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In large-scale model-based development, developers periodically need to combine collec-

tions of interrelated models. These models may capture different features of a system,

describe alternative perspectives on a single feature, or express ways in which different

features alter one another’s structure or behaviour. We refer to the process of combining

a set of interrelated models as model fusion.

A number of factors make model fusion complicated. Models may overlap, in that

they refer to the same concepts, but these concepts may be presented differently in each

model, and the models may contradict one another. Models may describe independent

system components, but the components may interact, potentially causing undesirable

side effects. Finally, models may cross-cut, modifying one another in ways that violate

their syntactic or semantic properties.

In this thesis, we study three instances of the fusion problem for behavioural models,

motivated by real-world applications. The first problem is combining partial models of a

single feature with the goal of creating a more complete description of that feature. The

second problem is maintenance of variant specifications of individual features. The goal

here is to combine the variants while preserving their points of difference (i.e., variabil-

ities). The third problem is analysis of interactions between models describing different

features. Specifically, given a set of features, the goal is to construct a composition

such that undesirable interactions are absent. We provide an automated tool-supported
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solution to each of these problems and evaluate our solutions.

The main novelties of the techniques presented in this thesis are (1) preservation of

semantics during the fusion process, and (2) applicability to large and evolving collections

of models. These are made possible by explicit modelling of partiality, variability and

regularity in behavioural models, and providing semantic-preserving notions for relating

these models.
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Chapter 1

Introduction

There is a rapidly growing interest in the use of models for software engineering, driven

mainly by two factors. First, there is a desire to increase the level of abstraction and

automation in software development. Second, there is a need for bridging the wide

conceptual gap between the problem and implementation domains. Models can capture

complex systems at multiple levels of abstraction, from a variety of perspectives, allowing

developers to be shielded from the complexities of the underlying implementation. The

ultimate goal of model-based software development is to improve the software process

by promoting the use of models as the primary artifacts of development, and to produce

computer-supported technologies to transform models into running systems (France &

Rumpe, 2007; Selic, 2006). Achieving this goal requires addressing a wide range of

problems in model construction, management and analysis.

1.1 Model Fusion

Model-based development becomes particularly challenging in complex projects where

developers have to handle a large collection of models that are inter-related. The nature

of the relationships between a set of models depends primarily on the intended application

of the models and how they were developed. For example, the relationships may describe

1



Chapter 1. Introduction 2

overlaps (e.g., when the models represent different perspectives originating from different

sources); or they may describe shared interfaces for interaction (e.g., when the models

are autonomous executable components); or they may describe ways in which models

alter one another’s behaviour or structure (e.g., a cross-cutting model applied to other

models). To construct a functional system, models need to be combined with respect to

the relationships between them. We refer to this problem as model fusion.

Several important activities in model-based development form facets of model fusion.

These include:

• Model Merging, used to build a global view of a set of overlapping models that

capture different perspectives on a certain functionality (e.g., (Sabetzadeh & East-

erbrook, 2006; Nejati et al., 2007; Whittle & Schumann, 2000; Uchitel & Chechik,

2004; Brunet et al., 2006; Easterbrook & Chechik, 2001)). The goal of model

merging is to combine the input models by unifying their overlaps. In some cases,

the overlapping aspects of the input models may be conflicting. Existing merging

approaches differ in handling such cases: many approaches require that only con-

sistent models be merged, implying that inconsistent models must be repaired prior

to or during merge (Letkeman, 2006). Other approaches tolerate inconsistencies

by explicitly representing them in the resulting merged model (e.g. (Easterbrook

& Chechik, 2001; Sabetzadeh & Easterbrook, 2006; Nejati et al., 2007)). Model

merging may also incorporate some kind of verification, e.g., to ensure that the

results are well-formed (Sabetzadeh et al., 2007b; Nentwich et al., 2003).

• Model Composition, used to assemble a set of autonomous but interacting features

that run sequentially or in parallel (e.g., (Clarke et al., 1999; Hay & Atlee, 2000;

Jackson & Zave, 1998; Milner, 1989)). Some of the interactions between features

are desirable and intended, and some are not (Jackson & Zave, 1998). To ensure

the correctness of the overall composition of a set of features, one needs to find and

resolve their undesirable interactions. The techniques proposed to this end can be
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expensive because the size of overall compositions grows quickly as the number of

features increases. Further, the larger the number of features, the larger is the set

of possible feature arrangements, and the more difficult it is to find an arrangement

that does not exhibit undesirable behaviours (Nejati et al., 2008). Verification of a

system with a large collection of features is typically enabled by reducing reasoning

about the entire system to reasoning about its individual features using assume-

guarantee rules (Pnueli, 1985; Grumberg & Long, 1994; Cobleigh et al., 2003) or

by exploiting symmetry among the features (Emerson & Kahlon, 2000; Emerson &

Namjoshi, 2003).

• Model Weaving, used in aspect-oriented development to incorporate cross-cutting

concerns into a base system (e.g., (Moreira et al., 2005; Tarr et al., 1999; Harri-

son et al., 2002; Harrison et al., 2006)). Aspect-oriented approaches often come

equipped with appropriate constructs for defining the type of weaving. For ex-

ample, aspect-oriented programing languages provide pointcut constructs by which

programmers specify where and when additional code, i.e., an aspect, should be

executed in place of or in addition to an already defined behaviour, i.e., the main

program (Kiczales et al., 2001; Ossher & Tarr, 2000). In aspect-oriented modelling,

weaving types are usually defined by patterns (Whittle et al., 2007) to be chosen

either manually or automatically using pattern matching techniques. Similar to

model composition, model weaving may result in undesirable side effects. Thus,

automated analysis techniques may be required to ensure that the result of weaving

satisfies the desired correctness properties. In contrast to model composition, gen-

eral techniques for analysis of cross-cutting aspects have not been studied much,

mainly because weaving types are more diverse than the notions of parallel and

sequential composition.

We note that there is a lack of consensus regarding the use of the terms “merge”,

“composition” and “weaving” in the literature. For example, composition may sometimes
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Figure 1.1: Overview of the model fusion problem.

be used to refer to what we called merging or weaving in our descriptions. To avoid

confusion, in the remainder of this thesis, we follow the terminology that we established

above for referring to the different fusion activities.

1.2 Scope of This Thesis

In this thesis, we study merging and composition of behavioural models . Behavioural

models capture dynamic aspects of software systems and are described using formal

notations. We use an overview of a typical model fusion problem shown in Figure 1.1 to

provide a “big picture” of the research on behavioural model fusion and motivate this

thesis. As shown in Figure 1.1, in every model fusion problem, we start with a set of

models that are related. Our first task is to identify their relationships. Then, we need

to combine these inter-related models using an appropriate fusion activity. At the end,
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we need to analyse the result to ensure that the goal of the fusion problem at hand has

been achieved. We identify four key abstractions in this process: model, relationship,

fusion activity, and fusion goal. Providing sound engineering solutions for model fusion

problems requires finding suitable implementations for these abstractions. Below, we

outline notions of model, relationship, fusion activity, and fusion goal on which this

thesis is grounded.

1.2.1 Behavioural Models

Behavioural modelling formalisms are broadly divided into two classes: declarative (e.g.,

(Jackson, 2002; Spivey, 1989)), and operational (e.g., (Milner, 1989; Clarke et al., 1999;

Magee & Kramer, 2006)). Declarative formalisms are highly expressive, but not eas-

ily amenable to operationalization and consistency checking. In contrast, operational

models, commonly described in a state machine form (Harel & Politi, 1998; Jaffe et al.,

1991; Heitmeyer et al., 1995), are generally less expressive, but they lend themselves to

downstream development activities such as simulation, verification and code generation

(Clarke et al., 1996).

In this thesis, we focus on operational models described as state machines. A state

machine expressed in traditional formalisms, such as LTSs (Milner, 1989) or Kripke

structures (Clarke et al., 1999), is assumed to be a complete description of a system up

to some level of abstraction (Uchitel & Chechik, 2004). This assumption is limiting for

model fusion because in this context, models may be

• partial, e.g., when they describe incomplete information from different perspectives

(see Chapter 3).

• inconsistent, e.g., when they describe alternative or competing versions of an indi-

vidual feature (see Chapter 4).

• open, e.g., when they interact with their environment, and their behaviours crucially



Chapter 1. Introduction 6

depend on their environmental interactions (Harel & Pnueli, 1985) (see Chapter 5).

Recent work on behavioural modelling has proposed several state machine formalisms

to address the limitations of traditional notations. Of particular note are:

• Formalisms that distinguish between required behaviours of systems, about which

the modeller has full knowledge, and possible behaviours, which may be elabo-

rated incrementally in future refinements, e.g., Modal Transition Systems (Larsen

& Thomsen, 1988), Partial Kripke structures (Bruns & Godefroid, 2000), Kripke

Modal Transition Systems (Huth et al., 2001), and Mixed Transition Systems (Dams

et al., 1997; Cleaveland et al., 1995).

• Formalisms that distinguish between fixed behaviours of a system and behaviours

that can be customized based on end-user needs, e.g., Parameterized State Ma-

chines (Gomaa, 2004) and Mixed Transition Systems (Dams et al., 1997; Cleaveland

et al., 1995).

• Formalisms that differentiate between behaviours controlled by the system and

those controlled by the environment in which the system operates, e.g., Input/Output

Automata (Lynch & Tuttle, 1987), Interface Automata (de Alfaro & Henzinger,

2001), Alternating (or Agent-Based) Transition Systems (Alur et al., 1997), and

Tree Automata (Kupferman et al., 2001).

Different fusion problems call for different modelling formalisms. For each of the

problems we address in this thesis, we use a formalism that is best suited to the needs

of that problem.

1.2.2 Behavioural Relationships

Relationships between models play an important role in model fusion. In model merging,

relationships specify the overlaps between the input models. These relationships can be
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specified either implicitly (e.g., through name equivalence if models have a common

vocabulary, or identifier equivalence if models have common ancestors), or explicitly,

through some notion of mapping between model elements. Explicit mappings provide

the flexibility to relate models that use different vocabularies or apply a shared vocabulary

inconsistently (Brunet et al., 2006).

For structural models, e.g., domain and Entity Relationship diagrams, a relationship is

a set of correspondences between model elements, i.e., nodes and edges. A correspondence

between two elements is usually interpreted as the elements being the same (equal)

(Sabetzadeh & Easterbrook, 2006). Under this interpretation, relating distinct elements

a and b of a model M1 to an element c of a model M2 prescribes a collapse of all the

three elements a, b, and c into a single element of the merge.

For state machines, relationships are often specified by binary relations over their

state spaces. We argue that in state machine merging, equivalence is not a very useful

notion for their relationships because collapsing distinct states of one model may result

in the violation of certain behavioural properties (Sabetzadeh et al., 2007a). To avoid

this problem, we treat relationships as behavioural similarity, or similarity for short.

Specifically, if two behaviourally distinct states a and b of M1 correspond to a single

state c of M2, the merge will include distinct states (a, c) and (b, c) – the former state

combines the behaviours of a and c and the latter those of b and c. We prove that a merge

constructed this way can be characterized by the logical notion of common refinement

which is provably behaviour-preserving (Hussain & Huth, 2004; Uchitel & Chechik, 2004).

In model composition, relationships describe the communications between indepen-

dent but interacting models, by specifying the states or actions at which models synchro-

nize their behaviours (Clarke et al., 1999; Milner, 1989). For example, suppose models

M and M ′ communicate through a channel, whereby M writes an action aliased a to

the channel, and M ′ reads that action under alias b. The synchronization relation be-

tween M and M ′ is (a, b) indicating that the output action a (of M) synchronizes with
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the input action b (of M ′). Synchronization relations are often determined by top-level

design decisions such as the overall system architecture and (pre-specified) state machine

interfaces.

1.2.3 Behavioural Fusion

The focus of this thesis is on merge and composition which are key activities for combining

inter-related models.

Merge. Model merging is the process of combining overlapping models with respect

to their relationships. Merge is often used to combine models that are produced during

a distributed development process, e.g., models built by distributed teams over time or

across many geographical locations. For such models, we can never be entirely sure how

the models are related and how they should be combined. Many existing approaches to

model merging concentrate on syntactic and structural aspects of models to identify their

relationships and to combine them. For example, (Melnik, 2004) studies matching and

merging of conceptual database schemata, (Mehra et al., 2005) proposes a general frame-

work for merging visual design diagrams, (Sabetzadeh & Easterbrook, 2006) describes an

algebraic approach for merging requirements views, and (Mandelin et al., 2006) provides a

technique for matching architecture diagrams using machine learning. These approaches

treat models as graphical artifacts while largely ignoring their semantics. This treatment

provides generalizable tools that can be applied to many different modelling notations,

and is particularly suited to early stages of development, when models may have loose

or undefined semantics. However, a semantics-free outlook on model merging becomes

inadequate for later stages of development where models have rigorous semantics that

needs to be preserved in their merge. Furthermore, such outlook leaves unused a wealth

of semantic information that can help better mechanize the identification of relationships

between models.
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In contrast, research on behavioural models concentrates on establishing semantic

relationships between models. For example, (Whittle & Schumann, 2000) uses logi-

cal pre/post-conditions over object interactions for merging independently developed

sequence diagrams, and (Uchitel & Chechik, 2004) uses refinement relations for merg-

ing consistent state-machine models such that their behavioural properties are preserved.

These approaches, however, do not make the role of relationships explicit, and as such, do

not provide explicit means for computing and manipulating relationships between models.

This can make it difficult for modellers to guide the merge process, in particular, when

models have discrepancies in their vocabulary and are defined at different levels of ab-

straction. In our work, we propose a merging process which makes identification of model

relationships separate from model integration by providing two independent operators:

A Match operator for finding model relationships, and a Merge operator for combining

models with respect to their known relationships. We develop specific instances of these

operators for hierarchical state machines in Chapter 4.

