
Noname manuscript No.
(will be inserted by the editor)

Managing Design-Time Uncertainty

Michalis Famelis · Marsha Chechik

Received: date / Accepted: date

Abstract Managing design-time uncertainty, i.e., un-

certainty that developers have about making design de-

cisions, requires creation of “uncertainty aware” soft-

ware engineering methodologies. In this paper, we pro-

pose a methodological approach for managing uncer-

tainty using partial models. To this end, we identify the

stages in the life-cycle of uncertainty-related design de-

cisions, and characterize the tasks needed to manage it.

We encode this information in the Design-Time Uncer-

tainty Management (DeTUM) model. We then use the

DeTUM model to create a coherent, tool-supported

methodology centered around partial model manage-

ment. We demonstrate the effectiveness and feasibility

of our methodology through case studies.

1 Introduction

The development of any software system entails making

decisions. However, developers often face uncertainty

about making such decisions. This form of uncertainty,

known as design-time uncertainty [?], concerns the con-

tent of a software system, and is different from un-

certainty about the environment in which the system

is meant to operate (known as environmental uncer-

tainty). In other words, it is uncertainty that the devel-

oper has about what the system should be like, rather

than about what conditions it may face during its op-

eration.
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To tackle environmental uncertainty, developers use

various strategies such as self-adaptation [?], proba-

bilistic behaviour [?], identifying and explicating opera-

tional assumptions [?], etc. These mitigation strategies

result in functional systems that can operate under un-

certain conditions. Thus, mitigating environmental un-

certainty entails creation of uncertainty-aware software.

In contrast, design-time uncertainty cannot be “coded

away” but must be taken into account in the process

by which software is created. In other words, mitigating

design-time uncertainty (henceforth, also simply “un-

certainty”) entails creation of uncertainty-aware soft-

ware development methodologies. The reason for this is

that existing software tools, languages and techniques

assume that developers are able to make all relevant

decisions, i.e., that their input does not contain any un-

certainty. This renders design-time uncertainty an un-

desirable characteristic that needs to either be avoided

or removed altogether before resuming development.

Thus, developers are forced to either refrain from

using their tools until uncertainty is resolved, or to

make provisional decisions and attempt to keep track

of them in case they need to be undone. These options

lead to either under-utilization of resources or poten-

tially costly re-engineering attempts. In previous work,

we have demonstrated that these are not the only viable

strategies. Specifically, we have shown how different al-

ternative design decisions can be encoded in a partial

model [?] which can then be used to perform tasks such

as reasoning [?], refinement [?] and transformation [?].

By implementing these techniques as partial model op-

erators in Mu-Mmint, an interactive modelling tool,

we have integrated them in a single model management

IDE [?].

This points to an alternative tool-supported approach

to managing uncertainty, centred around explicit uncer-
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Fig. 1 (a) Developing PtPP. Left: what is known, right: design decisions. (b) The Mp2p partial model. (c) Simplified state
machine metamodel.

tainty modelling. Specifically, the combination of tech-

niques for working with partial models allows deferring

the resolution of uncertainty for as long as necessary.

However, even though we have demonstrated using ex-

perimentation, benchmarking, and formal proofs that

each partial model technique is individually feasible and

practical, there is no guidance about how to use them

in a concerted and coherent way. In other words, pre-

viously published partial model techniques are point

solutions to narrowly defined problems and do not con-

stitute a coherent methodology for tackling design-time

uncertainty.

To create such a coherent methodology, we must an-

swer some fundamental questions, such as: What does

it mean to “tackle” uncertainty? How does it get added

to software artifacts? When does it get removed? The

first main contribution of this paper is thus understand-

ing the lifecycle of design-time uncertainty, presented

as the “Design-Time Uncertainty Management” (De-

TUM) model. This allows a more detailed understand-

ing of how uncertainty is manifested and manipulated

at different stages, as well as the different inputs, out-

puts, pre- and post-conditions of partial model opera-

tors. Further, the DeTUM model allows us to to con-

textualize existing partial modelling operators and iden-

tify gaps through lessons learned from non-trivial sce-

narios. Thus, the second main contribution is a con-

certed, tool-supported uncertainty-aware software de-

velopment methodology, centred on partial models. In

all, this paper makes the following contributions: (1) the

DeTUM model (2) the mapping of existing partial

model operators to the DeTUM model, (3) based on

the above, a methodology for managing design-time un-

certainty, and (4) a validation of the usability and ef-

fectiveness of the methodology based on two non-trivial

uncertainty management scenarios.

The rest of the paper is organized as follows: in Sec-

tion 2 we introduce the PtPP example to help moti-

vate and illustrate our approach. In Section 3, we de-

scribe the DeTUM model, which captures our pro-

posed methodology for managing design-time uncer-

tainty. In Section 4, we describe the various uncertainty

management operators and their role in the DeTUM

model. In Section 5, we introduce Mu-Mmint, an Eclipse-
based IDE for managing uncertainty. In Section 6, we

present two fully worked-out scenarios of uncertainty

management and reflect on the lessons learned from

the experience. We discuss related work in Section 7

and conclude the paper in Section 8.

2 Motivating Example

To illustrate and motivate our approach, we use a toy

example developed by Famelis et al. [?]. The example

uses state machines; however our approach applies to

any modelling language. In the example, an engineer-

ing team developing a protocol for peer-to-peer down-

loads, called PtPP. The team has created an initial de-

sign of the protocol, shown in Figure 1(a), expressed in

the simplified state machine metamodel in Figure 1(c).

There is a state Idle, a state Leeching (sharing and

downloading an incomplete file), and a state Seeding

(sharing a complete file). When Leeching is initiated,
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Fig. 2 (a) “Fold Single Entry Action” refactoring transformation. (b) The Mp2p model after refactoring. (c) Choosing the
“compromising” candidate solution. The elements that reify the “compromise” candidate solution to D3 are set to True and
highlighted in green. Elements reifying other candidate solutions to D3 are set to False and greyed out. Maybe elements that
are not part of D3 are unaltered.

the action start() is executed. Both Leeching and

Seeding can be cancelled to return to Idle by invoking

the action cancel(). The PtPP developers are uncer-

tain about three decisions, listed on the right of Fig-

ure 1(a): (D1) Can users initiate seeding? (D2) Can

downloads be restarted? (D3) what policy is followed

when leeching ends? The team further elicited three

candidate solutions to (D3): (a) a “benevolent” option

which automatically starts Seeding, (b) a “selfish” op-

tion described earlier, and (c) a “compromise” option

where no new connections are accepted while waiting

for existing peers to complete their copies.

The team uses a partial model, shown in Figure 1(b),

to capture the space of candidate solutions to the three

design decisions. In other words, Mp2p compactly en-

codes the set of models representing all possible ways

to resolve uncertainty. Each such model is called a con-

cretization. The full set of concretizations of Mp2p was

developed by Famelis et al. [?].

The diagram of Mp2p consists of a model expressed

in the same concrete syntax as the original PtPP model

fragment, with the addition of annotations (represented

as seven-pointed star icons) to some elements. These are

called Maybe elements and are used to explicate points

of uncertainty in the model. We use propositional vari-

ables as aliases for individual Maybe element decisions.

E.g., the transition share() between Idle and Seeding

has two seven-pointed star icons annotations, with the

variables At and Aa for the transition and its action re-

spectively. These indicate that the developer is unsure

whether to include them in the model. E.g., setting Aa

to True means that she decides to include the action

share(), False to exclude it.

The partial model has an additional propositional

May formula, shown below the diagram, which expli-

cates dependencies between points of uncertainty. E.g.,

it specifies that each transition co-occurs with its corre-

sponding action. Additionally, it specifies what are al-

lowable configurations of Maybe elements if uncertainty

is resolved. According to the solutions elicited by the

team, the May formula allows three possible solutions to

the policy about completed downloads: “benevolent”,
“selfish”, and “compromise”. As shown in Figure 1(a), a

different point of uncertainty is whether users should be

able to initiate seeding (i.e., having a transition share

from Idle). The May formula in Figure 1, expresses

the team’s decision to correlate the two points of un-

certainty, by allowing the ability to start seeding only

for the “selfish” and the “compromise” behavioural sce-

narios.

Having expressed the space of candidate designs in

a partial model, the team can now perform a variety

of engineering tasks, without needing to resolve uncer-

tainty. We outline some of them below, with references

to previous work.

Transformation. The team may choose to perform

refactoring, a common task done during development.

Various kinds of refactoring can be done via a trans-

formation [?], such as the rewriting rule “Fold Single

Entry Action” (FSEA) shown in Figure 2(a). FSEA is

expressed as a graph rewriting transformation rule [?]

using the notation of the Henshin model transformation
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engine [?]. It tries to match a State s that has only

one incoming Transition t1. The “negative applica-

tion condition” (indicated by<< forbid >>) stops the

refactoring from being applied if there exists a second

incoming Transition t2. Otherwise, it deletes Action

a1 of t1 (indicated by << delete >>) and adds a

new EntryAction with the same name (indicated by

<< create >>), associating it with s. Using trans-

formation lifting [?], FSEA can be applied directly to

Mp2p, resulting in the model shown in Figure 1(e). This

new model is the same as if each concretization of Mp2p

had been transformed separately and a new partial model

was constructed [?] from the results.

Verification. The team may decide to perform some

analysis on their model. E.g., they check a property P1:

“no two transitions enabled in the same state can lead

to the same target state”. Such checks can be done us-

ing a specialized reasoning technique [?]. The result can

be either True (“the property holds for all concretiza-

tions”), False (“it does not hold for any concretiza-

tion”), or Maybe (“it only holds for some”). For the last

two cases, it is desirable to generate a counterexample

concretization for diagnosis. Checking P1 for Mp2p re-

sults in Maybe, since the property only holds for some

concretizations but not for others. For example, there

exists a concretization with two outgoing transitions

from Leeching, with actions cancel() and completed()

respectively. There also exist concretizations that sat-

isfy the property.

Refinement. Given the verification result, the team

can ask for developer decide what to do next by gener-

ating appropriate feedback, such as a counter-example,

or creating a partial model encoding all the counter-

examples. This is a process of removing uncertainty

(i.e., concretizations) from the partial model. It can be

done declaratively, using “property-based refinement” [?],

or operationally, by manually making decisions using a

tool such as Mu-Mmint [?]. For example, the team may

choose the “compromise” candidate solution for D3, re-

sulting in the partial model shown in Figure 1(c).

While the PtPP team has such a variety of partial

modelling techniques available to them, there is little

guidance as to how to structure their different work

tasks. How should the team derive Mp2p from the infor-

mal description in Figure 1(a)? What conditions should

be in place to perform each task? For example, should

should the team have refined if there had been a differ-

ent verification result? In which order should each one

be applied? For example, can the FSEA refactoring be

done after refinement and vice versa? What are the re-

sults from doing them, i.e., what is the effect on the

overall level of uncertainty? What should the team do

if a new open design decision be encountered? These

questions are not answered by each of the techniques

individually. To answer them, we need to look at the

bigger picture, to understand what tasks are appropri-

ate at what points in the management of uncertainty.

3 Managing Uncertainty

The PtPP example already points us to a general out-

line of the “life” of a design decision about which a

development team is uncertain. The space of candidate

solutions is expanded and encoded in a partial model,

which is then used as the primary artifact of develop-

ment, until enough information is available to collapse

the space of solutions. In other words, once uncertainty

appears in the development process, a developer can at-

tempt to capture it in a partial model. Using this, she

can continue working while avoiding making decisions

that, in the absence of enough information, would be

premature. When sufficient information is available, she

can systematically refine the partial model, such that

the new information resolves the encoded uncertainty.

We call these three basic stages Articulation, Deferral,

and Resolution, respectively. Their succession follows a

decreasing degree of uncertainty. Schematically, for a

given design decision, uncertainty is introduced during

the Articulation stage; it remains stable during the De-

ferral stage, and is reduced during the Resolution stage.

We show this graphically in Figure 3, as a level of un-

certainty present in the software models plotted over

time.

In this paper, we assume that developers know what

they are uncertain about. In other words, we do not

examine the process of identifying which parts of a

software system involve significant design decisions and

what these are. E.g., the developers of PtPP know that

they need to manage the decisions D1-D3. We also as-

sume that the developers have some method of eliciting

candidate solutions about each design decision. There-

fore in the context of this paper, design-time uncer-

tainty concerns a set of possible designs. In other words,

we do not investigate the process by which developers

elicit candidate solutions for a design decision posed as

an open question. Instead, we assume that this process

has already taken place and that for each design deci-

sion we are given a finite set of possible solutions. We

also assume that the developers have concluded how

to implement each candidate solution in their models.

