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Abstract. In this paper, we present TLQ, a tool that finds the state solutions to
any CTL query. It extends existing approaches specialized in finding state so-
lutions to special kinds of queries, being at the same time more efficient than
general query checkers that can find all solution to any query. Its generality al-
lows its application to new problems, such as finding stable states, as required
in some applications from genetics. We describe the implementation of TLQ on
top of the model-checker NuSMV, and show its effectiveness in finding the stable
states of a gene network.

We describe our tool TLQ that applies to the analysis of state-transition models, and
can answer questions of the type: “What are the states that satisfy a property ϕ?”. We
address those cases where ϕ cannot be formulated in a temporal logic appropriate for
model checking. Instead, ϕ can be formulated as a temporal query suitable for query
checking. An example of such a property ϕ is “reachability”. We cannot formulate a
CTL property whose model-checking results in those states reachable from a given
state, but we can formulate the CTL query EF ? that literally encodes the question:
which states are reachable (from the initial state)? While most model-checkers routinely
compute reachable states, they do so by employing specialized procedures. Our tool has
been motivated by the need to answer similar questions in a more systematic way than
is currently done.

Query-checking [5] is an extension of model-checking meant to discover the prop-
erties that hold in a model, by allowing unknowns in a given formula that is checked. A
CTL query is a CTL formula with a missing propositional subformula, designated by a
placeholder (“?”). A solution to the query is any propositional formula that, when sub-
stituted for the placeholder, results in a CTL formula that holds in the model. General
query checkers find all propositional solutions of a given CTL query on a model. For
example, consider the model in Figure 1(a), where each state is labeled by the atomic
propositions that hold in it. A query AF ? on this model asks “what propositional for-
mulas eventually hold on all paths” and has solutions p ∧ ¬q ∧ r and q ∧ r. General
query checking requires a number of model-checking runs that is double-exponential in
the number of variables in the model, which is prohibitive for realistic models. For this
reason, current query checkers that find all propositional solutions are either restricted
to certain CTL formulas to be efficient (same cost as one model checking run) [5], or
unrestricted and thus inefficient [3, 6, 10].

For many applications, however, only state solutions to queries are needed. In our
example, the solution p ∧ ¬q ∧ r corresponds to the state s0 and is a state solution,
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Model Query Ours Naive

1 original EF AG ? 117 145
2 mutant 1 EF AG ? 116 144
3 mutant 2 EF AG ? 117 145
4 mutant 3 EF AG ? 117 146
5 original AG ? 116 145
6 original EF ? 118 146
7 original AF ? 117 145

Fig. 1. (a) Example state machine; (b) Experimental results.

whereas q ∧ r corresponds to a set of states {s1, s2} and neither s1 nor s2 is a solution
by itself. Finding only the state solutions is an easier problem that can be solved with a
single-exponential number of calls to a model checker. Our tool TLQ matches this com-
plexity, is fully symbolic (consists of only one model-checking run), and unrestricted in
the class of CTL queries that it handles.

Some potential applications of TLQ, beside finding reachable states, are: finding
procedure summaries, or dominators/postdominators in program analysis [11, 2, 1]. We
also show a new application coming from genetics where stable states of a gene network
are sought, which amounts to finding the state solutions to CTL query EF AG ?. We
show that TLQ solves this problem more efficiently than a naive algorithm.

Implementation. TLQ is based on the the symbolic query-checking framework de-
scribed in [9]. The tool receives as input a CTL query and a model. Assuming a model
with two variables p, q, first the ? is replaced by the expression

(p ∧ q ∧ x ∧ y)∨
(p ∧ ¬q ∧ x ∧ ¬y)∨
(¬p ∧ q ∧ ¬x ∧ y)∨
(¬p ∧ ¬q ∧ ¬x ∧ ¬y)

The resulting CTL formula is then checked with NuSMV. The output shows the set
of state solutions as a propositional formula over the variables x, y. It is easy to see
how this approach generalizes to any number of variables. For AF ? on the model in
Figure 1(a), TLQ results in x∧¬y∧z, corresponding to the only state solution p∧¬q∧r.
Variables x, y, z, . . . do not appear in the model being checked, and are “copies” of the
model variables p, q, r, . . ., respectively. More details on the theory behind TLQ can be
found in [8].

Application. We applied TLQ to finding stable states of a model, and evaluated its
performance by comparison to the naive approach to state query checking.

In a study published in plant research, a model of gene interaction has been pro-
posed to compute the “stable states” of a system of genes [7]. This work defined stable
states as reachable gene configurations that no longer change, and used discrete dy-
namical systems to find such states. A different publication, [4], advocated the use of
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Kripke structures as appropriate models of biological systems, where model checking
can answer some of the relevant questions about their behaviour. [4] also noted that
query-checking might be useful as well, but did not report any applications of this tech-
nique. Motivated by [4], we repeated the study of [7] using our state query-checking
approach.

The model of [7] consists of 15 genes, each with a “level of expression” that is either
boolean (0 or 1), or ternary (0,1, or 2). The laws of interaction among genes have been
established experimentally and are presented as logical tables. The model was translated
into a NuSMV model with 15 variables, one per gene, of which 8 are boolean and
the rest are ternary, turning the laws into NuSMV next-state relations. The model has
559,872 states and is available from www.cs.toronto.edu/˜mg/flower.smv.

The problem of finding all stable states of the model amounts to finding the state
solutions to the query EFAG ?. Performance of TLQ and its naive counterpart for
this query is summarized in the top row of the table in Figure 1(b), where the times
are reported in minutes. The naive algorithm was also implemented using NuSMV by
generating all possible states, replacing each for the placeholder in EFAG ? and calling
NuSMV to check the resulting formulas. Both algorithms were run on a Pentium 4
processor with 2.8GHz and 1 GB of RAM. Our algorithm gave an answer in under two
hours, being about 20% faster than the naive.

To have a larger basis of comparison between the two algorithms, we varied the
model (see rows 2-4), and the checked queries (see rows 5-7). Each “mutant” was ob-
tained by permanently switching a different gene off, as indicated in [7]. The perfor-
mance gain of our algorithm remained unchanged.

Conclusions. While our preliminary experiments look promising, we expect that
our tool requires additional heuristics before it can handle larger problems. One bottle-
neck of the implementation is the size of the data structures used, which is a well-known
problem with symbolic algorithms. A source of heuristics may be the particular applica-
tions of the tool. Due to its generality, TLQ can be used wherever queries can be formu-
lated whose state solutions are sufficient. Upon application, further domain knowledge
may suggest ways to improve our general algorithm for the particular queries of inter-
est. We envision TLQ being used rather as a template for the development of efficient
techniques for particular problems. The tool is still under development, but a stable
version is available upon request, as a patch to NuSMV.
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