Composition. Model composition refers to the process of assembling a set of models

describing autonomous but interacting features of a system, and verifying that the result

is correct. In contrast to merge, composition is a well-studied notion for behavioural mod-

els: Several notions of composition have been introduced for behavioural formalisms such

as LTSs and Kripke structures, and their semantic properties are well-understood (Mil-

ner, 1989; Lynch & Tuttle, 1987; Clarke et al., 1999). These notions often treat models as

independent components that communicate through shared interfaces, e.g., architectural

links or bindings (Magee & Kramer, 2006). Existing approaches generally assume that

relationships between models in a composition are known prior to the assembly phase.

For example, in (Jackson & Zave, 1998; Pomakis & Atlee, 1996; Hay & Atlee, 2000), a

precedence ordering derived from system requirements or specified by a domain expert

determines how models are related in a linear architecture. In (Plath & Ryan, 2001; Hall,
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2000), model relationships are specified through a base system, and in (Khoumsi, 1997)

through a central controller.

A major problem in constructing correct compositions is finding scalable verification

techniques. Verification of large compositions can be done using existing compositional

verification techniques, e.g., the assume-guarantee style of reasoning (Pnueli, 1985), when

the set of system components is fixed. However, these techniques become inadequate

in systems that evolve over time, where components are periodically added, removed,

or revised. To verify such systems, we need to design the components in a way that

verification results can be reused across evolutions. To achieve this goal, we exploit

behavioural design patterns that make verification change-aware.

1.2.4 Fusion Goal

Different fusion activities serve different purposes. In any situation where models are de-

veloped independently, merge provides a way to gain a unified perspective of the system,

to explore models and their relationships, and to identify inconsistencies (or variabilities)

between models (Sabetzadeh & Easterbrook, 2006; Nejati et al., 2007; Sabetzadeh et al.,

2007b). In this thesis, we use merge for two main purposes (1) combining partial infor-

mation coming from different sources, and (2) facilitating maintenance of variant system

specifications by combining their commonalities and identifying their variabilities.

Composition has been mainly studied as a way to break down the construction of a

large system into smaller self-contained components (Clarke et al., 1999). It has also been

considered for analysing interactions between different features of a system which is a

pervasive problem in feature-oriented development (Jackson & Zave, 1998) and software

product line engineering (Gomaa, 2004). In this thesis, we study composition of feature-

based systems with the goal of ensuring that global systems do not exhibit undesirable

interactions.
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1.3 Contributions of This Thesis

In this thesis, we study three instances of the model fusion problem motivated by real-

world applications. These problems are:

1. Merging partial models of a single feature with the goal of creating a more complete

description of that feature.

2. Merging complete but variant models of an individual feature with the goal of

capturing commonalities and variabilities between the variants and facilitating their

maintenance.

3. Composing a set of features with the goal of identifying and resolving their unde-

sirable interactions in a scalable way.

We motivate each of these problems using simple illustrative models. The general

strategy to solve these problems is to formalize each problem using abstract mathemat-

ical structures, work out a theoretical solution for the problem using the research on

behavioural models and logic, and turn the theoretical solution to an automated analysis

tool. We evaluate our solutions by applying them to models from a telecommunication

domain (Jackson & Zave, 1998) with the goal of assessing scalability and applicability

of our solutions. Finally, we outline the limitations of our work by discussing (1) the

practical details that we may have failed to address, and (2) directions that we have not

considered in our evaluation due to the lack of proper tool support and case studies, or

due to the burden of designing more realistic lab experiments.

In providing solutions to these problems, a number of significant results have been

achieved, which can be summarised as follows:

Explicit formalization of partiality and variability. We show that partial state ma-

chines are appropriate formalisms for describing complementary models with dif-

ferent vocabulary (Chapter 3). The semantics of these state machines allows us
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to explicitly specify the undefined behaviours of a model, and monotonically refine

those behaviours using knowledge coming from other sources while preserving the

rest of behaviours of that model.

We explicitly model behavioural variabilities between variant feature specifications

using parameterized state machines (Chapter 4). These state machines allow us

to distinguish between commonalities and variabilities of the input models in their

merge. We refine a parameterized state machine by extending its parameterized

(or variable) behaviours while preserving the total set of parameterized and non-

parameterized behaviours. In other words, refinement of these state machines is the

process of creating models that can capture a wider range of variabilities without

changing the overall behaviours of the models.

Using syntactic and semantic characteristics to identify model relationships.

We provide a Match operator for finding relationships between Statecharts mod-

els (Chapter 4). Our operator uses a range of heuristics including typographic

and linguistic similarities between the vocabularies of different models, structure

similarities between the hierarchical nesting of model elements, and semantic simi-

larities between models based on a quantitative notion of behavioural bisimulation.

We further provide an evaluation of this operator using models from a telecom-

munication domain, showing that our operator is effective for finding relationships

between independently developed models.

Semantic preserving merge procedures. By basing our notion of merge on common

refinement, we provide merge procedures that are able to preserve temporal proper-

ties, i.e., CTL/mu-calculus properties (Clarke et al., 1999), and (positive/negative)

traces (Grosu & Smolka, 2005), of the input models (Chapters 3 and 4). The

preservation results hold for both partial state machines and state machines with

variable behaviours. Furthermore, the merge procedures for state machines are im-
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plemented as part of a model management tool called TReMer (Sabetzadeh et al.,

2007a).

Using design patterns to make synthesis/verification change-aware. We provide

a change-aware algorithm for constructing system compositions that do not exhibit

undesirable behaviours (Chapter 5). The formal groundwork of our approach is

a behavioural design pattern that we assume to be implemented by every system

component. This pattern imposes a regularity condition on the behaviour of system

components, so that local changes, i.e., changes made to individual system com-

ponents, do not have ripple effects through the system, and hence do not trigger

a complete reconfiguration of the system. We use this regularity to reuse anal-

ysis results across local changes to the system, and thus making our algorithm

change-aware. In this thesis, we specifically focus on feature-based systems whose

components are arranged using a pipeline architectural style. We report on a pro-

totype implementation of our algorithm, and illustrate and evaluate it by applying

it to a set of AT&T telecom features.

In the remainder of this section, we briefly describe our solution to each of the three

problems outlined at the beginning of Section 1.3. A comparative overview of our solu-

tions is given in Table 1.1.

1.3.1 Merging Partial Feature Specifications

Our first study concerns combining models describing complementary perspectives on a

single feature of a system. Since these perspectives are partial, they use only a fragment

of the vocabulary that one needs in order to specify a complete description of the feature

under development. Partial state machines (e.g., (Huth et al., 2001)) provide an ideal

formalism for describing complementary perspectives by adopting an open-world seman-

tics. Under this semantics, predicates that are not explicitly specified to be true or false
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Merging Partial Feature

Specifications

Merging Variant Feature

Specifications

Composing Features and

Analyzing Interactions

Models Kripke modal transition sys-

tems

parameterized state ma-

chines

input/output state machines

Relationships Identifying states satisfying

the same temporal properties

Identifying overlapping and

non-overlapping behaviours

Synthesizing feature se-

quences

Fusion

Activity

Merging partial and consis-

tent state machines

Merging complete and poten-

tially inconsistent state ma-

chines

Composing independent sys-

tem features

Fusion Goal Preservation of temporal

properties of the original

models in their merges

Preservation of commonali-

ties and variabilities between

model variants

Constructing a composition

in which undesirable be-

haviours are absent

Table 1.1: Three fusion problems studied in this thesis.

are treated as unknown, and left for other perspectives to determine. This is in contrast

to a closed-world semantics where nothing can occur other than what is explicitly stated.

To merge partial state machines, we first check if they are consistent, i.e., if they

agree on the set of temporal properties that they satisfy. We do so by computing a

similarity relation between their states. This relation maps a pair of states s and t iff

every temporal property holding in s either holds in t, or evaluates to unknown. If such

a similarity relation exists, the construction of a merged model is straightforward: every

pair of consistent states is merged to form a single state in the result. We show that our

construction is a common refinement (Hussain & Huth, 2004) of the original models, and

thus is behaviour-preserving.

1.3.2 Merging Variant Feature Specifications

Our second study concerns the maintenance of variant specifications of individual system

features. The goal here is to merge the variants while preserving their points of difference

(i.e., variabilities). In contrast to our first study, variants describe alternative, rather than

complementary, descriptions of a feature. We formalize variants as parameterized state
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machines (e.g., (Gomaa, 2004)). Parameterized state machines allow us to explicitly

distinguish between common and variable behaviours.

In this study, variant models have major behavioural discrepancies because their de-

velopment was distributed across time and over different teams of people. As a result,

we cannot be entirely sure how variant models are related, making it infeasible to design

an exact procedure for computing relationships between variants. Instead, we provide

some assistance in identifying such relations by utilizing heuristics that imitate the rea-

soning of a domain expert. The relations found using such heuristics must always be

reviewed by analysts and adjusted by adding any missing correspondences and removing

any spurious ones. In our work, we use a number of heuristics including typographic and

linguistic similarities between the vocabularies of different models, structural similarities

between states, and semantic similarities between models based on a quantitative notion

of behavioural bisimulation.

Having specified a relation between the variants, the merge is computed as follows:

states mapped by the relation are combined and lifted to the merge; transitions with

similar ending points and identical labels, i.e., shared behaviours, are lifted to the merge

without any changes; and the transitions with different ending points or different labels,

i.e., non-shared behaviours, are first guarded by conditions denoting their origins and

then lifted to the merge. This approach guarantees that the merge preserves, in either a

guarded or an unguarded form, every behaviour of the input models. As in our first study,

preservation of behaviour is proven by showing that the merge is a common refinement,

noting that this refinement is over parameterized state machines rather than partial state

machines. We report on an implementation of our approach and evaluate it using a set

of state machines describing variant specifications of telecommunication features from

AT&T.
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1.3.3 Composing Features and Analyzing Interactions

In our third study, we provide a solution for synthesizing correct feature compositions.

Specifically, given a set of models describing different features of a system and a set of

safety properties describing undesirable behaviours, we construct a composition of the

models in which the given undesirable behaviours are absent. We formalize features as

I/O automata, which distinguish the input, internal, and output actions of each fea-

ture. This distinction between different types of actions is crucial for properly describing

communications between the features (Lynch & Tuttle, 1987).

In feature-based systems, features are typically configured in a sequential arrange-

ment where each feature interacts with its immediate neighbours, e.g., by passing mes-

sages (Fisler & Krishnamurthi, 2005). Nevertheless, since features are distinct modules

that run in parallel with one another, the overall behaviour of a system is defined as

a parallel composition rather than a sequential one. While the sequential architecture

of feature-based systems can potentially allow one to add or remove features dynami-

cally, the parallel composition defies this flexibility: Adding or removing features from a

parallel composition may result in unexpected undesirable behaviours. In general, when

features have unrestricted designs, addition or removal of features may require the system

to be reconfigured from scratch.

We identify and formalize a behavioural design pattern, called transparency, that

is used in the feature-based development. This pattern imposes a regularity condition

on the behaviour of features, so that changes made to individual features will not have

ripple effects through the system, and hence will not trigger a complete reconfiguration

of the system. We use this regularity to provide an efficient algorithm for synthesizing

correct feature arrangements. We report on a prototype implementation of our synthesis

algorithm, applying it to a set of AT&T telecom features to find a safe ordering for them

in the Distributed Feature Composition (DFC) architecture (Jackson & Zave, 1998).
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1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we set our notation and

introduce behavioural modelling formalisms, temporal logics, notions of composition and

refinement, and model checking. In Chapter 3, we describe our technique for merging

partial descriptions of a single feature (Nejati & Chechik, 2005). In Chapter 4, we

describe our work on merging models of variant feature specifications (Nejati et al.,

2007; Sabetzadeh et al., 2007a). In Chapter 5, we describe our approach to synthesizing

correct compositions of feature sets (Nejati et al., 2008). Finally, we conclude the thesis

in Chapter 6 with a summary and an outline of our future research directions.



Chapter 2

Preliminaries

The work presented in this thesis uses different notions of behavioural modelling for-

malisms and behaviour preserving relations. This chapter gives an overview of these

notions and fixes the notation used in the later chapters. In Section 2.1, we present

an overview of behavioural models of computation. In Section 2.2, we define semantics

of these models, and in Section 2.3, we review behaviour-preserving relations, and de-

scribe preservation theorems which establish connection between syntax and semantic

properties of behavioural models.

2.1 Behavioural Modelling Formalisms

There are two general approaches to modelling operational behaviour of software systems:

state-based, and action-based. In the state-based approach, an execution of a system is

viewed as a sequence of states in which every state is an assignment of values to some

set of propositions. The action-based approach views an execution as a sequence of

actions. These two approaches are in principle equivalent: An action can be modeled

as a state change, and a state can be modeled as an equivalence class of sequences of

actions. However, the two approaches have traditionally taken very different formal

directions (Abadi & Lamport, 1993). State-based approaches are often rooted in logic:

18
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a specification can be seen as a logical formula. Action-based approaches have tended to

use algebra: a specification is seen as an object that is manipulated algebraically (e.g.,

Milner’s CCS (Milner, 1989)). In this thesis, we use both state-based and action-based

formalisms.

2.1.1 State-based Formalisms

We begin by introducing a standard and widely-used state-based modelling language

known as Kripke structure.

Definition 2.1.1 (Kripke structure) A Kripke structure is a tuple (S, s0, R, L,AP ),

where

• S is a set of states;

• s0 ∈ S is an initial state;

• R ⊆ S × S is a transition relation;

• AP is a set of atomic propositions; and

• L : S → 2AP is an interpretation function that determines what atomic propositions

hold in each state.

An example of a Kripke structure is shown in Figure 2.1(a), where

• S = {s0, s1, s2}, and s0 is the initial state;

• R = {(s0, s1), (s0, s2), (s1, s1), (s2, s0), (s2, s1)}

• L(s0) = {p, r}, L(s1) = {q, r}, L(s2) = {p, q, r}; and

• AP = {p, q, r}
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Figure 2.1: Examples of state-based formalisms: (a) A Kripke structure, and (b) a Kripke

Modal Transition System (KMTS).