Partial models are then used to compactly and exactly

encode the set of candidate solutions.

We introduce an abstract model for capturing the

succession of stages of uncertainty management. This

model is called “Design-Time Uncertainty Management”

(DeTUM) model and presents an idealized timeline of
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partial model use. It is shown in Figure 4 and it consists

of the three stages: Articulation of uncertainty, Deferral

of decisions, and Resolution of uncertainty. We discuss

each one in more detail below.

Articulation stage: This stage is the entry point of un-

certainty management: a developer is uncertain about

some aspect of her model due to insufficient informa-

tion. The main goal during this stage is therefore to

change the model, so that it reflects the developer’s un-

certainty. In the PtPP scenario, this is stage when Mp2p

is created, for each of the design decisions D1-D3. This

involves eliciting a set of candidate solutions and pro-

ducing the implementation for each. In this paper, we

assume that these steps are handled by the developers

or appropriate techniques such as Design Space Explo-

ration [?,?]. During this stage, the degree of uncertainty

in the software increases as the developer encodes in a

partial model the different possible ways to resolve her

uncertainty. These are encoded as concretizations of the

partial model.

Deferral stage: In this stage, the main goal is to avoid

premature decision making, while still being able to

make use of software engineering techniques. To do that,

the developer uses the partial model as the primary de-

velopment artifact. The developer must therefore use

versions of such techniques that have been appropri-

ately lifted so that they are applicable to partial mod-

els. In PtPP, this is the stage where Mp2p is refactored

or validated. During this stage the degree of uncertainty

in the model remains unchanged. This is a fundamental

property that lifted tasks must preserve.

Resolution stage: This stage begins when more infor-

mation becomes available. The developer incorporates

this new information into the partial model in a system-

atic way. E.g., the developers of PtPP acquire new in-

formation from the validation of the property P1, which

they use to refine Mp2p. In this paper we do not address

issues stemming from randomness in the development

context that impacts the underlying assumptions of a

doWork

newInformation

moreUncertainty

newUncertainty

moreWork

Articulation

Deferral

Resolution

moreInformation

Fig. 4 The Design-Time Uncertainty Management (De-
TUM) model: an idealized timeline of uncertainty manage-
ment.

design decision and therefore the criteria for determin-

ing which solutions are acceptable candidates. Thus,

during this stage, the degree of uncertainty in the par-

tial model is reduced to reflect the newly acquired in-

formation. The ultimate result of this stage is a model

without any partiality, i.e., a concretization of the orig-

inal partial model.

The DeTUM model is an abstraction of an inher-

ently messy process. It should not be misunderstood

as a rigid prescription of a strict succession of stages,

where an initial explication of uncertainty is necessarily

followed by a series of partial models of monotonically

decreasing uncertainty that culminates in a single con-

cretization. Similarly, the plot in Figure 3 is also an

abstraction. We offer the DeTUM model as an intu-

itive description of the stages of uncertainty manage-

ment and the dependencies between them. In fact, the

stages may overlap or be used in different orders. For

example, the developers of PtPP might encounter only

the decision D1, and encode its candidate solutions in

a partial model M1; apply FSEA to get M2; encounter

decisions D2 and D3 and encode their candidate solu-

tions in M2 to create M3, etc.

The DeTUM model contains the following transi-

tions between stages of uncertainty management:

doWork (Articulation→Deferral)

Once the developer has completed expressing uncer-

tainty in her software artifacts, she can use her par-

tial models to perform software engineering tasks.

This transition is triggered once there is no more

uncertainty to express and the developer needs to

continue working. E.g., once the PtPP team has

created Mp2p they can proceed to do work such as

refactoring.

newInformation (Deferral→Resolution)

If new information becomes available, the developer

can use it to resolve all or part of her uncertainty.

This transition is triggered if the developer is in

a position to resolve some of the uncertainty and

wishes to do so. E.g., the result of checking the prop-
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erty P1 on Mp2p prompted the team to remove con-

cretizations that violate it.

moreWork (Resolution→Deferral)

If uncertainty is only partially resolved, the devel-

oper can continue performing lifted engineering tasks

while the remaining uncertainty persists. For exam-

ple, the developer may perform a verification task,

use the results to resolve some of the uncertainty,

and then continue working with refined partial model.

This transition is triggered once no more uncer-

tainty can be resolved and the developer needs to

continue working. E.g., after resolving the decision

D3 by choosing the “compromise” candidate solu-

tion, the team can continue working with the partial

model, such as doing additional verification.

newUncertainty (Deferral→Articulation)

In the course of her work with partial models, the

developer might encounter additional points of un-

certainty. For example, while already working with

a partial model, she may become uncertain about

some design decision for which there was previously

no uncertainty. This transition is triggered when the

developer faces the need to express further uncer-

tainty in her software artifacts. E.g., the after refac-

toring Mp2p, the PtPP team might notice that they

also need to address a new, open design decision

D4 “what happens if the protocol is disconnected”.

Therefore, they would need to elicit candidate solu-

tions for D4 and encode them in the partial model.

moreUncertainty (Resolution→Articulation)

The developer might need to articulate additional

uncertainty immediately following a resolution. Sim-

ilarly to the transition newUncertainty, this transi-

tion is triggered when the developer faces the need

to express further uncertainty in her software ar-

tifacts. E.g., the team might discover D4 after re-

solving the decision D3, in which case they should

skip the Deferral stage and work on encoding the

candidate solutions of D4 in Mp2p.

moreInformation (Articulation→Resolution)

The developer might acquire information that al-

lows her to resolve some uncertainty immediately

following articulation. Similarly to the transition newIn-

formation, this transition is triggered if the devel-

oper is in a position to resolve some of the uncer-

tainty and wishes to do so. E.g., after creating Mp2p,

the team might receive new requirements stating

that users should indeed always be able to initiate

seeding, thus resolving D1.

“Undo” transitions

In addition, we also allow Undo transitions between

any two stages. For example, the transition:

Undo(Resolution→Articulation)

allows the developer undo some refinement in order

to explore different alternatives, while the transi-

tion:

Undo(Articulation→Resolution)

allows the developer to revert to a previous a more

concrete version of her artifacts if she decides there

is no benefit to articulating a particular point of un-

certainty. Undo transitions are triggered whenever

the developer is not satisfied with the immediately

previous transition she took. E.g., after resolving

D3, the PtPP team might decide that the property

P1 is not that important and thus choose to undo

the refinement.

The backward links to the Articulation stage can

also be the result of eliciting possible solutions from a

previously open design decision. E.g., faced with D3,

the PtPP developers might initially be unsure about

what are candidate solutions and thus leave it open

ended. When they arrive to the three candidate solu-

tions (“selfish”, “benevolent”, and “compromise”), the

open-ended decision D3 is reduced to uncertainty about

selecting one of them. The backward transitions to the

Articulation stage, therefore allow this process of grad-

ual elicitation of specific alternatives to an open-ended

decision point.

The combination of the transitions newInformation

and moreWork captures the fact that resolution of un-

certainty is not always immediate (i.e., producing a con-

crete, non-partial model in one step) but rather that the

Deferral and Resolution stages can be interleaved. This

interleaving represents the gradual removal of uncer-

tainty. For example, the developer might apply a trans-

formation to her model, then resolve some of the uncer-
tainty, check a property, apply a second transformation,

and so on.

Finally, we note that the DeTUM model also il-

lustrates the fundamentally transient nature of partial

models: they are created when uncertainty is encoun-

tered, used as primary development artifacts in the

presence of uncertainty and are ultimately discarded,

collapsing to a single, concrete model.

4 Uncertainty Operators

In this paper, we propose an approach for managing un-

certainty in software. Our approach for managing un-

certainty in models entails doing model management [?]

of models that contain uncertainty, i.e., partial models.

The various partial model techniques are thus construed

as model management operators.

The DeTUM model identifies three distinct usage

contexts (Articulation, Deferral, Resolution) in which
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developers work with partial models. Below, we we de-

scribe the operators that pertain to each stage. The list

is not complete, however it contextualizes existing work

and identifies some obvious omissions. Each operator is

described in a table that outlines:

(a) its name,

(b) a high level description of its functionality,

(c) its inputs and outputs,

(d) a description of the setting in which it is meaningful

to invoke it,

(e) its preconditions and postconditions,

(f) its limitations in terms of effectiveness or usability,

and

(g) the section in the paper where its implementation

is described in detail.

4.1 Articulation stage

In this stage operators aim at explicating the devel-

oper’s uncertainty about some design decision. Inputs

to articulation operators are therefore inherently infor-

mal and subjective. We identify three such operators:

Construct, MakePartial, and Expand.

The operator Construct creates a partial model from

a set of concrete models, as described in Table 1.

The Construct operator assumes that the developer

has full knowledge of the set of concretizations before

invoking it. However, the articulation process can also

be manual, requiring the intuition of the developer to

appropriately capture the space of possibilities in the

partial model. This is done using the operator MakePar-

tial, described in the Appendix Table 3.

If uncertainty is encountered while the developer is

already working with a partial model, the operator Ex-

pand, described in the Appendix Table 4, allows ex-

panding the existing partial model with the new possi-

bilities.

The common characteristic of the operators of the

Articulation stage is that the size of the set of con-

cretizations increases.

4.2 Deferral stage

The aim of operators in this stage is to facilitate de-

cision deferral: if a developer can accomplish software

engineering tasks using partial models, then there is

no need to prematurely remove uncertainty. We there-

fore lift software engineering operators such they can be

used with partial models, without affecting the degree

of uncertainty. We identify two such operators: Trans-

form, and Verify.

The operator Transform, described in the Appendix

Table 5, allows developers to apply a model transfor-

mation to a partial model such that all it concretiza-

tions are correctly transformed, albeit without having

to enumerate them.

The operator Verify, described in the Appendix Ta-

ble 6, is used to determine whether a partial model

satisfies a syntactic property.

Following the verification of a property, the devel-

oper may want to perform diagnostics, to determine

the underlying reasons for the verification result. Since

diagnostic operations appropriately remove uncertainty

to illuminate parts of the set of the input partial model’s

concretizations, they are discussed in the next section.

During the deferral stage if some software engineer-

ing operation (in addition to the ones described above)

is required, then it needs to be appropriately lifted. For

arbitrary operations, correct lifting generally depends

on the semantics of the base language and is thus out-

side the scope of this paper. It is however always possi-

ble (albeit expensive) to enumerate all concretizations,

apply the non-lifted operation to each concretization

separately, and then merge the results using Construct.

We thus also introduce the operator Deconstruct, de-

scribed in the Appendix Table 7, that, given a partial

model, creates its set of concretizations. This can be ac-

complished by passing the partial model’s May formula

to an All-Solutions SAT solver [?]. All-Solutions SAT

solvers are special purpose reasoning engines that spe-

cialize in efficiently computing all satisfying valuations

of a boolean formula. Thus, the solver will enumerate

all satisfying valuations of the May formula, which can

then be translated into models [?].

Unlike operators in the Articulation and Resolution

stages, that increase and reduce the degree of uncer-

tainty in partial models respectively, operators in the

Deferral stage do not affect the degree of uncertainty.

4.3 Resolution stage

Operators at this stage incorporate new information

to a partial model, thus reducing its degree of uncer-

tainty. All the operators can produce either a new par-

tial model that refines the original, or a non-partial

model, i.e., a concretization of the original. We describe

two classes of operators for this stage. On the one hand,

the Decide and Constrain operators incorporate new in-

formation obtained by the developer. Using them, the

developer can resolve (partially or completely) the open

questions that prompted the creation of partial models

during the Articulation stage. On other hand, the di-

agnostic operators GenerateCounterExample, Genera-
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Table 1 Operator Construct

Description Create a partial model from a given set of concrete models that are alternative resolutions to uncer-
tainty.

Inputs A set of non-partial models.
Outputs A partial model.

Usage context The developer has at her disposal a known, fully enumerated set of alternative models, but has insuf-
ficient information about which of the models is best suited for her purpose.

