple
annotation language. Annotations called hypotheses are
embedded in comments to describe properties that objects
should have at particular program points. Other comments
contain assertions about properties of objects. An inter-
preter builds an abstract model of the implementation from
the assertions and the implementation’s control flow graph.
Hypotheses are verified with respect to this model. More
recent work [37] enriches QDA’s specification language so
assertions also describe event occurrences, and hypotheses
assert that the implementation’s events occur in certain
sequences. However, QDA annotations do not correspond
to program units, like functions, loops, etc. Some do not
even describe observable properties, but rather record
intentions of the programmer about a role of a variable.
The QDA is similar to our verification of implementations,
where we annotate existing code with events corresponding
to changes and tests of values of requirements variables.
However, our approach is more formal, taking advantage of
complete system specification and being able to interpret
the results as strictly optimistic or strictly pessimistic.

The Cecil specification language permits the description
of sequencing constraints on user-definable program events
(e.g., definitions or uses of variables, operation invocations,
etc.) by anchored, quantified regular expressions (AQREs)
[50], [51], [52]. After a user specifies a mapping from
programming language constructs to Cecil events, the Cesar
analyzer uses dataflow analysis techniques to determine if
the implementation meets Cecil constraints.

Aspect’s [39], [40], [41] specification notation permits
users to write pre- and postconditions about the data
dependencies of an operation. Dataflow analysis is used to
compute an upper bound on the data dependencies of the
implementation. If an asserted dependency is missing, an
error is reported.

Clarke et al. [17] also create abstract, finite state models
of programs, and use model checking techniques to verify
formulas. Programs written in a special finite-state pro-
gramming language are translated into relational expres-
sions characterizing the program’s initial state and
transition relation. To reduce the size of the model, users
define mappings of implementation values to abstract
values and symbolically execute operations on the values.
The model checking approach is pessimistic for formulas

expressed in YCTL* [27], a subset of CTL in which only
universal path quantification is allowed. The authors also
identify a large class of temporal formulas for which the
verification results are exact, i.e., formulas hold in the
model iff they hold in the original program.

All of the methods outlined above do not assume
existence of complete specifications and, thus, can be applied
to a variety of different systems. Our method takes
advantage of a complete, fully-developed, SCR specifica-
tion. On one hand, this means that CORD can be applied
only to event-driven systems—the kinds of systems that can
be effectively specified using SCR notation. And, of course,
results of the analysis are only as good as the specification.
On the other hand, our analysis makes sure that the design
implements exactly the same transitions as specified. A
number of approaches are similar to ours by nature.
Equivalence checking in process algebras, e.g., as imple-
mented in the Concurrency Workbench [20], checks that two
levels of specifications (or a specification and an implemen-
tation) exhibit exactly the same behavior. COSPAN [44] uses
L-automata to check two levels of specifications (or a
specification and an implementation) for language contain-
ment properties. Both approaches have been used to
formally verify communication protocols and circuit de-
signs, as well as other hardware and software systems.

A group of researchers at the US Naval Research Lab
recently undertook a verification effort similar to ours [7].
The goal of this work was to use a linear-time model-
checker SPIN to check consistency of SCR requirements.
Promela (an input language for SPIN) is a C-like language
with nondeterministic guarded IF statements. Rather than
using analysis to determine when events occurred, their
implementation explicitly keeps track of previous values of
variables. Then, an event @T(a) occurs when previous
value of a is false and current value is true. This technique
allows a more natural treatment of SCR events, but does not
help in analyzing existing code.

8.2 Summary

We have defined a notion of consistency between an SCR-
style requirements document and a detailed design. We
have also presented a technique to check that this notion of
consistency is satisfied, implemented in a tool called CORD.
CORD creates a finite-state abstraction of a detailed design
and checks it against a set of properties automatically
generated from the requirements. The analysis takes a low-
degree polynomial time.