Kripke structures are rather primitive models of computation. We sometimes refer to

Kripke structures as classical transition systems. More expressive state-based formalisms

often extend Kripke structures with additional sets of transitions, or assume that their

atomic propositions can accept non-boolean values. Below, we first introduce the 3-

valued logic and then describe a non-classical state-based formalism, namely, Kripke

Modal Transition System(KMTS) (Huth et al., 2001), which is defined based on the

3-valued logic.

We denote by 3 the 3-valued Kleene logic (Kleene, 1952) with elements true (t),

false (f), and maybe (m). The truth ordering ≤ of this logic is defined as f ≤ m ≤ t,

and negation as ¬t = f and ¬m = m. An additional ordering � relates values based on

the amount of information: m � t and m � f, so that m represents the least amount of

information. We also define the meet and the join operators with respect to �, denoting

them by u and t, respectively. For example, m u t = m. Note that t t f is not defined.

The logic 3 and its truth and information orderings are shown in Figure 2.2.

Definition 2.1.2 (KMTS) (Huth et al., 2001) A Kripke Modal Transition System

(KMTS) is a tuple (S, s0, R
must, Rmay, L, AP ), where S is a set of states, s0 ∈ S is the ini-

tial state,

Rmust ⊆ S × S and Rmay ⊆ S × S are must and may transition relations, respectively,
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Figure 2.2: The 3-valued Kleene logic.

L : S → 3AP is a 3-valued labelling function, and AP is the set of atomic propositions.

Using may transitions and 3-valued propositions, KMTSs allow explicit modelling of

what is not known about the behaviour of a system. Figure 2.1(b) shows an example of

a KMTS, where

• S = {t0, t1, t2} and t0 is the initial state;

• Rmust = {(t0, t1), (t1, t2), (t2, t0)};

• Rmay = {(t0, t1), (t1, t2), (t2, t0), (t0, t2)};

• L(t0) = {(p, t), (q, t)}, L(t1) = {(p,m), (q, t)}, L(t2) = {(p, t), (q, f)}; and

• AP = {p, q}

In Figure 2.1(b), transitions that are in Rmust ∩ Rmay are shown as solid arrows, and

those that are in Rmay but not in Rmust – as dotted arrows. Note that Rmust ⊆ Rmay in

this KMTS.

2.1.2 Action-based Formalisms

Labeled Transition System (LTS) (Milner, 1989) is a widely used action-based formalism

for modelling and analyzing the behaviour of concurrent and distributed systems.
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Figure 2.3: Examples of action-based formalisms: (a) An example of LTS, and (b) an

example of a Mixed Transition System (MixTS).

Definition 2.1.3 (LTS) (Milner, 1989) An LTS is a tuple (S, s0, R,E) where S is a

set of states, s0 ∈ S is an initial state, R ⊆ S × E × S is a set of transitions, and E is

a set of actions. We write a transition (s, e, s′) ∈ R as s
e−→ s′.

An example LTS is shown in Figure 2.3(a) where

• S = {s0, s1, s2, s3}, and s0 is the initial state;

• E = {a, b, c, d}; and

• R = {(s0, a, s1), (s1, b, s2), (s1, d, s1)(s2, c, s3)}.

A trace of an LTS M is a finite sequence σ of actions that M can perform starting

at its initial state. For example, ε, a, a · b, a · b · c, and a · d · d · b are traces of the LTS

in Figure 2.3(a). The set of all traces of M is called the language of M , denoted L(M).

Let Σ be a set of symbols. We say σ = e0e1 . . . en is a trace over Σ if ei ∈ Σ for every

0 ≤ i ≤ n. We denote by Σ∗ the set of all finite traces over Σ.

Let M be an LTS, and E ′ ⊆ E. We define M@E ′ to be the result of restricting the

set of actions of M to E ′, i.e., replacing actions in E \E ′ with the unobservable action τ

and reducing E to E ′. For an LTS M with τ -labelled transitions, we consider L(M) to

be the set of traces of M with the occurrences of τ removed. This is a standard way for

hiding unobservable computations of LTSs (Larsen et al., 1995).

Similar to Kripke structures, LTSs can be augmented with additional transition rela-

tions to express non-classical properties of systems such as partiality and inconsistency.
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Below, we define Mixed Transition Systems (MixTS) (Larsen & Thomsen, 1988; Dams

et al., 1997) which is an action-based language with the same expressive power as KMTS.

Definition 2.1.4 (MixTS) (Larsen & Thomsen, 1988; Dams et al., 1997) A Mixed

Transition System (MixTS) is a tuple (S, s0, R
must , Rmay , E) where both (S, s0, R

must , E)

and (S, s0, R
may , E) are LTSs.

Figure 2.3(b) illustrates a MixTS, where

• S = {t0, t1, t2, t3, t4}, and t0 is the initial state;

• E = {a, b, c, d};

• Rmust = {(t0, a, t1), (t1, b, t3), (t2, c, t4)}; and

• Rmay = {(t0, a, t1), (t1, b, t3), (t2, c, t4), (t0, a, t2), (t1, d, t4)}.

Similar to KMTSs, transitions that are in both Rmust and Rmay are shown as solid arrows

in Figure 2.3(b), and those that are only in Rmay – as dashed arrows. Given a MixTSM =

(S, s0, R
must , Rmay , E), we refer to Mmust = (S, s0, R

must , E) and Mmay = (S, s0, R
may , E)

as must and may fragments of M , respectively. We write a transition (s, e, s′) ∈ Rmust

as s
e−→

must
s′, and a transition (s, e, s′) ∈ Rmay as s

e−→
may

s′.

2.2 Semantics of Models

The semantics of state-based models is often described using logical specifications, in

particular, temporal logics. In contrast, it is more convenient to define the semantics of

action-based models as sets of traces or trees of actions that they can generate. Specif-

ically, in this thesis, we give the semantics of action-based models using traces because

they are expressive enough for the properties in our case studies in Chapters 4 and 5.
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2.2.1 Logical Semantics of State-based Models

In this section, we define two temporal logics, namely, propositional µ-calculus (Lµ) (Kozen,

1983), and Computational Tree Logics (CTL) (Clarke et al., 1986), and describe the se-

mantics of Kripke structures and KMTSs using these two logics.

Temporal Logics. We begin by defining the logic Lµ.

Definition 2.2.1 (Lµ) (Kozen, 1983) Let Var be a set of fixpoint variables, and AP be

a set of atomic propositions. The logic Lµ(AP ) is the set of formulas generated by the

following grammar:

ϕ ::= t | p | Z | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ | µZ · ϕ(Z)

where p ∈ AP , Z ∈ Var, and ϕ(Z) is syntactically monotone in Z.

The derived connectives are defined as follows:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2)

AXϕ = ¬EX¬ϕ

νZ · ϕ(Z) = ¬µZ · ¬ϕ(¬Z)

We often write Lµ for the set of µ-calculus formulas over some unspecified set of

atomic propositions. An Lµ formula ϕ is well formed if and only if in every subformula

of ϕ of the form µZ · ψ(Z), the fixpoint variable Z occurs under the scope of an even

number of negations in ψ. From this point onwards, we consider well formed formulas

only.

The intended meaning of the modal operator EX is “an existence of an immediate

future”. For example, if “p” means that p holds now, EXp means that there exists an

immediate future where p holds, and AXp means that p holds in all immediate futures.

The quantifiers µ and ν stand for the least and greatest fixpoint, respectively.
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An occurrence of a variable Z in a formula ϕ is bound if it appears in the scope of a

µ quantifier and is free otherwise. For example, Z is free in p ∨ EXZ, and is bound in

µZ · p ∨ EXZ. A formula ϕ is closed if it does not contain any free variables.

Definition 2.2.2 (Semantics of KMTS) (Huth et al., 2001) Let K be a KMTS, ϕ

be an Lµ formula, and e : Var → P(S) be an environment. We denote by ||ϕ||K>e the set

of states in K that satisfy ϕ, and by ||ϕ||K⊥e the set of states in K that refute ϕ. The sets

||ϕ||>e and ||ϕ||⊥e are defined as follows:

||true||>e = S ||ϕ1 ∧ ϕ2||>e = ||ϕ1||>e ∩ ||ϕ2||>e

||true||⊥e = ∅ ||ϕ1 ∧ ϕ2||⊥e = ||ϕ1||⊥e ∪ ||ϕ2||⊥e

||p||>e = {s | L(s, p) = t} ||EXϕ||>e = ex(||ϕ||>e)

||p||⊥e = {s | L(s, p) = f} ||EXϕ||⊥e = ax(||ϕ||⊥e)

||Z||>e = e(Z) ||µZ · ϕ||>e =
⋂
{S ′ ⊆ S | ||ϕ||>e[Z → S ′] ⊆ S ′}

||Z||⊥e = e(Z) ||µZ · ϕ||⊥e =
⋃
{S ′ ⊆ S | S ′ ⊆ ||ϕ||⊥e[Z → S ′]}

||¬ϕ||>e = ||ϕ||⊥e ||¬ϕ||⊥e = ||ϕ||>e

where ex(S′) = {s | ∃s′ ∈ S · Rmust(s, s′) ∧ s′ ∈ S′} and ax(S′) = {s | ∀s′ ∈ S · Rmay(s, s′) ⇒

s′ ∈ S′}.

For a closed Lµ formula ϕ, ||ϕ||Kλ e1 = ||ϕ||Kλ e2 for any e1 and e2 and λ ∈ {>,⊥}.

Thus, e can be safely dropped when ϕ is closed. We also omit K when it is clear from

the context. Note that Kripke structures are special cases of KMTSs, i.e., a Kripke

structure K is a KMTS where Rmust = Rmay . Thus, the above semantics applies to

Kripke structures, as well.

In this thesis, we often express temporal formulas in CTL which is a fragment of Lµ.

The CTL syntax is defined w.r.t. a set AP of atomic propositions as follows:

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | AXϕ | E[ϕUϕ] |

A[ϕUϕ] | E[ϕŨϕ] | A[ϕŨϕ]
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where p ∈ AP . The operators AU and EU are universal and existential until opera-

tors, respectively; and operators EŨ and AŨ are their duals, respectively. Other CTL

operators can be defined from these:

AGϕ = A[false Ũϕ] EGϕ = E[false Ũϕ]

AFϕ = A[true Uϕ] EFϕ = E[true Uϕ]

The informal meaning of the CTL temporal operators is: given a state and paths

emanating from it, ϕ holds in one (EX) or all (AX) next states; ϕ holds in some future

state along one (EF ) or all (AF ) paths; ϕ holds globally along one (EG) or all (AG)

paths, and ϕ holds until a point where ψ holds along one (EU) or all (AU) paths.

Temporal operators EX, EG, and EU together with the propositional connectives form

an adequate set (i.e., all other operators can be defined from them).

CTL has a fixpoint characterization which provides a straightforward procedure for

translating CTL to Lµ. Thus, the formal semantics of CTL over KMTSs and Kripke

structures follows from Definition 2.2.2.

3-valued semantics of KMTS. A KMTS K is consistent if Rmust ⊆ Rmay . For every

consistent KMTS K and ϕ ∈ Lµ, ||ϕ||> ∩ ||ϕ||⊥ = ∅, i.e., a consistent K does not satisfy

ϕ ∧ ¬ϕ.

The semantics of Lµ over a consistent KMTS K can be described as a 3-valued

function ||.||K3 : Lµ × S → 3 as follows,

• ||ϕ||K3 (s) = t if s ∈ ||ϕ||K> ,

• ||ϕ||K3 (s) = f if s ∈ ||ϕ||K⊥ , and

• ||ϕ||K3 (s) = m, if s /∈ ||ϕ||K>∧ /∈ ||ϕ||K⊥ .

The value of ϕ in K, denoted ||ϕ||K3 , is defined as ||ϕ||K3 (s0), where s0 is the initial state

of K.
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We now present a few example properties over the Kripke structure and the KMTS

in Figure 2.1:

Propositional property (ϕ = p ∧ q). This property states that both p and q must be

true in the initial state. Property ϕ holds in the KMTS in Figure 2.1(b) because

the initial state satisfies both p and q. However, this property does not hold in the

model in Figure 2.1(a) because the initial state does not satisfy q.

Modal property (ϕ = AXq). This property states that q is true in all the immediate

successors of the initial state. Property ϕ holds in the model in Figure 2.1(a)

because all the immediate successors of s0 satisfy q. This property evaluates to

m over the KMTS in Figure 2.1(b) because the only transition that violates this

property is a may, but not must transition. More specifically, ϕ holds in the must

fragment of this model, but not in its may fragment, making the overall value of ϕ

unknown.

Reachability property (ϕ = EFq). This property states that there is a path from the

initial state to a state satisfying q. Property ϕ holds in both models in Figure 2.1

because there is a path from their initial state to a state satisfying q. Note that

for the KMTS in Figure 2.1(b), this path is present in both of its must and may

fragments.

Invariance property (ϕ = AGp). This property states that p holds in all the states of

a model. Property ϕ does not hold in the model in Figure 2.1(a) because p is false

in state s1, and it evaluates to m in the model in Figure 2.1(b) because the value

of p is unknown in state t1.

2.2.2 Trace Semantics of Action-based Models

In this thesis, we formalize properties over action-based models as finite positive/negative

traces. These traces can describe safety and finitary liveness properties. Note that these
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traces cannot capture arbitrary liveness, fairness, or mixed safety and liveness properties,

and hence, are less expressive than both Lµ and CTL.

Positive traces characterize the behaviours that a model must provide, and negative

traces the behaviours that are forbidden (Grosu & Smolka, 2005). For example, consider

a property ϕ1 which states that action b should follow action a. This property is a positive

trace. To satisfy ϕ1, the trace a·b should be exhibited by the model. In contrast, consider

property ϕ2 which states that action c should not follow action a. This property is a

negative trace. To satisfy this property, the trace a · c must be excluded from the model

traces.