Preconditions No partial model exists. The set of models must be known and fully enumerated.
Postconditions The resulting partial model is in Graphical Reduced Form (GRF) and its set of concretizations is

exactly the set of input models.
Limitations The developer must have the full knowledge of the input set.

Implementation The operator is described in [?] as operator “OP1: Construction”.

teExample, and GenerateDiagnosticCore produce feed-

back following an invocation of the Verify operator.

They remove uncertainty from the input partial model

in order to produce subsets of its concretizations to ap-

propriately illuminate the results of verification.

The Decide operator, described in the Appendix Ta-

ble 8, allows the developer to manually make decisions

about which elements should and should not remain in

the model. The Constrain operator, described in the

Appendix Table 9, allows narrowing the set of con-

cretizations of a partial model to a subset that satisfies

some property of interest.

We define three diagnostic operators. The operator

GenerateCounterExample, described in the Appendix

Table 10 creates a concretization that functions as a

witness as to why a partial model does not satisfy some

property of interest. The operator GenerateExample,
described in the Appendix Table 11, creates a con-

cretization that functions as a witness as to why a par-

tial model can satisfy some property of interest, depend-

ing on how uncertainty is resolved. The operator Gener-

ateDiagnosticCore, described in the Appendix Table 12,

creates a partial model that encodes the subset of con-

cretizations of the input partial model that do not sat-

isfy a property of interest. The common characteristic

of the operators of the Resolution stage is that the size

of the set of concretizations decreases.

We summarize the set of uncertainty management

operators by overlaying them on the DeTUM model in

Figure 5. Specifically, the operators Construct, MakePar-

tial, and Expand are part of the Articulation stage, the

operators Transform, Verify, and Deconstruct are part

of the Deferral stage, and the operators Decide, Con-

strain, GenerateCounterExample, GenerateExample, and

GenerateDiagnosticCore are part of the Resolution stage.

Articulation

Construct
MakePartial
Expand Deferral

Transform
Verify
Deconstruct

Resolution

Decide
Constrain
GenerateCounterExample
GenerateExample
GenerateDiagnosticCore

doWork

newInformation

undoResolution

newUncertainty

moreWork

undoUncertainty

Fig. 5 Uncertainty management operators overlayed on the
DeTUM model.

5 Tool Support

In this section, we present Mu-Mmint1, a tool that

implements management of models with uncertainty.

Mu-Mmint is an Eclipse-based tool for model man-

agement [?] of partial models. It was created as an

Integrated Development Environment (IDE) that bun-

dles various uncertainty management operators in one

coherent unit. We illustrate the main features of Mu-

Mmint using the PtPP motivating example, introduced

in Section 2.

The workspace of Mu-Mmint is an interactive meg-

amodel [?], shown in the left panel of Figure 6, which al-

lows modellers to create, manipulate and interact with

partial models using the uncertainty management op-

erations from the DeTUM model, shown in Figure 5.

Articulation stage. In Mu-Mmint, articulating uncer-

tainty is done using the MakePartial and Expand uncer-

tainty operators. We illustrate this in PtPP. Initially,

the team’s design is separated into known and unknown

parts, as shown in Figure 1(a). In Mu-Mmint, devel-

opers can explicate this information in a single partial

model Mp2p, shown in the middle and right panels of

Figure 6.

1 Available at: http://github.com/adisandro/mmint

http://github.com/adisandro/mmint
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Fig. 6 Screenshot of Mu-Mmint. Left: interactive workspace showing different versions of PtPP. Middle: Graphical partial
model Mp2p for PtPP. Model elements that reify solutions in the uncertainty tree are annotated with (M). Right: Decision
tree for Mp2p.

In Mu-Mmint, the May formula is modelled graphi-

cally using the uncertainty tree, shown in the right panel

of Figure 6. The uncertainty tree consists of a list of de-

cision elements, each of which can have any number of

children representing mutually exclusive alternative so-

lutions. For Mp2p, the tree contains the three decisions

listed in Figure 1(a). For each decision, the team expli-

cates the possible solutions. For example, the decision

about the policy when a download completes involves

selecting among three alternative solutions, described in

Section 2: “benevolent”, “selfish”, and “compromise”.

Assuming that the uncertainty tree of a given par-

tial model P has k decisions {D1, ..., Dk}, that a given

decision Px has n alternative solutions {ADx
1 , ..., ADx

n }
and that a given alternative solution ADx

y has l model

elements, the May formula φP of P is: φP =
∧k

x=1 φDx ,

where φDx
=Choose(φADx

1
, . . . , φADx

n
), where Choose is

a boolean function that returns True if exactly one of

its arguments is True. In turn φADx
y

=
∧l

z=1 uz, where

uz = ez if ez ∈ ADx
y and uz = ¬ez if ez ∈ ADx

w − ADx
y

for w 6= y and e ∈ P . An example of this construction

is given in Appendix B.2.

The middle panel shows the graphical part of the

Mp2p partial model. It consists of a diagram expressed

in the language of partialized state machines, shown in

Figure 1(c), that includes Maybe-annotated elements.

These elements reify the various alternative solutions

and are included in the final version of the model only

if their respective solution is selected. For example, the

state Finishing and its associated transitions are an-

notated with (M) and [Compromise] to indicate that

they are part of that particular solution to the policy

decision.

To further support the articulation process, Mu-

Mmint supports highlighting the elements reifying a

Fig. 7 Highlighting the elements that reify the “compro-
mise” alternative solution in Mu-Mmint.

particular solution, as shown in Figure 7. Mu-Mmint

can also highlight the alternative resolutions of a deci-
sion point, using different colours, as shown in Figure 8.

These features allow developers to quickly examine the

various possibilities in the partial model.

Deferral stage. Mu-Mmint implements the Verify op-

erator that allows users to check syntactic properties,

such as the property P2 (“no two transitions have the

same source and target”) in the PtPP example. If the

result of property checking in Maybe or False, Mu-

Mmint allows users to invoke the GenerateCounterEx-

ample operator. For example, Figure 9 shows how Mu-

Mmint generates a concretization of Mp2p that is a

counterexample for P2. Mu-Mmint contextualizes the

counterexample with respect to the original partial model

by greying out unused Maybe elements.

Mu-Mmint also implements the Transform opera-

tor, using the Henshin graph transformation language

and engine [?] to implement lifting as described by

Famelis et al. [?]. However, support for the Transform
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Fig. 8 Highlighting alternatives for the decision “What hap-
pens when a download is completed?” in Mu-Mmint. Maybe
elements realizing the “benevolent” scenario are coloured in
blue, those realizing the “selfish” scenario – in green, and
those realizing the “compromise” scenario – in red.

Fig. 9 Visualizing a counterexample to property P2 in Mu-
Mmint.

operator in Mu-Mmint is limited, due to the limited

expressiveness of the uncertainty tree. Specifically, lifted

transformations do not necessarily produce partial mod-

els whose May formulas are expressible as uncertainty

trees. Therefore in Mu-Mmint, the May formula of par-

tial models created as output by lifted transformations

is not shown to users graphically. Instead, it is stored as

a raw SMT-LIB [?] string in the workspace megamodel.

Resolution stage. In addition to the diagnostic oper-

ator GenerateCounterExample described in the previ-

ous paragraph, Mu-Mmint implements the Decide and

Constrain operators.

Modellers can invoke the Constrain operator to re-

strict the possible concretizations of the partial model

by enforcing a property of interest thus eliminating

some design alternatives. Mu-Mmint then puts the

partial model in Propositional Reduced Form (PRF),

automatically recalculating the uncertainty tree and up-

dating the diagrammatic part of the partial model.

Once the modeller has enough information to make

a decision, she can invoke the Decide operator by select-

ing the desired alternative solution in the uncertainty

tree. Specifically, Maybe elements that reify her cho-

sen solution are kept, and turned into regular model

elements, while Maybe elements reifying alternative so-

lutions are removed from the model. Additionally, Mu-

Mmint removes the resolved decision from the uncer-

tainty tree.

Mu-Mmint also maintains full traceability between

different versions of the partial model in its workspace,

as shown in the left panel in Figure 6. This allows mod-

ellers to easily undo uncertainty resolutions in case they

want to revisit certain design decisions (cf. the transi-

tion undoResolution in the DeTUM model).

Mu-Mmint was developed in Java by extending

MMINT, an interactive environment for model man-

agement [?] developed at the University of Toronto [?].

MMINT consists of 140 KLOC, 80% of which is au-

tomatically generated. Mu-Mmint is implemented by

an additional 10 KLOC, 60% of which is generated.

MMINT uses the Eclipse Modelling Framework (EMF)

[?] to express models and the Eclipse Graphical mod-

elling Framework (GMF) [?] for creating graphical ed-

itors. Mu-Mmint extends MMINT’s data model with

EMF structures for uncertainty-related constructs. It

also hooks specialized GMF diagram elements and views

to represent partial models. Mu-Mmint uses the Z3

SMT solver [?] for performing reasoning tasks, and adapts

parts of the Henshin [?] engine for lifted graph trans-

formations.

The main limitation of Mu-Mmint is the expres-

siveness of the visual syntax used to represent uncer-

tainty in partial models. Our original intent was to re-

alize the MAV-Vis graphical syntax [?] which we cre-

ated for design-time uncertainty using the theory of vi-

sual notations developed by D. Moody [?]. This was

not possible because of our reliance on GMF. While

GMF allows easy integration of existing model editors

to Mu-Mmint, it only supports a limited visual vo-

cabulary. To overcome this, we introduced the concept

of the uncertainty tree, as shown in the right panel of

Figure 6. This approach attempts to ameliorate the lim-

itations of GMF by using a separate dialog, exclusively

dedicated to modelling uncertainty at a higher level of

abstraction. This idea followed from a preliminary em-
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pirical study with human participants [?] that pointed

us to the need to elevate decisions and alternative so-

lutions to first class concepts in partial modelling. The

uncertainty tree approach is less expressive than the

fully fledged propositional logic, which results in prob-

lems in supporting the Transform operator. However,

since it has been shown that humans can graphically

create and manipulate many useful formulas [?], this

represents a trade-off between usability and expressive

power. Resolving this trade-off is ultimately dependent

on the usage-specific requirements of the context in

which Mu-Mmint is deployed.

6 Evaluation

To evaluate and further illustrate our approach, we

present two non-trivial worked examples. We recreate

two realistic uncertainty management scenarios using

non-trivial, publicly available modelling artifacts. Each

worked example is elaborated using the Mu-Mmint im-

plementation of the DeTUM model. At the end of each

one, we discuss the main lessons learned, with pointers

to future work.

6.1 UMLet Bug #10

On March 8th, 2011, a software developer under the

alias “AFDiaX” submitted a bug report to the issue

tracker of UMLet, an open source Java-based UML

drawing tool [?]. The bug report, originally posted on

Google Code and since migrated to GitHub as Bug #102,

stated:

copied items should have a higher z-order priority

What steps will reproduce the problem?
1. Copy an item (per double-click)
2. Click on the area where the original

and the copy are overlapping
3. Move the mouse

What is the expected output? What do you see instead?
Expected: The new copy should be moved
Instead: The original item is moved

Type-Enhancement Component-UI OpSys-All
Priority-Low Usability

That is, if the user copies and then pastes an item

within the editor at a location where it overlaps with

other existing items, the system does not recognize it

as the topmost item, i.e., it does not give it “z-order

priority”.

In this section, we use this real world bug to il-

lustrate explicit uncertainty management. Specificially,

we create a fictional but realistic scenario in which the

2 Bug #10: https://github.com/umlet/umlet/issues/10,
URL accessed on 2015-10-22.

maintainer of UMLet attempts to create a fix for bug

#10. In our scenario, the maintainer is a practitioner

of model-driven software development that uses models

as the main artifact for development, relying on code

generation to derive the Java implementation.

In order to fix the bug, the maintainer modifies the

UML Sequence Diagram modelling the behaviour of the

system. However, soon after she realizes that her fix cre-

ated additional problems because she modified the se-

quence diagram without properly synchronizing it with

the structural aspects (e.g., classes) of the system. This

causes her model to violate certain constraints required

by the code generator. In order to resolve these con-

straint violations, she uses an automated technique that

generates alternative model repairs [?].