We believe that our techniques are highly-scalable and
envision CORD being used in a software development
process in which SCR specifications are first written and
checked for consistency and completeness. Then, a design
is developed using our PDL. A detailed design is
automatically verified for consistency with the require-
ments. Afterwards, a real implementation is written
around the PDL statements. Consistency checking between
code and design statements is assured through code
reviews or via an automated procedure. This process gives
a developer some assurance that the code implements the
system behavior specified in the requirements. Finally, the
implementation is thoroughly tested.

CHECHIK AND GANNON: AUTOMATIC ANALYSIS OF CONSISTENCY BETWEEN REQUIREMENTS AND DESIGNS 21

ACKNOWLEDGMENTS

The authors would like to thank Bill Pugh for finding
fundamental errors in the original version of this paper. He

proposed viewing our data-flow analysis as a constant

propagation problem, which improved the clarity of our
presentation. Connie Heitmeyer and Stuart Faulk helped us
in understanding the SCR model. Discussions with Rich
Gerber helped to shape this work. They are also very

grateful for the anonymous referees thorough readings of
previous versions of this paper. They gave many good
technical suggestions and helped improve the presentation
of this paper. This work was supported by the Air Force
Office of Scientific Research under contract F49620-93-1-
0034 and UTRS Connaught Fund award 72008220.

REFERENCES

(1]
(2]

(3]

4

(5]

(6]

(7]

(8]
[
[10]

(1]
[12]

(13]

[14]

[15]

(16]

(17]

(18]

A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools. chapter 10, Addison Wesley, 1988.

T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J.
Shore, “Software Requirements for the A-7E Aircraft,” technical
report, US Naval Research Lab., Mar. 1988.

S. Anderson and G. Bruns, “The Formalization and Analysis of a
Communications Protocols,” Formal Aspects of Computing, vol. 6,
pp. 92-112, 1994.

G. Archinoff, R. Hohendorf, A. Wassyng, B. Quigley, and M.
Borsch, “Verification of the Shutdown System Software at the
Darlington Nuclear Generation Station,” Proc. Int’l Conf. Control
and Instrumentation in Nuclear Installations, May 1990.

J. Atlee, “Automated Analysis of Software Requirements,” PhD
thesis, Univ. of Maryland, College Park, MD, Dec. 1992.

J.M. Atlee and J. Gannon, “State-Based Model Checking of Event-
Driven System Requirements,” IEEE Trans. Software Eng., pp. 22—
40, vol. 19, no. 1, Jan. 1993.

R. Bharadwaj and C. Heitmeyer, “Model Checking Complete
Requirements Specifications Using Abstraction,” |. Automated
Software Eng., vol. 6, no. 1, Jan. 1999.

F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer, pp. 10-19, Apr. 1987.

S.H. Caine and E.K. Gordon, “PDL: A Tool for Software Design,”
Proc. Nat’l Computer Conf., vol. 44, pp. 271-276, 1975.

M. Chechik, Automatic Analysis of Consistency between Requirements
and Designs, PhD thesis, Univ. of Maryland, College Park, MD,
Dec. 1996.

M. Chechik “SC(R)*: Towards Usability of Formal Methods,”
Proc. CASCON'98, pp. 177-191, Nov. 1998.

M. Chechik and J. Gannon, “Automatic Verification of Require-
ments Implementations,” Proc. 1994 Int’l Symp. Software Testing
and Analysis (ISSTA), pp. 1-14, Aug. 1994.

M. Chechik and]J. Gannon, “Automatic Analysis of Consistency
Between Implementations and Requirements: A Case Study,”
Proc. 10th Ann. Conf. Computer Assurance, pp. 123-131, June 1995.
M. Chechik and V.S. Sudha, “Checking Consistency between
Source Code and Annotations,” CSRG Technical Report 373, Dept.
of Computer Science, Univ. of Toronto, 1998.

G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian,
“Specification and Verification of the Powerscale Bus Arbitration
Protocol: An Industrial Experiment with LOTOS,” Proc. Joint Int’l
Conf. Formal Description Techniques for Distributed Systems and
Comm. Protocols, and Protocol Specification, Testing, and Verification
FORTE/PSTV 96, 1996.