Note that, in principle, negative traces suffice for capturing safety and finitary liveness

properties. However, negative traces may sometimes hold vacuously in a model. For

example, a model that has an empty or a highly restricted set of behaviours due to

deadlock situations may satisfy negative traces vacuously. In such cases, positive traces

are helpful because they can describe the require behaviours of a model.

Let M = (S, s0, E,R) be an LTS, and let σ = e1e2 . . . en be a trace over E ′ where

E ′ ⊆ E. We say M satisfies a positive trace σ if σ ∈ L(M@E ′), and dually, M satisfies a

negative trace σ if σ /∈ L(M@E ′). Thus, model checking an LTS against positive/negative

traces amounts to solving the language membership problem for finite automata. Here,

we formulate this problem in terms of the parallel composition operator. This is similar to

the approach taken in the LTSA tool for model checking LTSs (Magee & Kramer, 2006).

We first introduce the notion of parallel composition over LTSs, and then describe model

checking of LTSs and MixTSs using positive/negative traces.

Composition. The composition of two LTSs that run asynchronously and communicate

through synchronous message passing is formalized as parallel composition (Milner, 1989).

The parallel composition operator || is a commutative and associative operator that

combines the behaviours of two LTSs by synchronizing the actions that are present in
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Figure 2.4: Examples of property LTSs: (a) A property LTS for the trace a · b, and (b)

a property LTS for the trace a · c.

both LTSs and interleaving the remaining actions.

Definition 2.2.3 (Parallel Composition) (Milner, 1989) Let M1 = (S1, s0, R1, E1)

and M2 = (S2, t0, R2, E2) be LTSs. The parallel composition of M1 and M2, denoted

M1||M2, is defined as an LTS (S1 × S2, (s0, t0), R,E1 ∪ E2), where R is the smallest re-

lation satisfying the following:

R = {((s, t), e, (s′, t)) | (s, e, s′) ∈ R1 ∧ e 6∈ E2}
⋃

{((s, t), e, (s, t′)) | (t, e, t′) ∈ R2 ∧ e 6∈ E1}
⋃

{((s, t), e, (s′, t′)) | (s, e, s′) ∈ R1 ∧ (t, e, t′) ∈ R2}

Model Checking of LTSs. To determine if a positive or negative trace holds over an

action-based model, we first translate that trace to an LTS. Formally, let σ = e0e1 . . . en

be a trace over E ′. A property LTS Mσ is a tuple (S, sσ, R,E
′) where

S = {sσ′ | σ′ is a (possibly empty) suffix of σ}

R= {(sσ′ , e, sσ′′) | σ′ = e.σ′′ ∧ σ′ is a suffix of σ}
⋃

{(sσ′ , e
′, sσ′) | σ′ = e.σ′′ ∧ e′ ∈ E ′ ∧ e 6= e′ ∧ σ′ is a suffix of σ}

For example, Figure 2.4(a) shows the property LTS for the trace σ = a · b and

Figure 2.4(b) – the property LTS for the trace σ = a · c. Note that state sε, which

corresponds to the empty suffix ε, is without outgoing transitions in every property LTS.

Reachability of this state determines whether M can generate σ. That is, an LTS M

generates σ iff state sε is reachable in Mσ||M , and M does not generate σ iff state sε
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is not reachable in Mσ||M . Thus, model checking an LTS M against a positive or a

negative trace σ can be done by composing M with Mσ and checking the reachability of

sε. For example, it can be seen that the LTS in Figure 2.3(a) satisfies the positive trace

a · b because this LTS is can generate this positive trace. This LTS violates the negative

trace a · c because its language includes this negative trace.

Model checking of MixTSs. To describe the semantics of positive and negative traces

over MixTSs, we note that MixTSs are not classical transition systems, and hence, their

semantics is not boolean. Similar to KMTSs, a MixTS is consistent when Rmust ⊆ Rmay .

The semantics of positive/negative traces over consistent MixTSs is 3-valued. The value

of a positive trace σ over a MixTS M is as follows:

• σ is t over M if Mmust satisfies σ

• σ is f over M if Mmay does not satisfy σ

• σ is m over M if Mmust does not satisfy σ, but Mmay satisfies σ.

Dually, the value of a negative trace σ over a MixTS M is as follows:

• σ is t over M if Mmay satisfies σ

• σ is f over M if Mmust does not satisfy σ

• σ is m over M if Mmust satisfies σ, but Mmay does not satisfies σ.

For example, the consistent MixTS in Figure 2.3(b) satisfies the positive trace a·b because

its must fragment can generate this trace. However, the value of the negative trace a · c

over this model is m because its may fragment can generate this negative behaviour. Note

that for consistent MixTSs, we have L(Mmust) ⊆ L(Mmay). Thus, it never happens that

a trace is generated by Mmust , but not by Mmay . The above semantics shows that model

checking of positive/negative traces over MixTSs can be done via two calls to a classical
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LTS model-checker: One for checking Mmust , and the other for checking Mmay . This

allows us to implement a model checker for MixTSs using existing LTS model checkers,

e.g., the LTSA tool (Magee & Kramer, 2006).

2.3 Behaviour Preserving Relations

In this section, we describe behaviour preserving relations over the formalisms introduced

in Section 2.1. We then present some theorems, showing how these relations can preserve

semantic properties of behavioural models.

2.3.1 Relations over State-based Formalisms

From the point of view of a temporal logic, two models are equivalent if there does not

exist any formula that can distinguish between them. The relation that structurally

characterizes this equivalence is known as bisimulation relation.

Definition 2.3.1 (Bisimulation) (Milner, 1989) Let K1 and K2 be Kripke structures.

A bisimulation relation ρ ⊆ S1 × S2 is the largest relation where ρ(s, t) iff

1. L(s) = L(t)

2. ∀s′ ∈ S1 ·R1(s, s
′) ⇒ ∃t′ ∈ S2 ·R2(t, t

′) ∧ ρ(s′, t′)

3. ∀t′ ∈ S2 ·R2(t, t
′) ⇒ ∃s′ ∈ S1 ·R2(s, s

′) ∧ ρ(s′, t′)

We say K1 is bisimilar to K2 and write K1 ≡ K2 if there is a bisimulation relation ρ

such that ρ(s0, t0) where s0 and t0 are the initial states of K1 and K2, respectively.

It is known that Lµ is a logical characterization of bisimulation (Milner, 1989). In other

words, states s and t are bisimilar if and only if they satisfy the same Lµ properties.

Since bisimulation is an equivalence relation, it cannot relate models defined at dif-

ferent levels of abstraction or models that capture different amounts of knowledge. Such
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relations should be formalized by preorders (�) rather than by equivalences (≡). Refine-

ment relation defined over KMTSs is an example of a preorder that captures the notion

of “more defined than” relation between a pair of KMTSs (Larsen & Thomsen, 1988).

Definition 2.3.2 (Refinement) (Larsen & Thomsen, 1988) Let K1 and K2 be KMTSs

where AP1 = AP2 = AP. A refinement relation ρ ⊆ S1×S2 is the largest relation where

ρ(s, t) iff

1. ∀p ∈ AP · L1(s, p) � L2(t, p)

2. ∀s′ ∈ S1 ·Rmust
1 (s, s′) ⇒ ∃t′ ∈ S2 ·Rmust

2 (t, t′) ∧ ρ(s′, t′)

3. ∀t′ ∈ S2 ·Rmay
2 (t, t′) ⇒ ∃s′ ∈ S1 ·Rmay

1 (s, s′) ∧ ρ(s′, t′)

We say K2 refines K1 and write K1 � K2, if there is a refinement ρ such that ρ(s0, t0),

where s0 and t0 are the initial states of K1 and K2, respectively.

Intuitively, t refines s if the variables in s are less defined than those in t (condition 1);

every must transition from s is matched by some must transition from t (condition 2);

and every may transition from t is matched by some may transition from s (condition

3).

Refinement preserves Lµ formulas (Huth et al., 2001). This is because if K2 refines

K1 then the must behaviors of K1 are a subset of the must behaviors of K2; and the may

behaviors of K2 are a subset of the may behaviors of K1.

Theorem 2.3.1 (Huth et al., 2001) Let K1 and K2 be KMTSs. If K1 � K2, then

∀ϕ ∈ Lµ · ||ϕ||K1
3 � ||ϕ||K2

3

The above theorem implies that if any Lµ property is t (resp. f) over K1, then it is also

t (resp f) over K2. However, if a property evaluates to m over K1, it may or may not

keep its value over K2. Note that since CTL is a fragment of Lµ, the above preservation

result holds for CTL as well.
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2.3.2 Relations over Action-based Formalisms

Refinement between two LTSs at different levels of abstraction is usually formalized by

simulation or a variant of simulation. In this thesis, we use the notion of weak simulation

(also known as observational simulation) to check the existence of a refinement relation

between two LTSs (Milner, 1989). This notion can be used for relating LTSs with different

sets of actions by replacing their non-shared actions with τ . For states s and s′ of an

LTS M , we write s
τ

=⇒ s′ to denote s(
τ−→)∗s′. For e 6= τ , we write s

e
=⇒ s′ to denote

s(
τ

=⇒)(
e−→)(

τ
=⇒)s′.

Definition 2.3.3 (Simulation) (Milner, 1989) Let M1 and M2 be LTSs, where E1 =

E2 = E. A relation ρ ⊆ S1 × S2 is a weak simulation, or simulation for short, where

ρ(s, t) iff

1. ∀s′ ∈ S1 · ∀e ∈ E ∪ {τ} · s e−→ s′ ⇒ ∃t′ ∈ S2 · t
e

=⇒ t′ ∧ ρ(s′, t′)

We say M2 simulates M1, written M1 �M2, if there is a simulation ρ such that ρ(s0, t0),

where s0 and t0 are the initial states of M1 and M2, respectively.

Theorem 2.3.2 (Milner, 1989) Let M1 and M2 be LTSs where M1 � M2. Then,

L(M1) ⊆ L(M2).

Based on the above theorem, simulation is a sufficient condition for trace containment.

This shows that if M1 satisfies a positive trace, so does M2; and dually, if M2 satisfies a

negative trace, so does M1. Recall that L(M1) and L(M2) capture only the observable

behaviours of M1 and M2. Thus, Theorem 2.3.2 states that if M1 � M2, then M2 can

generate every observable trace of M1, but not necessarily traces with τ -steps.

The notion of refinement over MixTSs is defined using two dual simulation relations:

One relating the must fragments, and the other – the may fragments. For states s and

s′ of a MixTS M , we write s
e

=⇒
must

s′ to denote s
e

=⇒ s′ in Mmust , and s
e

=⇒
may

s′ to

denote s
e

=⇒ s′ in Mmay .
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Definition 2.3.4 (Refinement) (Larsen & Thomsen, 1988) Let M1 and M2 be MixTSs.

A relation ρ ⊆ S1 × S2 is a refinement, where ρ(s, t) iff

1. ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

must
s′ ⇒ ∃t′ ∈ S2 · t

e
=⇒

must
t′ ∧ ρ(s′, t′)

2. ∀t′ ∈ S2 · ∀e ∈ E2 ∪ {τ} · t
e−→

may
t′ ⇒ ∃s′ ∈ S1 · s

e
=⇒

may
s′ ∧ ρ(s′, t′)

We say M2 refines M1, written M1 � M2, if there is a refinement ρ such that ρ(s0, t0),

where s0 and t0 are the initial states of M1 and M2, respectively.

Theorem 2.3.3 (Larsen & Thomsen, 1988) Let M1 and M2 be MixTSs where M1 �

M2. Then, L(Mmust
1 ) ⊆ L(Mmust

2 ), and L(Mmay
2 ) ⊆ L(Mmay

1 ).

The above theorem implies that if any positive/negative trace is t (resp. f) over M1,

then it is also t (resp f) over M2. However, if a trace evaluates to m over M1, it may or

may not keep its value over M2.

2.4 Summary

In this chapter, we presented both state-based and action-based modelling formalisms,

as well as some background information on the semantics of these formalisms and the

behaviour-preserving relations defined over these formalisms.

We use the concepts introduced in this chapter throughout this thesis. Specifically,

in Chapter 3, we concentrate on state-based models, and use KMTSs to formalize partial

descriptions of individual features. In Chapters 4, we use parameterized state machines,

inspired by MixTSs, to describe variant feature specifications. Finally, in Chapter 5,

we use I/O automata, an extension of LTSs, to analyse interactions between models

describing different system features.
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Merging Partial Behavioural Models

3.1 Introduction

In this chapter, we focus on the problem of merging partial and consistent models of an

individual feature with the goal of producing a more comprehensive description of that

feature. Our merging approach is defined for state machine models describing the same

feature of a system from different perspectives and possibly using different vocabulary.

To unify the vocabulary of these state machines, we formalize them as partial state

machines with 3-valued semantics. We propose a merge procedure that automatically

determines whether a pair of partial state machines are consistent, and if so, computes

their merge. We illustrate our merging approach using two complementary perspectives

on a photo-taking functionality of a camera, and report on an implementation of our

approach.

3.1.1 Motivating Example

We illustrate the problem of merging partial models on a pair of specification models of

the photo-taking feature of a camera1. To take a photo, a user needs to press the shutter

1The example is adapted from (Sabetzadeh & Easterbrook, 2003).

35
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Figure 3.1: Models of the photo-taking feature of a camera: (a) CM1 and (b) CM2.

button half-way. When focus is achieved, the shutter button can be pressed completely to

take the picture. Under low-light conditions, the built-in flash should fire automatically.

Two different specification models of a camera, CM1 and CM2, are shown in Fig-

ure 3.1. The goal of CM1 is to specify the focusing feature and the behaviour of the

camera’s shutter. In the first state of this model (s0), the shutter is closed and the focus

is not yet achieved; in the second (s1), the focus is achieved; and in the third (s2), the

shutter becomes open so that the photo can be taken. Like CM1, model CM2 (see Fig-

ure 3.1(b)) describes the focusing feature. In addition to focusing, CM2 also describes

the built-in flash of the camera. The flash is disabled in the first and second states (t0

and t1). After state t1, depending on the light intensity, the flash is either fired (state t2)

or remains disabled (state t3).