In our scenario, uncertainty arises when the main-

tainer is unsure about which of these subsequent repairs

to choose because their relative merits are unclear. She

would thus like to reason with the set of alternative

repairs to help her make the choice and possibly even

defer the decision until more information is available. In

the rest of this section, we show how uncertainty man-

agement can be deployed to help the maintainer, illus-

trating the use of partial modelling techniques through-

out the different stages of the DeTUM model.

Description of bug #10 and the maintainer’s bug fix.

In the version of UMLet that was current at the time

that the bug was reported3, the paste functionality was

implemented by instantiating the class Paste and in-

voking its execute operation. Figure 10 shows a frag-

ment of the sequence diagram, generated from the code

using the Borland TogetherJ tool4. The fragment shows

execute with the circled portion representing the fic-

tional bug fix that the maintainer creates.

Although UMLet has 214 classes in total, we re-

strict ourselves to a slice that is relevant to the Paste

class consisting of 6 classes (in addition to Java library

classes). These have a total of 44 operations, out of

which 13 are invoked in Paste. The relevant slice of the

UMLet model is captured by model K0, shown in the

Appendix Figure 14. K0 consists of 63 EMF [?] model

elements, out of which 43 are EMF references.

In Figure 10, the for loop statement block iterates

through every item in the clipboard, indexed by vari-

able e. First, each item’s (x, y) coordinates in the editor

window are identified (messages 1.36-1.38). The item is

3 Revision 59 on Google Code, since then migrated to
GitHub and available at: https://github.com/umlet/umlet/
commit/f708f57a1fbf98b3b083e583761e9887ea717ef3, URL
accessed on 2015-10-22.
4 http://www.borland.com/us/products/together/, URL

accessed 2011-09-30

https://github.com/umlet/umlet/issues/10
https://github.com/umlet/umlet/commit/f708f57a1fbf98b3b083e583761e9887ea717ef3
https://github.com/umlet/umlet/commit/f708f57a1fbf98b3b083e583761e9887ea717ef3
http://www.borland.com/us/products/together/
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self e:GridElement 

elem:AddElement 

pnl:DrawPanel 

positioner 

1:execute(handler) 

1.36:getX() 

1.38:getY() 

1.37:* 

1.39:* 

1.40:AddElement(e,x,y,zoom) 

1.41:execute(handler) 

1.42:new 

1.43:moveToTop(self, e) 

1.44:setComponentZOrder(e,0) 

handler:DiagramHandler 

for 
*GridElement e:this.entities+ 

sd: Paste.execute 

Fig. 10 Sequence diagram fragment of the UMLet paste
function, depicting the execute operation. The maintainer’s
fix for bug #10 is encircled by a dashed line.

then added as an element to the editor window, repre-

sented by the object pnl, at the coordinates (x, y) of

the drawing plane (messages 1.40-1.41).

The bug is caused because when an item is added

to a DrawPanel, its order in the stack of other items

at position (x, y), i.e., its “z-order”, is not set to 0 by

default. In our scenario, the maintainer fixes the bug by

creating a transient object positioner (message 1.42).

The positioner has a method moveToTop(e) that is

invoked to place the item on top of others, using the li-

brary operation setComponentZOrder from the Swing

graphical framework (messages 1.43-1.44). In the dia-

gram, the bug fix is shown encircled by a dashed line.

6.1.1 Articulation stage

The fix to bug #10 created by the maintainer is con-

ceptually correct but it violates two consistency rules,

defined by Van Der Straeten et al. [?], that are required

for code generation:

– ClasslessInstance: Every object must have a class.

– DanglingOperation: The operation used by a mes-

sage in a sequence diagram must be an operation of

the class of the receiving object.

In the maintainer’s bug fix, shown in Figure 10, the

positioner object violates ClasslessInstance because

it is not associated with any class. Additionally, the

message 1.43 in which the operation moveToTop is in-

voked violates DanglingOperation because it is not

in positioner’s class (since positioner has no class).

In order to resolve these consistency violations, the

maintainer uses an automated technique that generates

alternative model repairs [?]. The technique proposes

the following repair strategies for ClasslessInstance:

– RC1: Remove the object.

– RC2(obj): Replace the object with an existing ob-

ject obj that has a class.

– RC3(cls): Assign the object to the existing class

cls.

– RC4: Assign the object to a new class.

For DanglingOperation, it proposes the following re-

pair strategies:

– RD1: Put the operation into the receiving object’s

class.

– RD2(op): Change the operation to the operation op

that is already in the receiving object’s class.

– RD3: Remove the message.

Since the strategy RC1 deletes the object it can only

be combined with the strategy RD3, that also deletes

the message.

Applying these repair strategies to UMLet results

in a set of alternative repairs. Specifically:

– The object positioner can be removed (RC1), can

be replaced by one of the 5 existing objects (RC2),

can be designated as a separate instance of one of

the existing 5 classes (RC3), or can be an instance

of an altogether new class (RC4).

– The operation moveToTop can be removed (RD3),

or if positioner is assigned a class, it can be either

added it it (RD1) or it can be swapped for one of

the existing 10 operations, depending on which class

positioner was assigned to (RD2).

In total, there are 44 possible valid repair combinations,

listed in the Appendix Table 13.

Using this list, the maintainer is able to express her
uncertainty using the Articulation operator MakePar-

tial. Specifically, she uses Mu-Mmint to edit the UM-

Let model K0 and create a partial model K1. The di-

agram of K1 is shown in the Appendix Figure 15 and

consists of 115 EMF model elements, 52 of which are

annotated with Maybe. In K1 all the model elements of

the maintainer’s fix (shown encircled by a dashed line

in Figure 10) become Maybe since they are present in

some alternatives and absent in others. The May for-

mula of K1 is modelled as an uncertainty tree two de-

cision points, one for each consistency constraint, that

have four and three alternative solutions respectively,

as described earlier. As a result, K1 has 44 concretiza-

tions, each corresponding to a valid repair combination.

6.1.2 Deferral stage

Having constructed the partial model K1, the main-

tainer can defer the selection of one of the possible bug

fixes until she has sufficient information about them.
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In the meantime, she is able to perform other tasks,

without having to artificially remove uncertainty. In our

scenario, the maintainer wishes to reassure the users of

UMLet that the changes introduced by her bug fix do

not affect existing functionality. In particular, she fo-

cuses on the behaviour of the Paste command, wishing

to show that the property U1 holds, regardless of the

details about how bug #10 was fixed:

U1: Whenever an item is pasted, a new item is created

in the editor window.

For her model to satisfy property U1, it must have:

(a) the message paste from the Paste class to the

ClipBoard class to obtain the pasted GridElement e,

(b) the message cloneFromMe to e in order to create a

new GridElement copy to be pasted, and finally (c) the

instantiation of a new AddElement command object to

add the item to the editor window. The maintainer uses

the operator Verify to show that this is the case. To do

this, she first encodes the property U1 in logic, cre-

ating the formula φU1. The grounded version of φU1,

expressed in SMT-LIB [?] is shown in the Appendix

Figure 18. She then invokes the Verify operator with

K1 and φU1 as inputs. In Mu-Mmint, the invocation

of Verify follows a specialized decision procedure for

the verification of properties of partial models [?], us-

ing the encoding shown in the Appendix Figure 17 and

the Z3 SMT solver [?]. In our scenario, the Verify oper-

ator returns True, indicating that all concretizations of

K1 satisfy the property. This is reasonable, since neither

the bug fix, nor the automatically generated consistency

repairs affected that part of the model.

Since checking property U1 yielded True, the main-

tainer is able to reassure her users that the alternative

bug fixes do not break the paste functionality. Having

determined that U1 is not a factor in deciding how to

resolve uncertainty, she now returns her attention to

the property U2:

U2: Each item that is pasted from the clipboard must

have z-order=0.

It was the violation of this property that originally

caused bug #10.

In her model, ensuring that pasted elements are

assigned the correct z-order is done by invoking the

method setComponentZOrder of the class DrawPanel

with the item e and the z-order 0 as parameters. Again,

the maintainer invokes the operator Verify to check that

this is the case. She encodes U2 in logic, creating the

formula φU2, the grounded version of which is shown in

the Appendix Figure 16. In this case the operator Ver-

ify yields the result Maybe, indicating that some but

not all of the concretizations satisfy the property.

6.1.3 Resolution stage

The maintainer is alarmed by the verification result

since it indicates that not all concretizations of K1 ac-

tually fix bug #10. To understand why that is the case,

she uses the operator GenerateCounterExample with

K1 and U2 as inputs. The operator finds the concretiza-

tion K2, shown in the Appendix Figure 19, which is the

result of applying the consistency repairs RC1 and RD3,

i.e., deleting the model elements the maintainer added

to K0 to fix the bug in the first place.

To ensure that bug #10 is fixed, the maintainer

must refine her partial model, i.e., reduce its set of con-

cretizations to the subset that satisfies U2. To accom-

plish this she invokes the operator Constrain with K1

and U2 as inputs. In the resulting partial model K3, the

diagram of which is shown in the Appendix Figure 20,

the positioner, as well as the messages moveToTop,

setComponentZOrder, and new (which instantiates the

positioner) are no longer annotated with Maybe. This

means that they must exist in each concretization of

K3. However, all the edges that have one of these el-

ements as their source are annotated with Maybe. For

example, the positioner object has 6 outgoing class

reference edges, all of which are annotated with Maybe.
This is because the decision about what class this ob-

ject is an instance of has yet to be made. The allowable

combinations of Maybe elements are captured in the

May formula φK3. Specifically, φK3 encodes the repair

combinations 2 through 44 from the Appendix Table 13.

At this point, the maintainer has created a partial

model that encodes a set of possible models, all of which

are both valid fixes to bug #10 and consistent with

the constraints imposed by the code generator. She can

choose to again defer making a decision, thus entering a

second Deferral stage, or to further resolve uncertainty

if she feels she has adequate information to do so. In

our scenario, she chooses the combination of repair op-

tions RC4, RD2, which assigns positioner to a new

class NewClass that also has the method moveToTop.

To accomplish this, she invokes the operator Decide,

thus creating the concrete model K4, shown in the Ap-

pendix Figure 21.

6.1.4 Summary and lessons learned

Summary. We summarize the UMLet example in Fig-

ure 11, which superimposes the models and invocations

of uncertainty management operators in the scenario

over the DeTUM model.

At the start of the scenario, the maintainer of UM-

Let received a bug report saying that pasted elements in

the UMLet editor do not have the correct z-order. To
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doWork

newInformation

Articulation

MakePartial

K1

Deferral

K1

Verify(U1)
True

Verify(U2)
Maybe

Resolution

K1

GenerateCounterExample(U2)

K2

Constrain(U2)

K3

Decide

K4

K0

Fig. 11 Overview of the UMLet example, superimposed over the DeTUM model.

fix the bug, she identified a slice of UMLet that con-

tained the bug, represented by the model K0. In fixing

the bug, she realized that her changes caused two con-

sistency constraints required by the code generator to

be violated. She used an automated technique for gen-

erating repairs to these constraints, which resulted in

a set of 44 alternative ways to fix the bug. Not hav-

ing enough information to choose between them, she

entered the uncertainty Articulation stage and created

the partial model K1 using the operator MakePartial

on K0. Having expressed her uncertainty, she entered

the Deferral stage, where she used the Verify operator

to check properties of her partial model.

In the process, she found out that K1 contained con-

cretizations which did not really fix the original bug.

She proceeded to remove them from her model, thus

entering the Resolution stage. She used the Generate-

CounterExample operator to diagnose why some of the
concretizations were not valid fixes. The counterexam-

ple K2 showed her that a particular combination of

strategies to repair the consistency violations effectively

undid her original repair. To address this, she used the

operator Constrain to remove the offending concretiza-

tions, thus creating the partial model K3 that only con-

tained valid fixes. Finally, she chose a particular com-

bination of consistency repairs and used the Decide op-

erator to resolve all uncertainty in her models, creating

the model K4.

Lessons learned. The UMLet example allowed us to

work a realistic, non-trivial example through the stages

of the DeTUM model. Two main lessons emerged:

1. Articulation of uncertainty requires additional au-

tomated support. During the Articulation stage, we

had to express a large combination of possible re-

pairs as a partial model. Even with the tooling sup-

port provided by Mu-Mmint, the manual construc-

tion of the partial model K1 using the MakePartial

operator was tedious and error-prone. In order for

the effort expended in constructing a partial model

to be outweighed by the benefits, we need to cre-

ate additional automated support. This could be

achieved using techniques such as Design Space Ex-

ploration [?], by integrating partial modelling into

sketching tools [?,?], or by mining the social context

of development, such as online discussions between

developers [?].