E. Clarke, S. German, and X. Zhao, “Verifying the SRT Division
Algorithm Using Theorem Proving Techniques,” Proc. Eighth Int'l
Conf. Computer-Aided Verification, pp. 111-122, July 1996.

E.M. Clarke O. Grumberg, and D.E. Long, “Model Checking and
Abstraction,” IEEE Trans. Programming Languages and Systems,
vol. 19, no. 2, 1994.

E.M. Clarke, E.A. Emerson, and A.P. Sistla, “Automatic Verifica-
tion of Finite-State Concurrent Systems Using Temporal Logic
Specifications,” ACM Trans. Programming Languages and Systems,
vol. 8, no. 2, pp. 244-263, Apr. 1986.

(19]

[20]

(21]

(22]

(23]

[24]

(23]

[20]

(27]

(28]

(29]

(30]

(31]

[32]

[33]

[34]

(33]
(36]
(371

(38]

(39]

[40]

[41]

(42]

(43]

EM. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long, K.L.
McMillan, and L.A. Ness, “Verification of the Futurebus+ Cache
Coherence Protocol,” Formal Methods in System Design, vol. 6,
pp. 217-232, 1995.

R. Cleaveland,]J. Parrow, and B. Steffen, “The Concurrency
Workbench: A Semantics Based Tool for the Verification of
Concurrent Systems,” ACM Trans. Programming Languages and
Systems, vol. 15, no. 1, pp. 36-72, Jan. 1993.

P. Clements, C. Heitmeyer, B. Labaw, and A. Rose, “MT: A Toolset
for Specifying and Analyzing Real-time Systems,” Proc. Real-Time
Systems Symp., Dec. 1993.

D.L. Dill, AJ. Drexler, AJ. Hu, and C.H. Yang, “Protocol
Verification as a Hardware Design Aid,” IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors, pp. 522-525, 1992.

S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D.
Hamilton, “Experience Using Lightweight Formal Methods for
Requirements Modeling,” IEEE Trans. Software Eng., vol. 24, no. 1,
pp- 4-14, Jan. 1998.

D. Evans, “Static Detection of Dynamic Memory Errors,” Proc.
PLDI'96: SIGPLAN Conf. Programming Language Design and
Implementation, May 1996.

D. Evans,]. Guttag,]. Horning, and Y. Meng Tan, “LCLint: A Tool
for Using Specifications to Check Code,” Proc. FSE'94: Foundations
of Software Eng., 1994.

S. Faulk, “State Determination in Hard-Embedded Systems,” PhD
thesis, Univ. of North Carolina, Chapel Hill, NC, 1989.

O. Grumberg and D.E. Long, “Model Checking and Modular
Verification,” Proc. CONCUR’91: Second Int’l Conf. Concurrency
Theory, 1991.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Trauring, and M. Trakhtenbrot, “STATE-
MATE: A Working Environment for the Development of Complex
Reactive Systems,” IEEE Trans. Software Eng., vol. 16, no. 4,
pp- 403-414, Apr. 1990.

M.P.E. Heimdahl and D.J. Keenan, “Generating Code from
Hierarchical State-Based Requirements,” Proc. IEEE Int’l Symp.
Requirements Eng. (RE’97), Jan. 1997.

C. Heitmeyer, B. Labaw, and D. Kiskis, “Consistency Checking of
SCR-Style Requirements Specifications,” Proc. RE’'95 Int’l Symp.
Requirements Eng., Mar. 1995.

C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw, “Automated
Consistency Checking of Requirements Specifications,” ACM
Trans. Software Eng. and Methodology, vol. 5, no. 3, pp. 231261,
July 1996.

C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw, “SCR*: A Toolset
for Specifying and Analyzing Requirements,” Proc. 10th Ann. Conf.
Computer Assurance, pp. 109-122, June 1995.