In this example, we assume vocabulary consistency, i.e., there is no name clash, and

no two distinctly named propositions represent the same thing. This means that these

two models use Focusing, Shutter open, and Flashing to represent whether the focus

is achieved, whether the camera’s shutter is open, and whether the flash is enabled,

respectively. We refer to the set of propositions used by a model as its vocabulary (e.g.,

{Focusing, Shutter open} for CM1), and the union of all vocabularies as the unified

set of propositions. In general, achieving and maintaining vocabulary consistency is a
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Property Description CTL formulation

P1 Whenever focus is achieved, we can take a

picture.

AG(fo⇒ EXs)

P2 We cannot take a picture without achiev-

ing focus.

¬E[¬fo U s]

P3 After focus is achieved, we take a photo

(with or without flash).

AG
(
fo ⇒ (EXfl ∧

EX¬fl ∧ AXs)
)

P4 Camera’s flash cannot fire while camera is

trying to achieve focus.

AG(¬fo ∨ ¬fl)

P5 Whenever flash is enabled, shutter is open. AG(fl→ s)

Table 3.1: Properties of the camera models.

difficult problem, studied, e.g., by (Gruber, 1991). We consider this issue to be orthogonal

to the techniques presented in this thesis.

In the rest of this chapter, we abbreviate the propositions Focusing, Flashing, and

Shutter open by fo, fl and s, respectively. We denote the set {fo, fl, s}, the unified

set of propositions for the camera model, by APu.

State-machine models are typically constructed to ensure that the resulting design

satisfies (or violates) certain properties. For example, some properties of the camera

example are shown in Table 3.1. These properties are either representations of individual

executions of the system, such as use cases or scenarios (e.g., P1, P2 and P3), or

statements about all system executions, such as invariants (e.g., P4 and P5). P1 and P3

are positive scenarios whereas P2 is a negative scenario: it prohibits behaviours where

state Shooting is immediately followed by state Ready in Figure 3.1. It is easy to see

that CM1 satisfies P1 and P2, and CM2 satisfies P4. However, we cannot determine the

value of P3 and P5 because it uses two propositions fl and s, each of which is present

in only one of CM1 and CM2.
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3.1.2 Contributions of This Chapter

Models CM1 and CM2 provide two complementary descriptions of the camera’s photo-

taking functionality: They both describe the focusing feature (using proposition fo), but

CM1 additionally describes the shutter button (using proposition s), and CM2 – the

built-in flash (using proposition fl). To be able to evaluate properties involving non-

shared propositions, like P3 and P5, we need to merge CM1 and CM2. Computing such

a merged model involves answering several questions. Particularly,

• How can we unify the vocabulary of different models?

• How can we evaluate properties containing non-shared propositions over each indi-

vidual model?

• How can we determine if the models are consistent?

• How can we merge consistent models?

In this chapter, we answer these questions for state machine models. The key ar-

gument in our work is that the classical semantics of state machines is not suitable for

describing complementary perspectives of system features. Under this semantics, it is not

clear how queries containing non-shared propositions should be evaluated. To address

this problem, we use state machines with partial semantics (or partial state machines).

In partial state machines, propositions can accept the value unknown (or maybe) in addi-

tion to true and false. This allows us to extend the vocabulary of each individual model

by adding non-shared propositions as maybe propositions to every state of that model.

After extending the vocabulary of a model, we can verify it against every property de-

fined over APu; however, some properties may evaluate to maybe because the model may

not be elaborate enough to generate a conclusive result for these properties. The maybe

properties often indicate the behaviours that are left unspecified in one model and can be

refined by merging that model with other perspectives. Note that sometimes properties
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evaluate to maybe over partial models not because the models do not contain sufficient

information for conclusive evaluation of properties of interest, but because of the in-

herent imprecision of the logic that we use to specify the incompleteness, i.e., 3-valued

logic (Godefroid & Jagadeesan, 2002; Godefroid & Huth, 2005; Gurfinkel & Chechik,

2005; Nejati et al., 2006).

3.1.3 Organization of This Chapter

The rest of this chapter is organized as follows: In Section 3.2, we propose a merge

procedure that automatically determines whether two input state machines are consis-

tent, and if so, computes their merge. In Section 3.3, we discuss the implementation of

our procedure. We compare the approach proposed in this chapter with related work in

Section 3.4, and summarize the chapter in Section 3.5.

3.2 Merging Partial Consistent Models

In this section, we look at the problem of merging partial and consistent state machines.

Section 3.2.1 provides background on partial state machine formalisms and introduces

a logical notion of consistency between them. Section 3.2.2 describes our approach to

merging consistent and partial models. Similar to the prior work on merging behavioural

models (Uchitel & Chechik, 2004), we define merge as a common refinement of the input

models; however, in this chapter, we consider state-based models, whereas in (Uchitel &

Chechik, 2004), action-based formalisms were studied.

3.2.1 Partial Models and Consistency

Requirements models are inherently incomplete. Each model can only focus on a few

features of a system, and thus, uses just a fraction of the unified set of propositions. For

example, CM1 (see Figure 3.1(a)) does not address the built-in flash feature, and hence,
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Figure 3.2: Example models: (a) CM1
′ which is CM1 with the vocabulary {s, fo, fl};

(b) CM2
′ which is CM2 with the vocabulary {s, fo, fl}; (c) a model with partial tran-

sitions, i.e., transitions in Rmay \Rmust ; (d) a camera description inconsistent with CM1

and CM2; and (e) CM4, the merge of CM1 and CM2.

does not use the proposition fl.

To be able to compare and merge incomplete models, we need to unify the sets of

vocabulary of these models and address the resulting incompleteness. We do so using

3-valued logic (Kleene, 1952) (See Figure 2.2). This logic has been used by several

researchers to model and reason with incompleteness and uncertainty (e.g., (Hussain &

Huth, 2004; Huth & Pradhan, 2001; Uchitel & Chechik, 2004; Bruns & Godefroid, 2000;

Chechik et al., 2003)). It extends classical logic with an additional truth value, denoted

by maybe (m). For example, when the set of vocabulary of CM1 is extended to APu, we
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simply set the missing proposition fl to m in all of the states of CM1. The result is

shown in Figure 3.2(a). Similarly, the set of vocabulary of CM2 is extended to APu by

setting the missing proposition s to m in all the states of CM2 (see Figure 3.2(b)).

We formalize our models as Kripke Modal Transition Systems (KMTSs) (see Defini-

tion 2.1.2). For every KMTS K = (S, s0, R
must , Rmay , L, AP ), we assume that the set

AP of atomic propositions is a subset of the unified set of propositions, i.e., AP ⊆ APu.

To compare models with different variable sets, we assume that the labelling function

L for every state machine is defined for every variable in APu, and further, for every

p ∈ APu \ AP and every s ∈ S, L(s, p) , m.

Models CM1
′ and CM2

′ in Figure 3.2(a) and (b) do not have partial transitions, i.e.,

for these models, we have Rmust = Rmay . An example of a model with partial transitions,

i.e., transitions in Rmay \Rmust , is shown in Figure 3.2(c). This model is a fragment of a

camera model where transitions from s0 to s1 and s′1 are partial, representing the fact that

this model is not sure about the status of the camera’s flash (fl) after the initial state

s0. From the theoretical point of view, adding partial transitions to models with maybe

propositions does not add any expressive power: In (Godefroid & Jagadeesan, 2003),

it is shown that three well-known formalisms for partial models, i.e., Partial Kripke

Structures, Modal Transition Systems and Kripke Model Transition Systems, are all

equally expressive. Specifically, they showed that KMTSs with maybe transitions can be

translated to KMTSs without any maybe transitions such that the translation preserves

the refinement ordering of the KTMSs. Even though partial transitions do not change

the expressiveness, they can result in models with fewer states, and hence, we may want

to use them for creating more concise models. In our examples, we use the following

convention for transitions: transitions represented by solid arrows are in Rmust ∩ Rmay ,

and transition represented by dotted arrows are in Rmay \Rmust .

We use refinement relations � given in Definition 2.3.2 to relate KMTSs. For example,

model CM4 = (Sc, ...) in Figure 3.2(e) is a refinement of model CM1
′ in Figure 3.2(a),
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where the refinement relation is {(s, (s, x)) | (s, x) ∈ Sc}. Note that our treatment of the

labelling function allows us to relate models with different variable sets.

Refinement preserves all definite behaviours of the original model. Furthermore, it

preserves truth and falsity of properties expressed in the temporal logic Lµ (µ-calculus)

such as the properties described in Table 3.1 (Huth et al., 2001) (see Theorem 2.3.1).

Note that refinement preserves valuation of not only positive (e.g., P1, P3, P4, and P5)

but also negative (e.g., P2), universal (e.g. P4 and P5), existential, and mixed (e.g. P1

and P3) properties.

We now aim to characterize similarities between models which are not necessarily

refinements of each other.

Definition 3.2.1 (Common Refinement) (Uchitel & Chechik, 2004) Let K1 and K2

be KMTSs. A KMTS K3 is a common refinement of K1 and K2 iff K1 � K3 and K2 �

K3. Furthermore, K3 is the least common refinement iff for every common refinement

K4, K3 � K4.

Like refinement, common refinement preserves truth and falsity of properties ex-

pressed in Lµ (Huth et al., 2001).

Theorem 3.2.1 Let K3 be a common refinement of K1 and K2. Then, ∀ϕ ∈ Lµ:

(||ϕ||K1 = t) ∨ (||ϕ||K2 = t) ⇒ ||ϕ||K3 = t

(||ϕ||K1 = f) ∨ (||ϕ||K2 = f) ⇒ ||ϕ||K3 = f

Moreover, if K3 is the least common refinement of K1 and K2, then for every common

refinement K4,

||ϕ||K4 = m ⇒ ||ϕ||K3 = m

Proof:

The proof follows from Theorem 2.3.1: if either K1 or K2 satisfies any ϕ ∈ Lµ, so does K3, and if

neither K1 or K2 satisfies any ϕ ∈ Lµ, nor does K3.
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Note that the other direction of Theorem 3.2.1 does not necessarily hold. That is,

||ϕ||K3 = t may not imply ||ϕ||K1 = t or ||ϕ||K2 = t. Similarly, ||ϕ||K3 = f may not imply

||ϕ||K1 = f or ||ϕ||K2 = f. For example, CM4 in Figure 3.2(e) is a common refinement of

CM1
′ and CM2

′ in Figures 3.2(a) and (b), respectively. Property P5 in Table 3.1 holds

on CM4 but it neither holds on CM1
′ nor on CM2

′.

By Theorem 3.2.1, every common refinement preserves all definite properties of the

input models, i.e., properties that evaluate to true or false in at least one of the input

models are preserved in every common refinement. Therefore, every common refinement

is sound. However, common refinements, even the least one, are not precise. In particular,

the least common refinement may not preserve the maybe properties of the input models,

i.e., a property that evaluates to maybe in both models is not necessarily maybe in the

least common refinement. For this reason, in Theorem 3.2.1, we cannot say that for the

least common refinement K4, the following holds

||ϕ||K4 = m ⇒ ||ϕ||K1 = m ∧ ||ϕ||K2 = m

For example, in Figure 3.2, it can be shown that CM4 is the least common refinement

of CM1
′ and CM2

′, but the property P5 evaluates to maybe on both CM1
′ and CM2

′,

and to true on CM4. As discussed in Section 3.1.2, this problem is due to the inherent

imprecision of the 3-valued semantics. To resolve this problem, we need to change the

3-valued semantics and use thorough semantics instead (Godefroid & Jagadeesan, 2002;

Godefroid & Huth, 2005; Gurfinkel & Chechik, 2005; Nejati et al., 2006). But, the model

checking procedure for thorough semantics is very expensive, and hence, this semantics

is impractical in general (Godefroid & Huth, 2005). In short, under the conventional

3-valued semantics of partial models, we cannot say that the least common refinement

can preserve all properties of the input models, because it does not necessarily preserve

the maybe properties. We can only say that the least common refinement is more precise

than other common refinements.
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If for some property ϕ ∈ Lµ, ||ϕ||K1 is t and ||ϕ||K2 is f, then the common refinement of

K1 andK2 cannot be described as a KMTS; in this caseK1 andK2 are called inconsistent.

Definition 3.2.2 (Consistency) KMTSs K1 and K2 are consistent if

∀ϕ ∈ Lµ · (||ϕ||K1 = t ⇒ ||ϕ||K2 6= f) ∧ (||ϕ||K2 = t ⇒ ||ϕ||K1 6= f)

Otherwise, K1 and K2 are inconsistent.

Note that consistent partial models K1 and K2 may not always produce the same truth

values, i.e., a property may evaluate to t or f on one model and m on the other. For

example, consider consistent models CM1
′ and CM2

′ in Figure 3.2. P4 evaluates to m

on CM1
′ and to t on CM2

′. In the next section, we define and formalize the notion of

merge for consistent models.

3.2.2 Computing Merge

The goal of merging consistent models is to combine (partial) knowledge coming from

individual models while preserving all of their agreements. The notion of common refine-

ment underlies this intuition as it captures the “more complete than” relation between

two incomplete models (Uchitel & Chechik, 2004). Thus, we define merge using this

notion.

Definition 3.2.3 (Merge) A merge of two KMTSs is their common refinement.

Basing the notion of merge on a common refinement is standard (Uchitel & Chechik,

2004; Huth & Pradhan, 2001; Hussain & Huth, 2004). By Theorem 3.2.1, the least

common refinement is the most precise merge. However, the least common refinement

of a pair of KMTSs, even if the KMTSs are consistent, is not necessarily a KMTS.