2. Rigid separation of verification from diagnostic op-

erators is counter-intuitive. In the DeTUM model,

the Verify operator is placed in the Deferral stage,

whereas diagnostic operators, such as GenerateCoun-

terExample, are placed in the Resolution stage. There

are good reasons for this: during Resolution uncer-

tainty is reduced, whereas during Deferral its level

remains constant. However, since in practice veri-

fication and diagnosis are closely intertwined, it is

important to emphasize that the transition between

of stages is not as rigid, even when taking into ac-

count the backward transitions in Figure 4.

6.2 Petri Net Metamodel

In this section, we take the view of a toolsmith who

is tasked with creating a fictional tool, called Con-

cMod, for modelling concurrent systems. ConcMod

uses Petri nets (PTNs), a powerful formalism used widely

in this domain, first introduced by Carl Petri in 1962 [?].

A succinct description of PTNs is given by Jensen and

Kristensen [?]:

“A Petri net in its basic form is called a place

/ transition net, or PTN, and is a directed bi-

partite graph with nodes consisting of places (drawn

as ellipses) and transitions (drawn as rectangles).
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Fig. 12 Example Petri net token game. Left: Transition t1 is enabled. Right: the Petri net after firing t1.

The state of a Petri net is called a marking and

consists of a distribution of tokens (drawn as

black dots) positioned on the places. The execu-

tion of a Petri net (also called the “token game”)

consists of occurrences of enabled transitions re-

moving tokens from input places and adding to-

kens to output places, as described by integer

arc weights, thereby changing the current state

(marking) of the Petri net. An abundance of

structural analysis methods (such as invariants

and net reductions), as well as dynamic analysis

methods (such as state spaces and coverability

graphs), exist for Petri nets.”

An example PTN, consisting of two Place s and

one Transition is shown in Figure 12. In the origi-

nal marking, shown on the left, the Place p1 contains

one Token. The Transition t1 has a single incoming

arc, and since that arc has weight 1, and p1 has one

Token, t1 is enabled. When t1 fires, the Petri net gets

the marking shown on the right. In this new state, the

Token in p1 has been consumed and because t1 has a

single outgoing arc with weight 1, a single token has

been produced in Place p2. Since p1 is empty, t1 is no

longer enabled.

In our scenario, we assume that during the initial

design phase of the ConcMod project, the toolsmith

wants to create a metamodel for representing PTNs

such as the one shown in Figure 12. In this section, we

use the development of this metemodel as an example

for explicit uncertainty management.

6.2.1 Base PTN metamodel

Articulation stage. In order to avoid re-inventing a PTN

metamodel from scratch, the toolsmith consults a pub-

lic metamodel repository called Atlantic Metamodel Zoo

(AMZ) [?]. In AMZ, she discovers eight different PTN

metamodels.5 While all metamodels have some basic

PTN concepts in common, such as meta-classes for Place

s and Transition s, they are different in a few signifi-

cant ways. By inspecting the metamodels, the toolsmith

5 Atlantic Metamodel Zoo: http://www.emn.fr/z-info/

atlanmod/index.php/ZooFederation, URL accessed 2015-11-
04.

identifies the following design decisions that cause them

to diverge:

– ArcClasses: Arcs are represented using separate

meta-classes.

– WeighedArcs: Arc meta-classes have attributes to

represent arc weight.

– Locations: There is a way to store the location of

graphical elements on the diagram.

– TokenClass: Tokens are represented using a sepa-

rate meta-class.

– Executions: If a separate token meta-class exists,

there is a mechanism for representing “token games”.

Table 2 summarizes what decisions are implemented

in each of the eight PTN metamodels in AMZ.6 The

case where a metamodel implements a decision is in-

dicated by “3” and the case where it does not — by

“7”. Metamodels that implement the same decisions

differ in minor ways. Specifically, GWPNV1 differs from

GWPNV0 by requiring that a PTN must have at least

one Place and Transition, GWPNV3 from GWPNV2 — by

introducing a superclass for arcs, and PetriNet differs

from GWPNV4 by introducing a class Element. In our

scenario, the toolsmith decides that these differences

are not significant enough for her purposes, and thus

chooses to disregard them.

Since each decision is binary and two decisions are

dependent on others (WeighedArcs depends on Arc-

Classes, Executions depends on TokenClass), the tool-

smith can create (2 + 1) × 2 × (2 + 1) = 18 different

combinations. However, she does not have enough in-

formation to decide which combination is best for Con-

cMod. She thus uses the Construct operator to cre-

ate the partial metamodel N0, the diagram of which is

shown in the Appendix Figure 22. The partial model

N0 has a total of 76 elements (52 node and 24 vertex

elements), out of which 60 are annotated with Maybe.
N0 has 18 concretizations, defined by its May formula,

the construction of which is described in Appendix B.2.

Deferral Stage: Transformation. Having explicated her

uncertainty in the partial model N0, the toolsmith can

6 The metamodels with the prefix GWPN were created
by Guido Wachsmut and Kelly Garces. The metamodel
Extended was created by Hugo Bruneliere and Pierrick Gu-
yard. The metamodel PetriNet was created by David Touzet.

http://www.emn.fr/z-info/atlanmod/index.php/ZooFederation
http://www.emn.fr/z-info/atlanmod/index.php/ZooFederation
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Table 2 Design decisions in Petri net metamodels from the Atlantic Metamodel Zoo. Each column represents one metamodel.

GWPNV0 GWPNV1 GWPNV2 GWPNV3 GWPNV4 GWPNV5 Extended PetriNet

ArcClasses 7 7 3 3 3 3 3 3

WeighedArcs 7 7 7 7 3 3 3 3

Locations 7 7 7 7 7 7 3 7

TokenClass 7 7 7 7 7 3 3 7

Executions 7 7 7 7 7 7 3 7

defer making a decision about how exactly to design

the ConcMod metamodel. In the meantime, she can

use N0 to proceed with other development tasks. In

our scenario, the focus of the toolsmith is turned to the

serialization of PTN models. In order to efficiently store

PTN models, the toolsmith wants to use a relational

database. She thus needs to create a database schema

that allows her to store instances of PTN models.

Mapping the PTN metamodel to a relational database

schema is an instance of the well-known “Object Re-

lational Mapping” (ORM) problem. In model-driven

software engineering, a typical solution to the ORM

problem involves creating a model transformation that

takes a class diagram as input and produces a relational

schema model as output. In our scenario, the toolsmith

uses an ORM transformation created by Varro et al. [?],

and adapted by Famelis et al. [?], that consists of five

layered rewrite rules that, given a class diagram, cre-

ate a relational schema and traceability links between

them. The rules and the input/output metamodels are

shown in Appendix C.

The toolsmith invokes the uncertainty management

operator Transform with N0 and the ORM transfor-

mation as inputs. The result is the partial relational

schema model N1, consisting of 30 tables. Overall, N1

has 192 elements (tables, columns, and key references),

out of which 184 are Maybe. The runtime of the trans-

formation was 2.00 seconds and the generated SMT-

LIB May formula has the size of 23.26 kB.

Deferral Stage: Verification. The toolsmith continues

working in the presence of uncertainty. Having created

a partial relational database schema, she decides to in-

vestigate whether her schema allows her to accurately

store the graphical diagrams of PTN models. She for-

malizes this requirement as a property:

U3: The database must allow storing the diagram coor-

dinates of every graphical PTN construct.

For her database schema to satisfy U3, for each ta-

ble Ti in N1 that stores some graphical PTN construct

(Place, Transition, Token, PlaceToTransitionArc,

TransitionToPlaceArc) there must exist a table TLi

that maps tuples from the table Ti to tuples from the

table Location. The toolsmith uses the operator Ver-

ify to check whether N1 satisfies U3. To do this, she

first encodes the property U3 in logic, creating the for-

mula φU3. The grounded version of φU3, expressed in

SMT-LIB [?], is shown in the Appendix Figure 24. She

then invokes the Verify operator with N1 and φU3 as

inputs. The result of the property check is Maybe, indi-

cating that U3 may not be satisfied, depending on how

uncertainty is resolved.

Resolution stage. In order to discover the reason why

checking U3 on N1 results in Maybe, the toolsmith uses

the diagnostic operators. Using the operator Generate-

CounterExample, she discovers that since the Location

table is annotated with Maybe, there exists at least one

concretization in which it does not exist. Since her pri-

mary development artifact is the partial metamodel N0,

she uses this new information to refine N0 using the

operator Decide to ensure that the class Location is

present in all concretizations. The result is the partial

metamodel N2, shown in the Appendix Figure 25.

Additionally, by invoking the operator GenerateDi-

agnosticCore with N1 and U3 as inputs, she discovers

that there are no tables mapping tuples of the tables

PlaceToTransitionArc, TransitionToPlaceArc, and

Token to the table Location. She decides that this is ac-

ceptable, since the location of these graphical elements

can be derived from Place s and the combination of

endpoint Place and Transition, respectively.

The toolsmith does not have any more information

to fully resolve the uncertainty in N2. Additionally, she

receives new requirements for ConcMod, which cause

her more uncertainty, prompting her to enter a new

uncertainty Articulation stage.

6.2.2 Extended PTN metamodel

Articulation stage. Due to its simplicity, the Petri net

formalism lends itself to customization in order to cap-

ture domain-specific concerns. This has lead to the pro-

liferation of Petri net extensions, which augment the

base language with special-purpose constructs. Exam-

ples of such extensions include Coloured PTNs [?], Hier-

archical PTNs [?], Prioritized PTNs [?], Timed PTNs [?],

Stochastic PTNs [?], and others. In our scenario, the

toolsmith learns that her employer is considering al-

lowing such PTN models to be stored in ConcMod.
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However, she does not have enough information about

which domain-specific constructs should be included in

the ConcMod metamodel.

Faced with uncertainty about which Petri net exten-

sions to support, the toolsmith uses the operator Ex-

pand on the partial metamodel N2, to create the partial

metamodel N3. The uncertainty tree of N3, shown in

the Appendix Figure 27, contains several new (binary)

design decision points:

– ArcKinds: There are different kinds of arcs, such

as inhibitor and reading arcs [?].

– Priority: Transitions have priorities [?].

– Timed: Transitions are timed [?].

– ColouredTokens: Tokens have values (“colours”)

taken from “Colour Sets”, i.e., types [?].

– Stochastic: Each transitions has a “firing rate” that

indicates the probability that it will fire at every

marking [?].

– Guards: Arcs have guard expressions [?].

The decisions Guards, WeighedArcs, and ArcKinds de-

pend on the decision ArcClasses, while the decisions

Executions and ColouredTokens depend on the deci-

sion TokenClass. Therefore, the uncertainty tree allows

(1+ 2×2×2)× (1+ 2×2)×2×2×2 = 360 concretiza-

tions. The model elements required to implement these

design decisions bring the total elements of N3 to 117

elements, out of which 94 are Maybe. The diagram of

N3 is shown in the Appendix Figure 26.

Deferral stage. Having explicated her uncertainty in

the partial model N3, the toolsmith again generates a

relational database schema using the ORM transfor-

mation. She invokes the uncertainty management oper-

ator Transform again, this time with N3 and the ORM

transformation as inputs. The result is the partial rela-

tional schema model N4, which has 45 tables. In total,

N4 has 293 elements (tables, columns, and key refer-

ences), out of which 258 are Maybe. The total runtime

of the transformation was 114.05 seconds and the gen-

erated SMT-LIB May formula is 33.78 kB long.

Resolution stage. Using lifted operations, the toolsmith

can continue working in the presence of uncertainty for

as long as necessary. In our scenario, we assume that

at some point the toolsmith is able to resolve all of

her uncertainty by making all of the design decisions.

Specifically, she uses the Decide operator with the par-

tial model N3 as input and makes the choice to not

implement any of the domain-specific Petri net exten-

sions, to allow executions to be stored, and to use sepa-

rate arc and token meta-classes. These decisions result

in the concrete metamodel N5, shown in the Appendix

Figure 28.

6.2.3 Summary and lessons learned

Summary. We summarize the PTN metamodel exam-

ple in Figure 13, which superimposes the models and

invocations of uncertainty management operators in the

scenario over the DeTUM model.