K. Heninger, “Specifying Software Requirements for Complex
Systems: New Techniques and Their Applications,” IEEE Trans.
Software Eng., vol. 6, no. 1, pp. 2-12, Jan. 1980.

G.J. Holzmann, “Practical Methods for Formal Validation of SDL
Specifications,” Computer Comm., vol. 15, no. 2, pp. 129-134, Mar.
1992.

G. Holzmann, “Designing Executable Abstractions,” Proc. Second
Workshop Formal Methods in Software Practice, Mar. 1998.

W.E. Howden, “Comments Analysis and Programming Errors,”
IEEE Trans. Software Eng., vol. 16, no. 1, pp. 72-81, Jan. 1990.
W.E. Howden and G.M. Shi, “Linear and Structural Event
Sequence Analysis,” Proc. ISSTA’96, May 1996.

W.E. Howden and B. Wieand, “QDA—A Method for Systematic
Informal Program Analysis,” IEEE Trans. Software Eng., vol. 20,
no. 6, pp. 445462, June 1994.

D. Jackson, Aspect: A Formal Specification Language for Detecting
Bugs, PhD thesis, MIT, Cambridge, Mass., June 1992.

D. Jackson, “Abstract Analysis with Aspect,” Proc. 1993 Int’l
Symp. Software Testing and Analysis (ISSTA), pp. 19-27, June
1993.

D. Jackson, “Aspect: Detecting Bugs with Abstract Dependences,”
Trans. Software Eng. and Methodology, vol. 4, no. 2, pp. 109-145,
Apr. 1995.

D. Jackson and C.A. Damon, “Elements of Style: Analyzing a
Software Design Feature with a Counterexample Detector,” Proc.
1996 Int’l Symp. Software Testing and Analysis (ISSTA), Jan. 1996.
J. Mitchell, M. Mitchell, and U. Stern, “Automated Analysis of
Cryptographic Protocols Using Murg,” Proc. IEEE Symp. Security
and Privacy, pp. 141-151, 1997.

22

(44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

(53]

[50]
(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[00]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO.7, JULY 2001

R.P. Kurshan, Computer-Aided Verification of Coordinating Processes :
The Automata-Theoretic Approach, Princeton Series in Computer
Science, Princeton Univ. Press, 1995.

D.A. Lamb, Software Engineering: Planning for Change, Prentice-
Hall, 1988.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and].D. Reese,
“Requirements Specification for Process-Control Systems,” IEEE
Trans. Software Eng., vol. 20, no. 9, pp. 684-707, Sept. 1994.

E. Madelaine and D. Vergamini, “Specification and Verification of
a Sliding Window Protocol in LOTOS,” Proc. IFIP TC6/WG6.1
Fourth Int’l Conf. Formal Description Techniques for Distributed
Systems and Comm. Protocols, pp. 495-510, Nov. 1991.

W. Marrero, E. Clarke, and S. Jha, “Model Checking for Security
Protocols,” Proc. DIMACS Workshop Design and Formal Verification
of Security Protocols, 1997.

K.L. McMillan and J. Schwalbe, “Formal Verification of the
Gigamax Cache Consistency Protocol,” Shared Memory Multi-
processing, N. Suzuki, ed., MIT Press, 1992.

K.M. Olender and L.J. Osterweil, “Cesar: A Static Sequencing
Constraint Analyzer,” Proc. ACM SIGSOFT ’'89 Third Symp.
Software Testing, Analysis, and Verification (TAV3), pp. 6674, Dec.
1989.

K.M. Olender and L.J. Osterweil, “Cecil: A Sequencing Constraint
Language for Automatic Static Analysis Generation,” IEEE Trans.
Software Eng., vol. 16, no. 3, pp. 268-280, Mar. 1990.

K.M. Olender and L.K. Osterweil, “Interprocedural Static Analysis
of Sequencing Constraints,” ACM Trans. Software Eng. and
Methodology, vol. 1, no. 1, pp. 21-52, Jan. 1992.