In (Schmidt, 2004), it is shown that the family of partial models in which Rmust ⊆ Rmay ,

i.e., KMTSs and MTSs (Larsen & Thomsen, 1988), cannot form a complete lattice with
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respect to refinement ordering. This is because the least common refinement of a pair

of KMTSs can have must transitions that are not may. Such partial models in which

Rmust 6⊆ Rmay are known as mixed transition systems (Dams et al., 1997). The reason

that the least common refinement of a pair of KMTSs can become a mixed transition

system is that to build a least common refinement of KMTSs K1 and K2, we can lift

any must transition in K1 or K2 to the merge without any change, but a may transition

in K1 (resp. K2) should be first matched and refined with respect to its corresponding

may transition in K2 (resp. K1), and then lifted to the merge. Thus, in the merged

model, we may have must transitions that are distinct from may transitions because

the successors of must transitions are less refined than those of the may transitions (see

(Schmidt, 2004),(Nejati, 2005),(Wei et al., 2008)).

Even though we can always express the least common refinements of KMTSs as mixed

transition systems, these least common refinements are often very large and unintuitive.

Thus, we would like to focus on formalisms in which Rmust ⊆ Rmay . Unfortunately, it

turns out that for such formalisms the least common refinement may not be unique, i.e.,

for a pair of KMTSs, we may have several incomparable minimal common refinements

described as KMTSs. In (Larsen et al., 1995), it is shown that KMTSs that are indepen-

dent are guaranteed to have least common refinements expressible as KMTS. However,

the notion of independence is stronger than consistency, i.e., there are KMTSs that are

consistent but not independent. (Fischbein & Uchitel, 2008) improve the work of (Larsen

et al., 1995) by providing a merge algorithm that can compute a unique merge for KMTSs

that are not necessarily independent. However, since not all KMTSs have a least common

refinement (Schmidt, 2004), there are still KMTSs for which the algorithm of (Fischbein

& Uchitel, 2008) cannot compute a merge. Thus, in this chapter, we relax the notion of

merge, and define it as a common refinement that may not be necessarily the least one.

Clearly, Definition 3.2.3 only applies to consistent models because inconsistent ones

do not have a common refinement expressible in 3-valued logics. So, our first goal is to
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determine whether two models are consistent. We define consistency recursively, in the

same way that other property preserving relations over state machines such as bisimula-

tion and refinement are defined (see Section 2.3.1).

Definition 3.2.4 (Consistency Relation) Let K1 and K2 be KMTSs. We define a

consistency relation ∼ ⊆ S1 × S2 where s ∼ t iff:

1. ∀p ∈ APu · (L1(s, p) = t ⇒ L2(t, p) 6= f) ∧ (L2(t, p) = t ⇒ L1(s, p) 6= f)

2. ∀s′ ∈ S1 ·Rmust
1 (s, s′) ⇒ ∃t′ ∈ S2 ·Rmay

2 (t, t′) ∧ s′ ∼ t′

3. ∀t′ ∈ S2 ·Rmust
2 (t, t′) ⇒ ∃s′ ∈ S1 ·Rmay

1 (s, s′) ∧ s′ ∼ t′

We say K1 and K2 are consistent, written as K1 ∼ K2, iff s0 ∼ t0.

Theorem 3.2.2 K1 and K2 have a common refinement iff K1 ∼ K2.

Proof:

⇒ Let K3 be a common refinement of K1 and K2. Then, there are two refinement relations �

and �′ s.t. K1 � K3 and K2 �′ K3. We define a relation ρ ⊆ S1 × S2 as follows:

ρ = {(s, t) ∈ S1 × S2 | ∃r ∈ S3 · s � r ∧ t �′ r}

Informally, ρ contains tuples (s, t) where s and t have a common refinement r. Note that ρ

is non-empty because the initial state of K3, r0, has to refine both initial states of K1 and

K2. Thus, (s0, t0) ∈ ρ.

We show that ρ is a consistency relation between K1 and K2, i.e., ρ satisfies the conditions

of Definition 3.2.4:



Chapter 3. Merging Partial Behavioural Models 47

1. We show that ∀p ∈ APu · L1(s, p) = t ⇒ L2(t, p) 6= f the second part of this condition

can be proven in the same way.

∀p ∈ APu · L1(s, p) = t

⇒ (Since s � r)

L3(r, p) = t

⇒ (Since t � r)

L2(t, p) 6= f

2. To show that ρ =∼, we need to show that ∀s′ ∈ S1 ·Rmust
1 (s, s′) ⇒ ∃t′ ∈ S2 ·Rmay

2 (t, t′)∧

(s′, t′) ∈ ρ

∀s′ ∈ S1 ·Rmust
1 (s, s′)

⇒ (Since s � r)

∃r′ ∈ S3 ·Rmust
3 (r, r′) ∧ s′ � r′

⇒ (Since K3 is a partial Kripke structure)

∃r′ ∈ S3 ·Rmay
3 (r, r′) ∧ s′ � r′

⇒ (Since t � r)

∃t′ ∈ S2 ·Rmay
2 (t, t′) ∧ t′ � r′

⇒ (By definition of ρ)

∃t′ ∈ S2 ·Rmay
2 (t, t′) ∧ (s′, t′) ∈ ρ

3. This case is symmetric to case 2. (see above).

⇐ Let K1 ∼ K2. Then, by Theorem 3.2.3, K1 + K2 is a common refinement of K1 and K2.

Intuitively, s ∼ t iff the values of all propositions in these states are consistent (condi-

tion 1), and s and t have consistent successors. The latter means that for every definite,

i.e., must, successor s′ of s, there exists some possible, i.e., may, successor t′ of t where s′

and t′ are consistent (condition 2), and for every definite, i.e., must, successor t′ of t, there

is some possible, i.e., may, successor s′ of s, consistent with t′ (condition 3). To prove
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that K1 and K2 are consistent, we simply need to match every must transition of one

model to some may transition of the other. It is not necessary to match may transitions

– they can either evolve to must or be removed without causing inconsistency.

For example, CM1
′ and CM2

′ in Figures 3.2(a)-(b) are consistent with the consis-

tency relation {(s0, t0), (s1, t1), (s2, t2), (s2, t3)}. On the other hand, CM2
′ and CM3 in

Figures 3.2(b) and (d) are inconsistent: t1, the successor of t0, disagrees with r2 the

successor of r0 on the value of proposition fo. Since r2, a must successor of r0, cannot

be matched to any successor of t0, t0 and r0 are inconsistent, and thus so are CM2
′ and

CM3.

In our example in Figure 3.2, there is a unique consistency relation between models

CM1
′ and CM2

′. However, in general, the consistency relation between a consistent pair

of KMTSs K1 and K2 is not unique. Larsen et. al. (Larsen et al., 1995) formalized the

notion of independence between partial models (with Rmust ⊆ Rmay) and showed that

there always exists a unique consistency relation for a pair of independent partial models.

Models CM1
′ and CM2

′ in Figure 3.2 satisfy the independence conditions of (Larsen

et al., 1995), and hence, have a unique consistency relation.

If there exists a consistency relation ∼ over the states of K1 and K2, the construc-

tion of a merged model is straightforward: Every pair of consistent states is merged

by computing the truth-disjunction, i.e., t (see Section 2.1.1), of their corresponding

propositions to form a single state in the combined model. For example, the merge of

a pair s and t of consistent states such that L(s, p) = m and L(t, p) = f is state (s, t)

at which p is f. We put a must transition between any pair (s, t) and (s′, t′) of states

in the merged model, if there is at least a must transition between s and s′ and a may

transition between t and t′, or vice versa. Finally, we put a may transition between any

pair (s, t) and (s′, t′), if there is at least one may transition between s and s′ and one

may transition between t and t′.

Definition 3.2.5 (K1 +K2) Let K1 and K2 be KMTSs, and let K1 ∼ K2. We define a
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merge of K1 and K2, denoted K1+K2, as a tuple (S+, (s0, t0), R
must
+ , Rmay

+ , L+, AP1∪AP2),

where

1. S+ = {(s, t) | s ∼ t}

2. Rmust
+ = {((s, t), (s′, t′)) | (Rmust

1 (s, s′) ∧Rmay
2 (t, t′)) ∨ (Rmay

1 (s, s′) ∧Rmust
2 (t, t′))}

3. Rmay
+ = {((s, t), (s′, t′)) | Rmay

1 (s, s′) ∧Rmay
2 (t, t′)}

4. ∀p ∈ APu · L+((s, t), p) = L1(s, p) t L2(t, p)

K1 +K2 is a fragment of the cross-product of K1 and K2: its state-pace only includes

tuples (s, t) such that s and t are consistent. Note that by our construction in Defini-

tion 3.2.5, K1 +K2 is a KMTS, i.e., its must transitions is a subset of its may transitions.

This is because the condition for may transitions, i.e., condition 3, is weaker than that

for must transitions, i.e., condition 2.

Theorem 3.2.3 Let K1 and K2 be partial consistent models. Then, K1 + K2 is their

common refinement.

Before we give the proof of the above theorem, we provide an inductive definition,

equivalent to Definition 2.3.2, for the refinement relation �.

Definition 3.2.6 We define a sequence of refinement relations �0, �1, . . . on S1 × S2

as follows:

• s �0 t iff L1(s, p) � L2(t, p) for all p ∈ APu, and

• s �n+1 t iff

1. ∀p ∈ APu · L1(s, p) � L2(t, p)

2. ∀s′ ∈ S1 ·Rmust
1 (s, s′) ⇒ ∃t′ ∈ S2 ·Rmay

2 (t, t′) ∧ s′ �n t′

3. ∀t′ ∈ S2 ·Rmust
2 (t, t′) ⇒ ∃s′ ∈ S1 ·Rmay

1 (s, s′) ∧ s′ �n t′
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We say s � t iff s �i t, for all i ≥ 0.

Note that since K1 and K2 are finite structures, the sequence �0, �1, . . . is finite as well.

Proof:

We proceed in two steps:

I. We first show that for every s ∈ S1 if s ∼ t, then s � (s, t). It suffices to show s ∼ t ⇒ s �i (s, t)

for all i ≥ 0. We prove it by induction on i:

Base case. s ∼ t ⇒ s �0 (s, t).

s �0 (s, t)

⇔ (by the definition of �0)

∀p ∈ APu · L1(s, p) � L+((s, t), p)

⇔ (since L+((s, t), p) = L1(s, p) t L2(t, p))

∀p ∈ APu · L1(s, p) � L1(s, p) t L2(t, p))

⇔ (by the properties of t)

true

Inductive case. Suppose s ∼ t ⇒ s �n (s, t). We prove that

s ∼ t ⇒ s �n+1 (s, t)

By Definition 3.2.6, we need to show:

1. L1(s, p) � L+((s, t), p)

2. ∀s′ ∈ S1 ·Rmust
1 (s, s′) ⇒ ∃(s′, t′) ∈ S1 × S2·

Rmust
+ ((s, t), (s′, t′)) ∧ s′ �n (s′, t′)

3. ∀(s′, t′) ∈ S1 × S2 ·Rmust
+ ((s, t), (s′, t′)) ⇒

∃s′ ∈ S1 ·Rmust
1 (s, s′) ∧ s′ �n (s′, t′)

1. From L+((s, t), p) = L1(s, p) t L2(t, p), and L1(s, p) � L1(s, p) t L2(t, p)
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2.

∀s′ ∈ S1 ·Rmust
1 (s, s′)

⇒ (since s ∼ t and by Definition 3.2.4, condition 2)

Rmust
1 (s, s′) ∧ ∃t′ ∈ S2 ·Rmust

2 (t, t′) ∧ s′ ∼ t′

⇒ (by the properties of t)

∃t′ ∈ S2 ·Rmust
1 (s, s′) ∨Rmust

2 (t, t′) ∧ s′ ∼ t′

⇒ (since Rmust
+ ((s, t), (s′, t′)) ⇐⇒ Rmust

1 (s, s′) ∨Rmust
2 (t, t′))

∃(s′, t′) ∈ S1 × S2 ·Rmust
+ ((s, t), (s′, t′)) ∧ s′ ∼ t′

⇒ (by the inductive hypothesis)

∃(s′, t′) ∈ S1 × S2 ·Rmust
+ ((s, t), (s′, t′)) ∧ s′ �n (s′, t′)

⇒ Since K1 + K2 is a MTS

∃(s′, t′) ∈ S1 × S2 ·Rmay
+ ((s, t), (s′, t′)) ∧ s′ �n (s′, t′)

3.

∀(s′, t′) ∈ S1 × S2 ·Rmust
+ ((s, t), (s′, t′))

⇒ (by the definition of R+)

(Rmust
1 (s, s′) ∨Rmust

2 (t, t′)) ∧ s′ ∼ t′

⇒ (by ∨ properties)

∃s′ ∈ S1 ·Rmust
1 (s, s′) ∧ s′ ∼ t′

⇒ (by the inductive hypothesis)

∃s′ ∈ S1 ·Rmust
1 (s, s′) ∧ s′ �n (s′, t′)

⇒ Since K1 is a MTS

∃s′ ∈ S1 ·Rmay
1 (s, s′) ∧ s′ �n (s′, t′)

II. Similarly, we show that for every t ∈ S2, if s ∼ t, then t � (s, t).

Since K1 and K2 are consistent, we have s0 ∼ t0. By I. and II., we obtain s0 � (s0, t0) and

t0 � (s0, t0). This implies that K1 � K1 + K2 and K2 � K1 + K2. Therefore, K1 + K2 is a

common refinement of K1 and K2.
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For example, model CM4 in Figure 3.2(e) is the merge of CM1
′ and CM2

′ in

Figures 3.2(a) and (b) respectively, and hence, the merge of CM1 and CM2 in Fig-

ures 3.1(a) and (b), respectively. The consistency relation between CM1 and CM2 is

{(s0, t0), (s1, t1), (s2, t2), (s2, t3)}. For this example, CM4 happens to be the most precise

merge, i.e., the least common refinement, but this is not necessarily the case in general.

CM4 provides a more complete description of the camera’s photo-taking function: it

describes the behaviour of the shutter and the built-in flash of the camera as well as its

focusing feature. It can be seen that the properties in Table 3.1 all hold over CM4.

We conclude this section by discussing the complexity of deciding consistency and

computing the merged model. The consistency relation in Definition 3.2.4 can be char-

acterized as a bisimulation game (Stirling, 1999) where one player (say Player I) tries to

show that models K1 and K2 are inconsistent and Player II tries to prove the opposite.