At the start of the scenario, the toolsmith in charge

of creating ConcMod aimed to create a metamodel for

representing Petri nets. She consulted an open repos-

itory of metamodels, where she located eight existing

different Petri net metamodels. By analysing these meta-

models, she identified five important design decisions

that are the cause of the differences between them. Not

having enough information to decide how to make these

decisions, she used the operator Construct to create the

partial metamodel N0.

Having articulated her uncertainty in N0, the tool-

smith entered the Deferral stage. She applied the ORM

transformation to her partial metamodel using the op-

eration Transform, to create a derived partial relational

schema model N1. She then applied the operator Verify

to check whether N1 allows storing the diagrammatic

locations of Petri net elements. The result of the check

was Maybe, and prompted her to perform further di-

agnosis using the diagnostic operators. She discovered

that (a) not all concretizations have a dedicated table

for storing locations, and (b) the locations of some of

the diagrammatic elements can be derived from others.

The first diagnostic insight led her to enter the Res-

olution stage, where she used the newly acquired in-

formation to resolve some of the uncertainty in N0, to

ensure that the Location table is present in all con-

cretizations. To do this, she applied the operator De-

cide, resulting in the partial metamodel N2. The second

insight led her to re-examine the requirement to store

the locations of all elements.

At this point in our scenario, the toolsmith had to

consider the possibility of creating support in Conc-

Mod for representing various Petri net flavours, that

add domain-specific modelling constructs to the base

Petri net language. She thus entered a second Artic-

ulation stage, where she applied to operator Expand

to the partial metamodel N2, resulting in the partial

metamodel N3.

The toolsmith entered a second Deferral stage, where

she again invoked the operator Transform to apply the

ORM transformation to the partial model N3, result-

ing in the new partial relational schema model N4.

Subsequently, the toolsmith was able to remove all un-

certainty from her models during a second Resolution

stage, where she used the operator Decide to reduce N3

to the concrete Petri net metamodel N5.
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Fig. 13 Overview of the PTN metamodel example, superimposed over the DeTUM model.

Lessons learned. In the Petri net metamodel example,

we worked with a medium-sized model with a large set

of concretizations and a large percentage of Maybe ele-

ments through the different stages of uncertainty man-

agement. Three main lessons arose from this experience:

1. Even though we described the initial articulation of

uncertainty in terms of invoking the operator Con-

struct for the set of all possible metamodel designs,

in practice, we had to adopt a slightly different ap-

proach. Specifically, we manually constructed the

partial model N0, using the eight AMZ metamod-

els and the five design decisions as guidance. This

was a different process than both Construct (which

is fully automatic but depends on an enumerated

set of alternatives) and MakePartial (which is man-

ual but depends on a pre-existing concrete model).

Rather, in practice, we ended up adopting elements

of both, whereby we manually enumerated a set of

possibilities, using the uncertainty tree as a guide.

2. The number of application sites and the number

of Maybe elements in the partial models N0 and

N3 was significantly larger than that of the mod-

els used for the ORM benchmark by Famelis et

al. [?]. This made the original implementation of

our lifted transformation engine in Mu-Mmint ex-

tremely inefficient. We were thus forced to revisit it

and implement various optimizations that resulted

in improvements in both runtime and the size of

the generated May formula. These improvements

were so dramatic as to render comparison with the

benchmark results previously published [?] mean-

ingless. However, during the implementation of the

optimizations, we faced significant challenges in cor-

rectly engineering complex manipulations of large

formulas while working with the application pro-

gramming interface (API) of the Z3 solver [?]. This

process was extremely error prone and hard to de-

bug, thus exposing some of the practical difficulties

of our lifting strategy, that focuses on manipulating

a single large propositional expression. We contrast

this with our experience implementing lifting for

product lines, where individual elements are anno-

tated with “presence conditions” [?,?]. This makes

the implementation of lifting significantly easier, since

instead of manipulating a single large formula, it

uses smaller logical expressions that are localized to

specific matching sites.

3. During the first Resolution stage, the toolsmith in-

voked the Verify operator, which returned Maybe.
However, instead of using the result to constrain

the partial model, we found that it was more appro-

priate for the toolsmith to change her expectations

about the property. This points to a characteriza-

tion of properties with modalities, such as “neces-

sary” and “possible”. Responses to property checks

can therefore include either refining the underlying

model or changing the modality of the property.

In current work, we are investigating such property

modalities and appropriate responses to the verifi-

cation of such properties in the context of product

lines with uncertainty [?].

7 Related Work

7.1 Mitigating Design-Time Uncertainty

As discussed in Section 1, mitigating design-time uncer-

tainty entails creation of uncertainty-aware software de-

velopment methodologies. Without a methodology like

the one described by the DeTUM model, in the face of

design-time uncertainty, developers are thus forced to

either:
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(a) avoid working on the uncertain parts of the system,

delaying the decisions as long as necessary,

(b) entirely remove uncertainty by making educated

guesses based on experience so that work can con-

tinue, or

(c) fork and maintain sets of alternative solutions.

We discuss these options below.

There is a considerable body of engineering research

that focuses on avoiding design-time uncertainty by de-

laying making decisions until the most opportune mo-

ment. This is an established practice in many engineer-

ing disciplines, such as in industrial and mechanical en-

gineering. One example is the Critical Chain Project

Management approach [?] where tasks are scheduled as

late as possible, while uncertainty about their comple-

tion is managed using purpose-specific “buffers” which

allow new information to be systematically incorpo-

rated in the overall estimation of the project. Another

well known example is the Toyota Production System

(TPS) [?], which was developed in Japan during the

mid-20th century with the aim to eliminate inefficien-

cies in the production of automotive vehicles. The TPS

was a precursor to the practice of lean manufacturing,

which in the software world inspired Lean Software En-

gineering [?,?], one of the tenets of the Agile methodol-

ogy [?,?]. While Agile is becoming increasingly popular,

it is not (to use the phrase coined by Fred Brooks [?])

a “silver bullet” that is appropriate in every organi-

zational setting and project. This is evidenced by the

proliferation of literature discussing success factors [?,?]

and challenges to its adoption [?]. Moreover, while the

stated goal of lean methods is to eliminate waste, i.e.,

under-utilization of resources, that is not necessarily

the case in practice. For example, Ikonen et al. con-

ducted a seven-week empirical study to identify sources

of waste in lean development [?], focusing specifically on

the Kanban method [?]. Among other sources of waste,

they identified that there were delays due to some de-

velopers waiting, e.g., for the completion of tasks that

were under-estimated, for clarification of requirements,

or for customer validation. Thus, delaying decisions is

not always the most effective way to handle design-time

uncertainty.

In practice, developers often rely on experience and

craftsmanship to make and keep track of provisional de-

cisions that artificially remove uncertainty from their

artifacts so that development can continue. This in-

creases the risk of having to backtrack their work if

new information shows that the provisional decisions

were wrong. Even worse, it can mean committing too

early to design decisions that cannot be reversed with-

out significant costs, when it would be more desirable

to keep many alternative options open for considera-

tion. In fact, the skillful management of such provi-

sionality is a defining characteristic of expert software

designers [?]. Agile proposes to manage these risks by

employing short iteration cycles and frequent customer

feedback. As discussed earlier, Agile is not a “silver bul-

let”, so such practices are not always feasible. Addition-

ally, there is the problem of keeping track of which deci-

sions were made provisionally and which were not. This

is aggravated by the preference in Agile for “working

software over comprehensive documentation” [?]. Un-

less explicit traceability and provenance is maintained,

the provisional character of a decision may be forgotten,

thus implicitly turning the decision into a premature,

undocumented commitment.

Given a design decision, engineers might choose to

consider all alternative solutions, therefore forking the

project into parallel streams. This allows them to keep

their options open, as well as to potentially turn de-

cisions into variability points, thus creating families of

products that meet the needs of more than one cus-

tomer [?,?]. Forking can be done in a vigorous and

systematic way. For example, the “Programming by

Optimization” (PbO) approach, developed by Holger

Hoos [?], aims to help software developers avoid prema-

ture optimization commitments in settings where multi-

ple algorithms can accomplish the same computational

task, albeit in different ways. Design decisions and al-

ternatives are explicitly tracked until the time when de-

signers have enough hard evidence (obtained systemat-

ically using machine learning) regarding the optimality

of each algorithm to make informed decisions. However,

forking does not scale as a generic solution to mitigating

design-time uncertainty due to the combinatoric explo-

sion of possibilities in the case where multiple decision
points must be managed. Additionally, since every fork

must be maintained separately, every forking approach

is limited by the size of the set of possible solutions

to a decision point. Without any structure to describe

their commonalities and differences, it is impossible to

reuse results across forks. Thus, every engineering task

such as verification, transformation, evolution, etc. has

to be repeated for each fork, which is expensive and

error-prone.

7.2 Managing the lifecycle of sets of artifacts

The management of uncertainty in the software lifecy-

cle ultimately involves the systematic management of a

representation of a set of possibilities. A similar need to

manage the lifecycle of abstractions of sets of artifacts

arises in related software engineering disciplines such as

variability management and design space exploration.
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Design space exploration (DSE) [?,?] is a technique

for systematically traversing a space of design choices

in order to identify functionally equivalent designs that

best satisfy a given set of desired constraints. The DSE

process follows a series of steps that is typically de-

scribed as follows: (1) A reference model is created to

represent the requirements and constraints of the de-

sired design. (2) Using the reference model, the de-

veloper derives a set of criteria with which to evalu-

ate designs. (3) A model of the design space is cre-

ated. (4) The developer employs various algorithms to

traverse the design space and generate candidate de-

signs. Tools such as Alloy can be used to automate this

step [?]. (5) Each candidate design is measured against

the evaluation criteria. (6) Desirable candidate designs

are chosen based on whether they optimally satisfy the

evaluation criteria.

The DSE process has certain similarities with the

DeTUM model: the first two steps resemble the men-

tal process by which a developer identifies a source of

uncertainty; the third step corresponds to the Artic-

ulation stage of uncertainty managament and the fi-

nal step – to the Resolution stage. The intermediate

stage between Articulation and Resolution differs be-

tween DSE and uncertainty management. In DSE, de-

cisions are not deferred; rather they are algorithmically

explored to produce candidate designs. However, in un-

certainty management, the goal is to allow developers

to avoid making such decisions. Thus, the focus during

this stage is in creating support for lifted engineering

tasks that allow developers to continue working with

their artifacts without resolving uncertainty.

The goal of variability management [?] is to cre-
ate and maintain families of products, called Software

Product Lines (SPLs), that share a common set of fea-

tures. In direct analogy to the DeTUM model, we can

identify three stages of SPL lifecycle: Creation, Main-

tenance, and Configuration. During SPL creation, the

aim is to develop a set of reusable assets that can be

combined to produce individual products [?]. A com-

mon task during this stage is to reverse engineer a SPL

from a set of existing products that share functionality,

albeit in an ad-hoc way. To address this, various tech-

niques have been developed such as feature location [?],

clone detection [?] and others. During the Maintenance

phase, variability-aware techniques are applied to SPLs

in order to manipulate the entire set of products with-

out having to enumerate it. Such techniques include

model checking [?], type checking [?], testing [?], model

transformations [?,?], and others [?,?]. During the Con-

figuration stage, individual products are derived from

the SPL to address individual customer needs. This is

typically done by configuring a feature model that ex-

presses the allowable combinations of features [?]. This

can be done either at once or in stages [?].

The main methodological difference between vari-

ability management and uncertainty management is that

SPLs represent a long term commitment to supporting

and maintaining a product family. It is thus not mean-

ingful to talk about a “Variability Management Model”,

akin to the DeTUM model: Configuration is not the

ultimate endpoint of variablity management. Rather, it

represents a set of tasks that developers expect to per-

form often during the lifetime of a SPL. In contrast, par-

tial models are transient artifacts. The Resolution stage

of the DeTUM model is an endpoint that represents

the expectation that uncertainty is ultimately removed

from software artifacts. Put simply, partial models are

built to throw away, whereas SPLs are built to last.

8 Conclusion

We have investigated the management of design-time

uncertainty from the perspective of software engineer-

ing methodology.