S. Owre, N. Shankar, and]. Rushby, “User Guide for the PVS
Specification and Verification System(Draft),” technical report,
Computer Science Lab, SRI Int'l, Menlo Park, Calif., 1993.

D.L. Parnas and]. Madey, “Functional Documents for Computer
Systems,” Science of Computer Programming, vol. 25, pp. 41-61,
1995.

D.L. Parnas and Y. Wang, “Simulating the Behavior of Software
Modules by Trace Rewriting Systems,” IEEE Trans. Software Eng.,
vol. 20, no. 10, pp. 750-759, 1994.

D.E. Perry, “Version Control in the Inscape Environment,” Proc.
Ninth Int’l Conf. Software Eng., pp. 142-149, 1987.

D.E. Perry, “The Inscape Environment,” Proc. 11th Int’l Conf.
Software Eng., pp- 2-12, May 1989.

D.E. Perry, “The Logic of Propagation in The Inscape Environ-
ment,” Proc. Third Symp. Software Testing, Analysis, and Verification
(TAV3), pp. 114-121, Dec. 1989.

N. Shankar, “Computer-Aided Computing,” Mathematics of
Program Construction, Bernhard Moller, ed., vol. 947, pp. 50-66,
1995.

T. Sreemani and]J.M. Atlee, “Feasibility of Model Checking
Software Requirements: A Case Study,” Proc. 11th Ann. Conf.
Computer Assurance (COMPASS '96), June 1996.

C. Vail, “Program Verification via Abstraction using Incremental
Operational Specifications,” PhD thesis, Univ. of California, San
Diego, 1991.

AlJ. van Schouwen, “The A-7 Requirements Model: Re-examina-
tion for Real-Time Systems and an Application to Monitoring
Systems,” Technical Report TR-90-276, Queen’s Univ., Kingston,
Ontario, May 1990.

CJ. Walter, P. Lincoln, and N. Suri, “Formally Verified On-Line
Diagnosis,” IEEE Trans. Software Eng., vol. 23, no. 11, pp. 684-721,
Nov. 1997.

W. Chan, RJ. Anderson, P. Beame, S. Burns, F. Modugno, and D.
Notkin, “Model Checking Large Software Specifications,” IEEE
Trans. Software Eng., vol. 24, no. 7, pp. 498-520, July 1998.

M.N. Wegman and K. Zadeck, “Constant Propagation,” Optimiza-
tion in Compilers, F. Allen, B. Rosen, and K. Zadeck, eds., 1991.

J. Wing and M. Vaziri-Farahani, “Model Checking Software
Systems: A Case Study,” Proc. Third Symp. Foundations of Software
Eng., pp. 128-139, Oct. 1995.

i

Marsha Chechik received the MS (1994) and
PhD (1996) degrees in computer science from
the University of Maryland, College Park. Since
1996, she has been an assistant professor in the
Department of Computer Science at the Uni-
versity of Toronto. Her main research interests
are in the application of formal methods to
improve the quality of software. She is also
interested in requirements engineering, static
analysis and testing, and computer security. Dr.

Chechik is a member of the ACM and the IEEE Computer Society.

John Gannon (1948-1999) received the bache-
lor's and master’'s degrees from Brown Univer-
sity and the PhD degree in computer science
from the University of Toronto. He joined the
University of Maryland faculty in 1975 and
became the chairman of the Department of
Computer Science in 1995. Dr. Gannon’s
research was in the specification, analysis, and
testing of software systems. He was a member
of the editorial board of Transactions on Soft-
ware Engineering between 1992-1998. His pub-

lic service included membership on the board of directors of the
Computing Research Association, chairing the Graduate Record
Examination Board computer science committee, and serving as a
program officer with the National Science Foundation. Dr. Gannon was a
fellow of the ACM and a senior member of the IEEE.

> For further information on this or any computing topic, please
visit our Digital Library at http://computer.org/publications/dlib.