In each move, Player I chooses a must transition in either K1 or K2 and Player II should

respond by finding a may transition in the other model that matches the choice of Player

I. Player I wins, i.e., models are inconsistent, if it can find a must transition that Player

II fails to match. Player II wins, i.e., models are consistent, if the play is infinite, or if

the play reaches a position where Player I has no transition to choose.

A complete formulation of the bisimulation game is available in (Stirling, 1999). The

game described above, i.e., the consistency game, is essentially the same as the bisimula-

tion game except that Players in bisimulation games move on classical Kripke structures,

and have only one transition type to choose. But, in the consistency game, Player I only

chooses must transitions and Player II – may transitions. Deciding bisimulation games

is PTIME-complete (Balcázar et al., 1992), and so is deciding a consistency relation

between two partial models. Computing a common refinement for a given consistency

relation can be done in linear time (see Definition 3.2.5). Thus, merging partial Kripke

structures is PTIME-complete.
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Figure 3.3: An overview of the tool support

In (Hussain & Huth, 2004), it is shown that the complexity of computing a common

refinement of a set of partial models is PTIME-complete if the cardinality of the set is

fixed, and in (Antonik et al., 2008), it is shown that computing a common refinement of

a finite but arbitrary large set of partial models is PSPACE-hard.

3.3 Tool Support

We have developed a proof of concept implementation of our approach to merging

partial and consistent state machines discussed in Section 3.2. Our prototype has three

key steps shown in Figure 3.3: In the first step, we extend the vocabulary of each input

state machine to the unified set of propositions, i.e., APu. The resulting models, which

are expressed as partial Kripke structures, are sent to the next step where a consistency

relation is computed between models. If the consistency relation does not exist, the

process returns a set of state pairs that are inconsistent, and then, terminates. Otherwise,

if the consistency relation exits, the merged model is computed in the third step and is

returned to the user.

Unifying the vocabulary of state machines and merging models with respect to a

given consistency relation, i.e., steps one and three in Figure 3.3, are straightforward.

Here, we discuss our algorithm for the second step of the process in Figure 3.3. This

algorithm, which is shown in Figure 3.4, uses a greatest fixpoint computation for finding

a consistency relation between two models. This algorithm is essentially similar the

standard algorithms for computing simulation and bisimulation relations (Milner, 1989).
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It first starts with the largest possible consistency relation, i.e., ρ = Σ1 × Σ2 (line 1).

It then iteratively refines ρ by removing any inconsistent pair (s, t) of states from ρ

(lines 2-14). This fixpoint computation terminates when there are no inconsistent pairs

(s, t) in ρ. The resulting ρ is a consistency relation if it includes the pair (s0, t0) (line

16). Otherwise, the input models are inconsistent and the algorithm returns the set of

inconsistent states in K1 and K2 (line 18). The complexity of the algorithm in Figure 3.4

is O(m2 × n2), where n and m are the maximum number of transitions of K1 and K2,

respectively.

3.4 Related Work

Our approach to model merging presented in this chapter has two main characteristics:

(1) It is defined for KMTSs, and (2) It is defined based on the mathematical notion of

common refinement. In Chapter 4, we present a more general merging procedure that can

handle models with behavioural inconsistencies. The mathematical basis of both of these

two merge procedures is common refinement; however, they are defined over two different

(non-classical) modelling formalisms: KMTSs in this chapter, and parameterized state

machines in Chapter 4. In this section, we survey the related work on non-classical

modelling formalisms and defer the detailed comparison with the research on model

merging to Section 4.9 after presenting a broader approach to merging in Chapter 4.

The use of non-classical models such as partial models has been motivated from

two different perspectives in the software engineering literature: The first motivation

comes from the software refinement paradigm. In this paradigm, a specification model is

stepwise refined by well-defined design transformations into a final implementation model.

Partial models have been advocated in this context as a way to enable specification and

analysis of software systems at early stages of development when there is not enough

information about the system-to-be at hand, or when modellers simply want to defer



Chapter 3. Merging Partial Behavioural Models 55

Algorithm. ConsistencyRelation

Input: Partial models K1 and K2 with state spaces Σ1 and Σ2.

Output: A consistency relation ρ ⊆ Σ1 × Σ2.

1: ρ = Σ1 × Σ2

2: do

3: changed = false

4: for every (s, t) ∈ ρ :

5: if s and t disagree on the value of some proposition p ∈ APu :

6: ρ = ρ \ {(s, t)} // s and t are inconsistent

7: changed = true

8: if ∃s′ ·Rmust
1 (s, s′) ∧ ∀t′ ·Rmay

2 (t, t′) ⇒ (s′, t′) /∈ ρ :

9: ρ = ρ \ {(s, t)} // s and t are inconsistent

10: changed = true

11: if ∃t′ ·Rmust
2 (t, t′) ∧ ∀s′ ·Rmay

1 (s, s′) ⇒ (s′, t′) /∈ ρ :

12: ρ = ρ \ {(s, t)} // s and t are inconsistent

13: changed = true

14: while changed :

15: if (s0, t0) ∈ ρ :

16: return ρ // consistency relation is computed

17: else

18: return Σ1 × Σ2 \ ρ // K1 and K2 are inconsistent

Figure 3.4: Algorithm for computing a consistency relation.

decisions about some system aspects to future refinements (Larsen & Thomsen, 1988;

Larsen, 1989; Huth et al., 2001). The second perspective is that of software abstraction
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which is the reverse of refinement. Abstraction is the process of building an approximation

of a concrete system that is smaller than the original system, but yet enables conclusive

analysis of properties of interest (Clarke et al., 1994). Ideally, abstract models should

be small to allow scalable analysis, and should be expressive enough to enable reasoning

about a large set of properties. Partial formalisms seem to be a suitable choice because

they provide more expressiveness than classical formalisms without causing a significant

increase in the size (Dams et al., 1997).

We distinguish three different groups of non-classical modelling formalisms: The first

is Partial Kripke Structures (PKSs) (Bruns & Godefroid, 2000), and its equivalent for-

malisms, namely, Kripke Modal Transition Systems (KMTSs) (Huth et al., 2001), and

Modal Transition Systems (MTSs) (Larsen & Thomsen, 1988). PKSs are Kripke struc-

tures with 3-valued propositions. KMTSs are PKSs with must and may transitions such

that must ⊆ may. We used this formalism in this chapter to describe partial models.

MTSs are LTSs with must and may transitions constrained by the condition that must

⊆ may. Formalisms in this group can be encoded as 3-valued Kripke structures (Chechik

et al., 2003). The second group is Mixed Transition Systems (MixTSs) (Dams et al.,

1997; Cleaveland et al., 1995). These are LTSs with must and may transitions that

do not put any restrictions on the relationship between may and must, and hence, ex-

tend MTSs. MixTSs can be encoded as 4-valued (i.e., Belnap (Belnap, 1977)) Kripke

structures (Gurfinkel & Chechik, 2006). The third group is Hyper Transition Systems

(HTSs) (Shoham & Grumberg, 2004; de Alfaro et al., 2004b; Shoham & Grumberg, 2006),

that are MixTSs where must transitions can be hyper-transitions, i.e., must transitions

may lead into sets of states rather than single states.

All the formalisms in these three groups can preserve arbitrary temporal proper-

ties, e.g., full µ-calculus, Lµ, (Kozen, 1983). The mechanism for property preservation

over these formalisms is via two simulation relations: One relating necessary or must

behaviours, and the other relating possible or may behaviours. The former simulation
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preserves existential properties and the latter universal ones.

It is known that formalisms in the first and second group can be translated to

HTSs (de Alfaro et al., 2004b), and HTSs are subsumed by tree automata (Dams &

Namjoshi, 2005). In (Wei et al., 2008), it is shown that models in the three groups

are equally expressive when they are constructed based on the framework of abstract

interpretation (Cousot & Cousot, 1977).

These formalisms have been studied and used in the context of software abstraction

(e.g., (Dams et al., 1997; Shoham & Grumberg, 2004)). In the context of model-based

development, MTSs have been used as the target formalism for synthesis when the re-

quirements are given as a combination of scenarios and safety properties (Uchitel et al.,

2007), or when the scenarios are existential properties (Sibay et al., 2008). In this chap-

ter, we used KMTSs to formalize partial perspectives on a single feature of a system

where perspectives use different sets of vocabulary, and in the next chapter, we use pa-

rameterized state machines, inspired by MixTSs, to formalize the merge of models with

inconsistent behaviours.

3.5 Conclusion

In this chapter, we described a technique for merging partial descriptions of the system

behaviour. We chose KMTSs to formalize partial models and provided a merge procedure

that automatically determines whether two partial models are consistent, and if so, com-

putes their merge. We showed that our merge procedure preserves temporal properties

of the input models in their merge. We also reported on a prototype implementation of

our approach.

The major limitation of the work discussed in this chapter is lack of support for

handling inconsistent models. This limitation renders this work inapplicable to many

realistic case studies. The consistency relation defined in Definition 3.2.4 simply does not
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exist between models with inconsistent behaviours. Therefore, it is not clear how such

models should be related to one another. In the next chapter, we address this limitation

by providing an approach for merging variant and potentially inconsistent descriptions

of the system behaviour. The key to making merging of inconsistent models possible

is to approximate the relation between models using a quantified notion of behavioural

similarity instead of trying to compute an exact consistency relation between them. The

resulting relation can be used to build a common refinement in a similar way a common

refinement is computed for consistent models (see Definition 3.2.5). The difference is

that to be able to preserve behavioural inconsistencies between variant models, a more

expressive formalism should be used for describing the merged model. We discuss the

details of our technique for merging variant models in the next chapter.



Chapter 4

Merging Variant Feature

Specifications

4.1 Introduction

In this chapter, we present an approach for merging variant models of an individual fea-

ture with the goal of capturing commonalities and variabilities between the variants and

facilitating their maintenance. Our merging approach is defined for Statecharts models

and exploits both structural and semantic information in the models, and ensures that

behavioural properties are preserved. Our merge is grounded on two model management

operators (Brunet et al., 2006): Match for finding relationships between models, and

Merge for combining models with respect to known relationships between them. Our

Match operator includes heuristics for finding terminological, structural, and semantic

similarities between models. Our Merge operator parameterizes variabilities between

the input models so that their behavioural properties are guaranteed to hold in their

merge. We illustrate and evaluate our work by applying our operators to a set of AT&T

telecommunication features described as Statecharts.

59
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Variables ``subscriber'', ``participant'', and ``callee'' are port variables.
A label ``p?e'' on a transition indicates that the transition is triggered by event 
``e'' sent from port ``p''. 

These variants are examples of DFC ``feature boxes'', which  can be instantiated  in the ``source zone'' or the ``target zone''. Feature boxes instantiated in the source 
zone apply  to all outgoing calls of a customer, and those instantiated in the target zone apply to  all their incoming calls.  The conditions ``zone = source'' and  ``zone 
= target'' are used for distinguishing the behaviours of feature boxes in different zones. 

Figure 4.1: Simplified variants of the call logger feature.

4.1.1 Motivating Example

Domain. We motivate our work with a scenario for maintaining variant feature speci-

fications at AT&T. These executable specifications are modules within the Distributed

Feature Composition (DFC) architecture (Jackson & Zave, 1998), and form part of a

consumer voice-over-IP service. In the current implementation of DFC (Bond et al.,

2004), the features are written using Statecharts.

One feature of the voice-over-IP service is “call logging”, which makes an external

record of the disposition of a call allowing customers to later view information on calls

they placed or received. At an abstract level, the feature works as follows: It first tries

to setup a connection between the caller and the callee. If for any reason (e.g., caller

hanging up or callee not responding), a connection is not established, a failure is logged;

otherwise, when the call is completed, information about the call is logged.

Initially, the functionality was designed only for basic phone calls, for which logging
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is limited to the direction of a call, the address location where a call is answered, success

or failure, and the duration if it succeeds. Later, a variant of this feature was developed

for customers who subscribe to the voicemail service. Incoming calls for these customers

may be redirected to a voicemail resource, and hence, the log information should include

the voicemail status as well. Figure 4.1 shows simplified views of the basic and voicemail

variants of this feature. To avoid clutter, we combine transitions that have the same

source and target states using disjunction (OR).

In the DFC architecture, telecom features may come in several variants to accommo-

date different customers’ needs. The development of these variants is often distributed

across time and over different teams of people, resulting in the construction of inde-

pendent but overlapping models for each feature. For example, the behaviour “After a

connection is set up, a successful call will be logged if the subscriber or the participant

sends Accept” holds in both models in Figure 4.1 (through paths from s4 to s6, and t4

to t6 in basic and voicemail, respectively). This behaviour is a potential overlap between

these models.

Goal. To reduce the high costs associated with verifying and maintaining independent

models, it is desirable to consolidate the variants of each feature into a single coherent

model. The main challenge here is to identify correspondences between variant models

and merge these models with respect to their correspondences.

4.1.2 Contributions of This Chapter

Match and Merge are recurring problems arising in different contexts. Our motivating

example illustrates one of the many applications of these operators. Implementation of

Match and Merge involves answering several questions. Particularly,

• What criteria should we use for identifying correspondences between different mod-

els?
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• How can we quantify these criteria?

• How can we construct a merge given a set of models and their correspondences?

• How can we distinguish between shared and non-shared parts of the input models

in their merge?

• What properties of the input models should be preserved by their merge?

In this chapter, we address these questions for the Statecharts notation. The contribu-

tions of this chapter are as follows:

• A versatile Match operator for Statecharts (Section 4.5). Our Match operator uses

a range of heuristics including typographic and linguistic similarities between the

vocabularies of different models, structural similarities between the hierarchical

nesting of model elements, and semantic similarities between models based on a

quantitative notion of behavioural bisimulation. We apply our Match operator to

a set of telecom feature specifications developed by AT&T. Our evaluation indi-

cates that the approach is effective for finding correspondences between real-world

Statecharts models (Section 4.8).