We have introduced the Design-Time Uncertainty

Management (DeTUM) model as a high level abstrac-

tion of the lifecycle of design-time uncertainty in soft-

ware artifacts. The DeTUM model consists of three

stages: 1. during the Articulation stage, developers con-

struct partial models (i.e., models that encode a set of

possible designs) to express their uncertainty, 2. during

the Deferral stage, the degree of uncertainty in software

artifacts remains unchanged, while developers use lifted

versions of existing operations to perform engineering

tasks, 3. finally, during the Resolution stage, new infor-

mation is incorporated to resolve uncertainty by refin-

ing partial models. Developers transition between these

stages based on their engineering needs and the absence

or presence of sufficient information to perform these

needs.

We used the DeTUM model to contextualize var-

ious previously published techniques for manipulating

partial models, such as creation, transformation, verifi-

cation and refinement. We have summarized each tech-

nique as an “uncertainty management operator”, and

defined its place within the lifecycle of uncertainty in

terms of its inputs, outputs, usage context, and condi-

tions prior to and after their invocation. The operators

are bundled in a coherent Integrated Development En-

vironment in Mu-Mmint, an interactive Eclipse-based

tool for partial model management.

In the future, we intend to further investigate the

balancing of alternative approaches to tacking design-

time uncertainty (deferral, forking, provisionality, and
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avoidance). To accomplish this, we intend to study the

historical data of software systems in order to identify

cases of catastrophic mismanagement of uncertainty.

Subsequently, we will perform post-hoc analysis in or-

der to determine the effectiveness of different uncer-

tainty management strategies. In addition, we intend

to study the integration of explicit uncertainty man-

agement into lean software development, such as the

Scrumban methodology [?]. This will allow us to either

develop mixed strategies, effectively weaving explicit

uncertainty management with existing approaches, or

to recognize niche contexts in which it is cost-effective.

Our approach makes two important assumptions:

(a) that developers know what they are uncertain about,

and (b) that all decision points are “known unknowns”,

i.e., closed questions where developers are uncertain

about choosing one among a well understood finite set

of acceptable solutions. Thus, the uncertainty manage-

ment operators that we defined for the Articulation

stage of the DeTUM model assume as input either

a fully enumerated set of possibilities or an informal

description of how uncertainty should be expressed in

partial models. However, in order to use uncertainty

management in the context of real software develop-

ment, additional support must be provided for (a) iden-

tifying that development has reached a critical design

decision such that explicit uncertainty management is

cost-effective, (b) assessing the impact of uncertainty

across multiple artifacts, (c) helping developers elicit a

set of acceptable solutions to an open design decision

(an “unknown unknown”), and (d) helping encode them

in a partial model. To address the first two points, we in-

tend to study the identification of design decisions and

the assessment of their impact, by focusing on the socio-

technical context in which such decisions are made. A

first step in this direction is to develop a theory about

when major design decisions occur in the lifecycle of

software projects. A potential approach is to attempt

to identify patterns among changes that had significant

impact downstream, such as changes that resulted in

a lot of bugs or changes that required a lot of devel-

opment effort to be undone. A different approach is to

study the social context in which design decisions are

made. To address the latter points, we intend to investi-

gate the use of domain space exploration techniques [?]

for synthesizing sets of possibly acceptable solutions.

This would entail mining the development context to

identify a set of acceptability criteria and then gener-

ating designs that are equivalent with respect to these

criteria. Additional research must investigate ways for

presenting these recommendations to the developers in

a user-friendly way.
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A Appendix: Operators

Here we give the detailed descriptions of the Uncertainty Op-
erators from Section 4.
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Table 3 Operator MakePartial

Description Create a partial model from a given concrete model by introducing uncertainty to it.
Inputs A concrete model and an informal description of uncertainty.

Outputs A partial model.
Usage context The developer uses the informal description of uncertainty and her intuition about how it should be

expressed in the given model.
Preconditions No partial model exists.
Postconditions The input model is a concretization of the output partial model.

Limitations Effectiveness depends on the intuition of the developer.
Implementation The task is done manually using editor provided by the Mu-Mmint tool [?].

Table 4 Operator Expand

Description Introduce additional uncertainty to a partial model.
Inputs A partial model.

Outputs A partial model.
Usage context The developer encounters new uncertainty during the Deferral or Resolution stages of the DeTUM

model.
Preconditions Some uncertainty has already been explicated in the partial model.
Postconditions The input partial model is a refinement of the output.

Limitations Effectiveness depends on the intuition of the developer.
Implementation The task is done manually using editor provided by the Mu-Mmint tool [?].

Table 5 Operator Transform

Description Apply a transformation to a partial model ensuring that all concretizations are correctly transformed.
Inputs A partial model

Outputs A partial model
Usage context The developer wishes each concretization to be transformed but does not wish to enumerate them all

and do it for each one individually.
Preconditions None.
Postconditions The set of concretizations of the output partial model is exactly the same as if the input partial

model had been broken down to its set of concretizations using the operator Deconstruct, then each
concretization in that set had been transformed individually, and then a partial model had been
constructed from that set using the operator Construct.

Limitations The model transformation must be expressed as graph rewriting system (i.e., a set of graph rewriting
transformation rules).

Implementation The operator is realized by the lifting technique described in [?].

Table 6 Operator Verify

Description Check whether a partial model satisfies a property.
Inputs A partial model, a property.

Outputs A value from the set {True,False,Maybe }.
Usage context A developer is interested in determining whether a property is satisfied by some, all or none of the

concretizations of the partial model.
Preconditions None.
Postconditions If the property is satisfied by all, none or some of the partial model’s concretizations, then the output

is True, False, and Maybe respectively.
Limitations The property is syntactic, i.e., its verification does not require knowledge of the semantics of the partial

model’s base language.
Implementation The operator is described in [?] as operator “OP2: Verification”.
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Table 7 Operator Deconstruct

Description Produce the set of concretizations of a given partial model.
Inputs A partial model

Outputs A set of concrete models
Usage context The developer needs to perform a task on each concretization of the input partial model and no lifted

version of the task exists.
Preconditions None
Postconditions The output set contains exactly the set of concretizations of the input partial model.

Limitations High cost.
Implementation The operator can be implemented by passing the partial model’s May formula to an All-Solutions SAT

solver [?].

Table 8 Operator Decide

Description Make decisions about whether to keep or discard individual Maybe elements from a partial model.
Inputs A partial model and an informal description of information that resolves uncertainty.

Outputs A (potentially singleton) partial model.
Usage context The developer uses the informal description of newly acquired information, as well as her intuition

about how it should be incorporated in the input partial model.
Preconditions None.
Postconditions The output partial model is a refinement of the input partial model.

Limitations Using this operator to resolve design decisions requires explicit mapping of candidate solutions to
Maybe elements.

Implementation The editor provided by the Mu-Mmint tool allows making decisions and supports and explicit mapping
of candidate solutions to Maybe elements [?].

Table 9 Operator Constrain

Description Create a partial model with a subset of the concretizations of the input partial model such that all its
concretizations satisfy a property of interest.

Inputs A partial model, a property.
Outputs A partial model.

Usage context The developer has determined that concretizations of the input partial model that do not satisfy the
input property are not valid ways to resolve uncertainty and should thus be excluded.

Preconditions None.
Postconditions The output partial model refines the input partial model.

Limitations This operator is subject to the same limitations as Verify.
Implementation The operator is described in [?] as operator “OP4: Property-Driven Refinement”.

Table 10 Operator GenerateCounterExample

Description Create a non-partial model that illustrates why a partial model does not satisfy a property.
Inputs A partial model, a property.

Outputs A concrete model.
Usage context A developer wants to diagnose why a partial model does not satisfy a property, i.e., why the result of

Verify is not True.
Preconditions The result of the operator Verify using the input partial model and the input property is Maybe, or

False.
Postconditions The output model is a concretization of the input partial model and satisfies the input property.

Limitations This operator is subject to the same limitations as Verify.
Implementation The operator is described in [?] as operator “OP3a: Diagnosis - Return one counter-example”.
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Table 11 Operator GenerateExample

Description Create a non-partial model that illustrates why a partial model may satisfy a property.
Inputs A partial model, a property.

Outputs A concrete model.
Usage context A developer wants to diagnose why a partial model may satisfy a property, i.e., why the result of Verify

is not False.
Preconditions The result of the operator Verify using the input partial model and the input property is Maybe, or

True.
Postconditions The output model is a concretization of the input partial model and satisfies the input property.

Limitations This operator is subject to the same limitations as Verify.
Implementation The operator is described in [?] as operator “OP3b: Diagnosis - Return a concretization where the

property does hold”.

Table 12 Operator GenerateDiagnosticCore

Description Create a partial model that illustrates why a partial model does not satisfy a property.
Inputs A partial model, a property.

Outputs A partial model.
Usage context A developer wants to diagnose why a partial model does not satisfy a property, i.e., why the result of

Verify is not True.
Preconditions The result of the operator Verify using the input partial model and the input property is Maybe, or

False.
Postconditions The output partial model refines (or is equivalent to) the input partial model. The property is not

satisfied by any of its concretizations.
Limitations This operator is subject to the same limitations as Verify.

Implementation The operator is described in [?] as operator “OP3b: Diagnosis - Return a partial model representing
the set of all concretizations for which the property does not hold”.
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B Appendix: Models

In this appendix, we provide additional details about the
worked examples in Sections 6.1 and 6.2.

B.1 UMLet Bug #10

Figure 14 shows the Mu-Mmint model K0 that encodes the
UMLet model shown in Figure 10. The encoded model con-
tains the relevant slices of both the class diagram and the
sequence diagram (bottom), as well as traceability links be-
tween them, linking messages in the sequence diagram to op-
erations in the class diagram and objects to their classes. In
the sequence diagram model, objects and lifelines are repre-
sented by the same model element. Mu-Mmint uses yellow
and pink stars to respectively indicate edges that represent
the source and target lifelines of messages.

Table 13 shows the valid combinations of strategies for
repairing the ClasslessInstance and DanglingOperation
consistency violations. Each combination represent a repair
of the model shown in 14, i.e., a concretization of the partial
model K1, shown in Figure 15

Figure 15 shows the diagram of the partial model K1
created by the maintainer to express her uncertainty about
which of the 44 alternative repairs in Table 13 to select. To
enhance diagram readability, we have hidden the labels of
the arrow model elements. This has resulted in hiding Maybe
annotations as well; however, it is easy to deduce that edges
that are in K1 but not in K0 have Maybe annotations.

Figure 16 shows the ground propositional encoding φU1

of the property U1, expressed in SMT-LIB [?]. The formula

Table 13 Valid combinations of repair strategies for Class-
lessInstance and DanglingOperation.

#id ClasslessInstance DanglingOperation

1 RC1 RD3

2 RC2(self) RD1
3 RD2(Paste)
4 RD3

5 RC2(e) RD1
6 RD2(GridElement)
7 RD2(getX)
8 RD2(getY)
9 RD3

10 RC2(handler) RD1
11 RD2(DiagramHandler)
12 RD2(mult)
13 RD3

14 RC2(pnl) RD1
15 RD2(DrawPanel)
16 RD2(setComponentZOrder)
17 RD3

18 RC2(AddElement) RD1
19 RD2(AddElement)
20 RD2(execute)
21 RD3

22 RC3(Paste) RD1
23 RD2(Paste)
24 RD3

25 RC3(GridElement) RD1
26 RD2(GridElement)
27 RD2(getX)
28 RD2(getY)
29 RD3

30 RC3(DiagramHandler) RD1
31 RD2(DiagramHandler)
32 RD2(mult)
33 RD3

34 RC3(DrawPanel) RD1
35 RD2(DrawPanel)
36 RD2(setComponentZOrder)
37 RD3

38 RC3(AddElement) RD1
39 RD2(AddElement)
40 RD2(execute)
41 RD3

42 RC4 RD1
43 RD2(NewClass)
44 RD3

encodes the property as a conjunction of the variables (see [?])
of the messages that are required to perform pasting.

Figure 17 shows the ground propositional encoding in
SMT-LIB of the sequence diagram well formedness constraints
for the slice of K1 involved in checking U1. Specifically, we
check that for each message in Figure 16, there is an operation
reference that maps it to the appropriate method definition.
The abbreviation “or” in the name of the variables means
“operation reference”.

Figure 18 shows the ground propositional encoding φU2

of the property U2 for K1, in SMT-LIB. Specifically, we check
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whether the message setComponentZOrder exists in every con-
cretization. We have combined the property with the sequence
diagram well-formedness constraint additionally requiring the
appropriate operation reference to the method definition.

Figure 19 shows the model K2, a concretization of K1. It
was created by invoking the operator GenerateCounterExam-
ple with inputs K1 and U1. Mu-Mmint has greyed out Maybe
elements of K1 that are not also part of K2.

Figure 20 shows the diagram of the partial model K3,
resulting from invoking the operator Constrain with inputs
K1 and U1. To enhance diagram readability, we have hid-
den the labels of edge elements. Every edge that is outgoing
from the elements new, moveToTop, setComponentZOrder, and
positioner is annotated with Maybe.

Figure 21 shows the (concrete) model K4, resulting from
invoking the operator Decide with K3 as input while choosing
the repairs RC4 and RD2.
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Fig. 14 Mu-Mmint model K0.
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Fig. 15 Diagram of the Mu-Mmint partial model K1.
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(and

(node paste_message)

(node cloneFromMe_message)

(node AddElement_message)

)

Fig. 16 Ground propositional encoding of the property U1.

(and

(edge or-paste-message2ClipBoard)

(edge or-cloneFromMe_message2cloneFromMe)

(edge or-AddElement_message2AddElement_constructor)

)

Fig. 17 Ground propositional encoding of sequence diagram
well-formedness constraints involved in checking the property
U1.

(and

(node setComponentZOrder_message)

(edge or-setComponentZOrder_message2setComponentZOrder)

)

Fig. 18 Ground propositional encoding of the property U2.
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Fig. 19 Concretization K2 of the partial model K1, a counterexample demonstrating why checking U1 yields Maybe. Mu-
Mmint has greyed out elements of K1 that are not also part of K2.
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Fig. 20 Diagram of the partial model K3.
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Fig. 21 Diagram of the final model K4, implementing the repairs RC4 and RD2.
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B.2 Petri net metamodel

Figure 22 shows the Mu-Mmint diagram of the partial meta-
model N0. Meta-associations are decorated with the icon “ ”,
whereas containment references — with the icon “ ”. Maybe
elements are annotated with “[M]” and one or more alterna-
tives from the uncertainty tree of N0 in square brackets. The
uncertainty tree of N0 is shown in Figure 23.

The May formula of N0 is constructed from the uncer-
tainty tree using the technique described in Section 5. Specif-
ically:

– The May formula is a conjunction of the decision vari-
ables:
d1 ArcClasses ∧d4 Locations ∧
d5 TokenClass ∧d7 Executions

– Each decision variable is equivalent to an exclusive dis-
junction of the alternative variables. For example:
d1 ArcClasses ⇔((d1ynw

⊕
d1yw )

⊕
d1n).

– Each alternative variable is equivalent to the conjunction
of the Maybe elements that are annotated with the alter-
native and the negations of the Maybe elements that are
annotated with other alternatives of the same decision.
For example:
d1n ⇔ src placeToTransition Association ∧
src transitionToPlace Association ∧
dst placeToTransition Association ∧
dst transitionToPlace Association ∧
¬ PlaceToTransition Class ∧¬
TransitionToPlace Class ∧ . . .∧
¬ weight P2T Attribute ∧
¬ getWeight P2T Operation ∧
¬setWeight P2T Operation ∧ . . .
With the exception of the class Location, the various

meta-attributes, and the getter and setter operators, the di-
agram of the metamodel N0 was created by merging slices of
the AMZ metamodels listed in Table 2. We sliced the AMZ
metamodels in order to get a model that can be used with
the ORM transformation described in Appendix C, which re-
quires the input class diagram to have a flat class inheritance
hierarchy.

Figure 24 shows the ground propositional encoding φU3

of the property U3, expressed in SMT-LIB [?]. The formula
encodes the property as a conjunction of the variables (cf.
atomToProposition) of the tables that are needed to map
tuples from tables representing graphical PTN elements to
tuples of the table Location.

Figure 25 shows the partial PTN metamodel N2 that re-
sults from invoking the operator Decide on the partial model
N0 to select the alternative d4y of the decision d4 Locations

in the uncertainty tree in Figure 23.
Figure 26 shows the diagram of the partial PTN meta-

model N3 that results from invoking the operator Expand
on the partial model N2 to include uncertainty about which
domain-specific PTN constructs should be included in the
ConcMod tool.

Figure 28 shows the concrete PTN metamodel N5, result-
ing from invoking the operator Decide with N3 as input and
making the decisions d1yw, d2n, d3n, d5y, d6n, d7y, d8n, d9n,
d10n from the uncertainty tree in Figure 27.
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Fig. 22 Diagram of the partial metamodel N0.
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d1 ArcClasses Are arcs represented as separate meta-classes?

[d1ynw] Yes. Arcs have weights.
[d1yw] Yes. Arcs do not have weights.
[d1n] No.

d4 Locations Is the location of elements in the diagram
stored?

[d4y] Yes.
[d4n] No.

d5 TokenClass Is there a separate meta-class for tokens?

[d5y] Yes.
[d5n] No.

d7 Executions Is there a mechanism fore representing execu-
tions?

[d7y] Yes.
[d7n] No.

Fig. 23 Uncertainty tree of the partial metamodel N0.

(and

(node placeToLocation)

(node transitionToLocation)

(node tokenToLocation)

(node placeToTransitionArcToLocation)

(node TransitionToPlaceArcToLocation)

)

Fig. 24 Ground propositional encoding of the property U3.
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d1 ArcClasses Are arcs represented as separate meta-classes?

[d1ynw] Yes. Arcs have weights.
[d1yw] Yes. Arcs do not have weights.
[d1n] No.

d5 TokenClass Is there a separate meta-class for tokens?

[d5y] Yes.
[d5n] No.

d7 Executions Is there a mechanism fore representing executions?

[d7y] Yes.
[d7n] No.

Fig. 25 Partial PTN metamodel N2.
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Fig. 26 Partial PTN metamodel N3. The uncertainty tree is shown in Figure 27.
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d1 ArcClasses Are arcs represented as separate meta-classes?

[d1ynw] Yes. Arcs have weights.
[d1yw] Yes. Arcs do not have weights.
[d1n] No.

d2 ArcKinds Are there different kinds of arcs?

[d2y] Yes.
[d2n] No.

d3 Priority Do transitions have priority?

[d3y] Yes.
[d3n] No.

d5 TokenClass Is there a separate meta-class for tokens?

[d5y] Yes.
[d5n] No.

d6 Timed Are transitions timed?

[d6y] Yes.
[d6n] No.

d7 Executions Is there a mechanism fore representing execu-
tions?

[d7y] Yes.
[d7n] No.

d8 ColouredTokens Are tokens coloured?

[d8y] Yes.
[d8n] No.

d9 Stochastic Are transitions stochastic?

[d9y] Yes.
[d9n] No.

d10 Guards Are arcs guarded?

[d10y] Yes.
[d10n] No.

Fig. 27 Uncertainty tree of the partial metamodel N3.
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Fig. 28 Diagram of the final PTN metamodel N5.



40 Michalis Famelis, Marsha Chechik

C Appendix: Object-Relational Mapping

Figure 29 shows the first three Henshin rules classToTable,
associationToTable, and attributeToColumn used to perfom
the Object-Relational Mapping (ORM) transformation.

Figure 30 shows the last two Henshin rules attributeToForeighKey
and associationToForeignKey used to perfom the ORM trans-
formation.
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Rule classToTable(className:EString)

«preserve»
:Class

name=className

«forbid#subclass»
:SuperclassReference

«create»
:Trace

«create»
:Table

name=className

«create»
:Column

name="key"

«forbid#A_NAC»
:Trace

«preserve»
:RelationalDatabase

«forbid#A_NAC»
:Table

name=className

«forbid#A_NAC»
:Column

name="key"

Rule associationToTable(associationName:EString)

«preserve»
:Association

name=associationName

«create»
:Trace

«forbid#A_NAC»
:Trace

«create»
:Table

name=associationName

«preserve»
:RelationalDatabase

«create»
:Column

name="key"

«forbid#A_NAC»
:Table

name=associationName

«forbid#A_NAC»
:Column

name="key"

Rule attributeToColumn(attributeName:EString)

«preserve»
:Attribute

name=attributeName

«create»
:Trace

«forbid#A_NAC»
:Trace

«create»
:Column

name=attributeName

«preserve»
:Class

«preserve»
:Table

«preserve»
:Trace

«forbid#A_NAC»
:Column

name=attributeName

primaryKey
«create»

primaryKey
«forbid#A_NAC» columns

«forbid#A_NAC»
source

«forbid#A_NAC»

target
«forbid#A_NAC»

tables
«forbid#A_NAC»

source
«create»

columns
«create»

superclass

«forbid#subclass»

tables
«create»

target
«create»

source
«forbid#A_NAC»

target
«create»

primaryKey
«forbid#A_NAC»

target
«forbid#A_NAC»

tables
«create»

primaryKey
«create»

columns

«forbid#A_NAC»

tables
«forbid#A_NAC»

source
«create»

columns

«create»

source

«preserve»

columns

«create»

target
«create»

target
«forbid#A_NAC»

target

«preserve»

ownedAttributes
«preserve»

columns
«forbid#A_NAC»

source
«forbid#A_NAC»

source
«create»

superclass

«forbid#subclass»
source

«create»

columns
«create»

primaryKey
«create»target

«create»

source
«forbid#A_NAC»

tables
«create»

tables
«create»

source
«create»

target
«create»

source
«forbid#A_NAC»

ownedAttributes
«preserve»

source

«preserve»

target

«preserve»

columns

«create»

source
«create»

target
«create»source

«forbid#A_NAC»

columns

«create»

primaryKey
«create»

columns

«forbid#A_NAC»
primaryKey

«forbid#A_NAC»

tables
«forbid#A_NAC»

target
«forbid#A_NAC»

columns
«forbid#A_NAC»

target
«forbid#A_NAC»

tables
«forbid#A_NAC»

columns
«forbid#A_NAC»primaryKey

«forbid#A_NAC»

target
«forbid#A_NAC»

Fig. 29 Rules classToTable, associationToTable, and attributeToColumn used to perfom the ORM transformation.
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Rule attributeToForeignKey(attributeName:EString)

«preserve»
:Class

«preserve»
:Attribute

name=attributeName

«preserve»
:Class

«preserve»
:Trace

«preserve»
:Trace

«preserve»
:Trace

«preserve»
:Table

«preserve»
:Table

«preserve»
:Column

«preserve»
:Column

«create»
:ForeignKey

name=attributeName

«create»
:TableColumnReference

«create»
:ForeignColumnReference

«forbid#A_NAC»
:ForeignKey

name=attributeName

«forbid#A_NAC»
:TableColumnReference

«forbid#A_NAC»
:ForeignColumnReference

foreignColumn
«create»

ownedAttributes
«preserve»

foreignKeys«forbid#A_NAC»

source
«preserve»

source
«preserve»

source

«preserve»

columns
«preserve»

target
«preserve»

tableColumn
«forbid#A_NAC»

target

«preserve»

foreignColumn
«forbid#A_NAC»

target
«create»

foreignKeys

«create»

target
«forbid#A_NAC»

target
«preserve»

target
«forbid#A_NAC»

type
«preserve»

target
«create»

primaryKey
«preserve»

tableColumn
«create»

ownedAttributes
«preserve»

type
«preserve»

columns
«preserve»

source

«preserve»

source
«preserve»

source
«preserve»

target

«preserve»

target
«preserve»

target
«preserve»

primaryKey
«preserve»

foreignKeys

«create»
tableColumn

«create»

foreignColumn
«create»

target
«create»

target
«create»

foreignKeys«forbid#A_NAC»

tableColumn
«forbid#A_NAC»

foreignColumn
«forbid#A_NAC»

target
«forbid#A_NAC»

target
«forbid#A_NAC»

Rule associationToForeignKey(associationName:EString)

«preserve»
:Association

name=associationName

«preserve»
:Class

«preserve»
:Class

«preserve»
:Trace

«preserve»
:Trace

«preserve»
:Trace

«preserve»
:Table

«preserve»
:Table

«preserve»
:Table

«preserve»
:Column

«preserve»
:Column

«preserve»
:Column

«create»
:ForeignKey

name=associationName

«create»
:ForeignKey

name=associationName
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Fig. 30 Rules attributeToForeighKey and associationToForeignKey used to perfom the ORM transformation.
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