• A Merge operator for Statecharts (Section 4.6). We provide a procedure for con-

structing behaviour-preserving merges that also respect the hierarchical structuring

of the input models.

4.1.3 Organization of This Chapter

Section 4.2 provides an overview of our Match and Merge operators. Section 4.3 outlines

background and fixes notation. Section 4.4 summarizes our major assumptions on the

input models for our Match and Merge operators. Section 4.5 introduces our Match

operator, and Section 4.6 – our Merge operator. Section 4.7 describes our tool support,

and Section 4.8 – our evaluation. Section 4.9 compares our contributions with related
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work. Section 4.10 discusses the limitations of the work presented in this chapter, and

Section 4.11 concludes the chapter.

4.2 Overview of Our Approach

In this section, we explain the key ideas in our Match and Merge operators by illustrating

them using the models in Figure 4.1.

Our Match operator takes as input two models and generates a set of state pairs as a

correspondence relation between input models. The main challenge in devising a usable

Match operator is finding a set of effective heuristics that can imitate the reasoning of

a domain expert. In our work, we use two types of heuristics: static and behavioural.

Static heuristics use semantic-free attributes, such as element names, for measuring sim-

ilarities. For the models in Figure 4.1, static heuristics would suggest a number of good

correspondences, e.g., the pairs (s6, t6), and (s7, t7); however, these heuristics would miss

several others including (s3, t3), (s3, t2) and (s4, t4). These pairs are likely to correspond

not because they have similar static characteristics, but because they exhibit similar

dynamic behaviours. Our behavioural heuristic can find these pairs.

Our Match operator produces a correspondence relation between states in the two

models. For the models of Figure 4.1, it may yield the correspondence relation shown

in Figure 4.8(b). Because the approach is heuristic, the relation must be reviewed by a

domain expert and adjusted by adding any missing correspondences and removing any

spurious ones. In our example, the final correspondence relation approved by a domain

expert is shown in Figure 4.8(c).

In contrast to matching, merging is not heuristic, and is almost entirely automatable.

Given a pair of models and a correspondence relation between them, our Merge operator

automatically produces a merge that: (1) preserves the behavioural properties of the

input models, (2) respects the hierarchical structure of these models, and (3) distinguishes



Chapter 4. Merging Variant Feature Specifications 64

between shared and non-shared behaviours of these models by attaching appropriate

guard conditions to non-shared transitions. Figure 4.9, shows the merge of the models

of Figure 4.1 with respect to the relation in Figure 4.8(c). In the merge, non-shared

transitions are guarded by boldface conditions representing the models they originate

from.

This merge is behaviour-preserving. For example, the property “After a connection

is set up, a successful call will be logged if the subscriber or the participant sends Accept”

holds in both models in Figure 4.1, and is thus preserved in their merge as a shared

behaviour (denoted by the path from state (s4, t4) to (s6, t6)). The property “After a

connection is set up, a voicemail will be logged if the call is redirected to the voicemail

service”, which holds over the voicemail variant but not over the basic, is represented

as a parameterized behaviour in the merge (denoted by the transition from (s4, t4) to

t8), and is preserved only when its guard holds. The merge also respects the hierarchical

structure of the input models, providing users with a merge that has the same conceptual

structure as the input models.

4.3 Background

In this section, we fix the notation and provide background information on (1) the

Statecharts dialect studied in this chapter, (2) our technique for converting Statecharts

to flat state machines, and (3) the formalism we use to distinguish between shared and

non-shared behaviours between state machine variants.

4.3.1 Statecharts

While our work is general and can be applied to various Statecharts dialects, in this

chapter, we ground our discussion on a particular dialect, called ECharts (Bond, 2006).

ECharts provides well-defined deterministic semantics for the Statecharts language, and
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is suitable for detailed design and implementation. The AT&T telecom features are

specified in ECharts.

Definition 4.3.1 (Statecharts) A Statecharts model is a tuple (S, ŝ, <h, E, V,R), where

S is a finite set of states; ŝ ∈ S is an initial state; <h is a partial order defining the

state hierarchy tree (or hierarchy tree, for short); E is a finite set of events; V is a

finite set of variables; and R is a finite set of transitions, each of which is of the form

〈s, e, c, α, s′, prty〉, where s, s′ ∈ S are the transition’s source and target, respectively,

e ∈ E is the triggering event, c is an optional predicate over V , α is a sequence of zero

or more actions that generate events and assign values to variables in V , and prty is a

number denoting the transition’s priority.

We write a transition 〈s, e, c, α, s′, prty〉 as s
e[c]/α−→ prty s′. Each state in S can be

either an atomic state or a superstate. The hierarchy tree <h defines a partial order

on states with the top superstate as root and the atomic states as leaves. For exam-

ple, in the Statecharts for the basic call logger model in Figure 4.1, s0 is the root,

s2 through s7 are leaves, and s1 is neither. The set ŝ of initial states is {s0, s1, s2}.

The set E of events is {setup,Ack,Accept, Reject,TearDown}, and the set V of variables is

{callee, zone, participant, subscriber}. The only actions in Figure 4.1 are callee=participant and

callee=subscriber. These actions assign values participant and subscriber to the variable callee,

respectively.

ECharts does not permit actions generated by a transition of a Statecharts to trigger

other transitions of the same Statecharts (Bond & Goguen, 2002). That is, an external

event activates at most one transition not a chain of transitions. Therefore, notions of

macro- and micro-steps coincide in ECharts. This simplification enables efficient code

generation from this Statecharts dialect (Bond & Goguen, 2002).

This formalism, adapted from (Niu et al., 2003), supports superstates (OR states),

but not parallel states (AND states). ECharts uses parallel states with interleaved tran-

sition executions (Bond, 2006), and can be translated to the above formalism using the
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Figure 4.2: Resolving AND-states.

interleaving semantics of (Niu et al., 2003). A simple example of this translation is shown

in Figure 4.2. In Statecharts, it may happen that a state and some of its proper descen-

dants both have outgoing transitions with the same event and condition, but different

target states. For example, in Figure 4.3(a), states s0 and s1 have transitions labelled a to

two different states s2 and s3, respectively. This makes the semantics of this Statecharts

non-deterministic because on receipt of the event a it is not clear which of the transitions

s0 → s2 and s1 → s3 should be taken. In ECharts, transitions with the same event

and condition can be made deterministic by assigning globally-ordered priorities to them

(using prty). For example, in Figure 4.3(a), it is assumed that the inner transitions have

higher priority over the outer transitions, and hence, on receipt of a, the transition from

s1 to s3 is activated. The models shown in Figure 4.1 are already deterministic, i.e., any

external event triggers at most one transition in these models. Thus, no prioritization is

required for these models.

4.3.2 Flattening

Flattening is known as the process of removing hierarchy in Statecharts models. Flatten-

ing is used for several purposes such as constructing operational semantics for Statecharts

to model-checking and automatic testing. Our merge procedure described in Section 4.6

is defined over hierarchical state machines, and hence, no flattening is required prior to
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Figure 4.3: (a) Prioritizing transitions to eliminate non-determinism: Transition s1 → s3

has higher priority than transition s0 → s2, and (b) the flattened form of the Statecharts

in (a).

the application of merge. The semantics of our merge procedure, however, is defined

over flattened Statecharts models, i.e., Labelled Transition Systems (LTSs) (see Defi-

nition 2.1.3), and therefore, we need to formally describe how hierarchical Statecharts

models are converted to flat state machines. To flatten Statecharts, we first translate

them to an intermediate state machine formalism given in Definition 4.3.2, and then

discuss how this formalism can be converted to LTSs.

Definition 4.3.2 (State Machine) A state machine is a tuple SM = (S, s0, R,E,Act)

where S is a finite set of states, s0 ∈ S is the initial state, R ⊆ S × E × Act × S is a

transition, E is a set of input events, and Act is a set of output actions.

Definition 4.3.3 (Flattening) Let M = (S, ŝ, <h, E, V,R) be a Statecharts. For any

state s ∈ S, let Parent(s) be the set of ancestors of s (including s) with respect to the

hierarchy tree <h. We define a state machine SM M = (S ′, s′0, R
′, E ′,Act ′) corresponding
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to M as follows:

S ′={s | s ∈ S ∧ s is a leaf with respect to <h}

s′0={s | s ∈ ŝ ∧ s is a leaf with respect to <h}

R′={(s, e, α, s′) | ∃s1 ∈ Parent(s) · ∃s2 ∈ Parent(s′)·

〈s1, e
′, c, α, s2, prty〉 ∈ R ∧ e = e′[c]∧

the value of ptry is higher than other outgoing transitions

of s (and ancestors of s) enabled by event e and guard c}

E ′ ={e | ∃〈s, e′, c, α, s′〉 ∈ R · e = e′[c]}

Act ′={a | ∃〈s, e′, c, α, s′〉 ∈ R · a appears in the sequence α)}

State machines in Definition 4.3.2 are similar to LTSs (see Definition 2.1.3) except

that in state machines, transitions are labelled by (e, α) where e is an input event and α

is a sequence of output actions. In contrast, in LTSs, transitions are labelled with single

actions. State machines can be translated to LTSs by replacing each transition labelled

with (e, α) by a sequence of transitions labelled with single actions of the sequence e · α.

In the rest of this chapter, we assume that the result of Statecharts flattening is an LTS,

i.e., we assume that state machines are replaced by their equivalent LTSs. Note that in

LTSs, we keep input events E and output actions Act distinct. So, for example, if label

a appears in E ∩ Act of a state machine M , we keep two distinct copy of a, i.e., a? for

input and a! for output, in the vocabulry of the LTS corresponding to M .

To flatten a hierarchical state machine M , we remove the super-states of M and

push the outgoing and incoming transitions of the super-states down to their atomic

sub-states. We also remove guards and assume that they are part of events. Note that

in Definition 4.3.3, we resolve the priorities between Statecharts transitions, and thus,

the transitions of the resulting LTS are no longer prioritized. For example, the LTS

in Figure 4.4(b) is the flattened form of the Statecharts in Figure 4.4(a). Similarly,

LTSs corresponding to the Statecharts in Figure 4.1 are shown in Figure 4.5. The LTS
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e1[c1]/α1

e2/α2
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e1[c1]
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α2

e3[c2]

α3
e4

e3[c2]

α3

Figure 4.4: Statecharts flattening: (a) An example Statecharts, (b) flattened state ma-

chine equivalent to the Statecharts in (a), and (c) an example Statecharts whose super-

states share the same sub-states.

corresponding to the Statecharts in Figure 4.3(a) is shown in Figure 4.3(b), illustrating

how we resolve priorities during flattening.

Obviously, flattening increases the number of transitions. In situations where su-

perstates share the same sub-states (see Figure 4.4(c) for an example), flattening also

increases the number states because multiple copies of sub-states are created in the flat-

tened state machine. However, since we use LTSs only to define the semantics of merge,

the size increase is not a limitation in our work. For an efficient technique for flattening

hierarchical state machines with super-states sharing the same substates, see (Alur et al.,

1999).

4.3.3 Mixed LTSs

Individual variant models such as those shown in Figure 4.5 can be described as LTSs;

however, their merge cannot. This is because LTSs do not provide any means to dis-

tinguish between different kinds of system behaviours. In particular, in our work, we

need to distinguish between behaviours that are common among different variants and

behaviours about which variants disagree. In product line engineering, the former type
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setup  [zone=source]

callee?Ack

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
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Figure 4.5: LTSs generated by flattening the Statecharts in Figure 4.1.

of behaviours are referred to as commonalities, and the latter as variabilities (Gomaa,

2004). To specify behavioural commonalities and variabilities, we extend LTSs to have

two types of transitions: One representing shared behaviours (to capture commonalities)

and the other representing non-shared behaviours (to capture variabilities).

Definition 4.3.4 (Mixed LTSs) A Mixed LTS is a tuple L = (S, s0, R
shared , Rnonshared , E)

where Lshared = (S, s0, R
shared , E) is an LTS representing shared behaviours, and Lnonshared =

(S, s0, R
nonshared , E) is an LTS representing non-shared behaviours. We denote the set

of both shared and non-shared transitions of a Mixed LTS by Rall = Rshared ∪Rnonshared,

and the LTS, (S, s0, R
all , E), by Lall .

Every LTS (S, s0, R,E) can be viewed as a Mixed LTS whose set of non-shared tran-

sitions is empty, i.e., (S, s0, R, ∅, E). Our notion of Mixed LTS is inspired by that of

MixTS (see Definition 2.1.4). Both Mixed LTSs and MixTSs are LTSs with two types

of transitions. However, the transition types are used for different purposes in each of

these formalisms: In MixTSs, transition types are used to explicitly model possible and

required behaviours of a system, whereas in Mixed LTSs, we use transition types to

differentiate between shared and non-shared behaviours between model variants.
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We define a notion of refinement to formalize the relationship between Mixed LTSs

based on the degree of behavioural variabilities that they can capture. Our notion of

refinement is very similar to that given in Definition 2.3.4 over MixTSs. The difference is

that the refinement in Definition 2.3.4 captures the “more defined than” relation between

two partial models, whereas based on our refinement defined below, a model is more

refined if it can capture more behavioural variability. For states s and s′ of a Mixed LTS

L, we write s
e

=⇒
shared

s′ to denote s
e

=⇒ s′ in Lshared , s
e

=⇒
nonshared

s′ to denote s
e

=⇒ s′

in Lnonshared , and s
e

=⇒
all
s′ to denote s

e
=⇒ s′ in Lall .

Definition 4.3.5 (Refinement) Let L1 and L2 be Mixed LTSs such that E1 ⊆ E2 . A

relation ρ ⊆ S1 × S2 is a refinement, where ρ(s, t) iff

1. ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′ ⇒ ∃t′ ∈ S2 · t

e
=⇒

all
t′ ∧ ρ(s′, t′)

2. ∀t′ ∈ S2 · ∀e ∈ E2 ∪ {τ} · t
e−→

shared
t′ ⇒ ∃s′ ∈ S1 · s

e
=⇒

shared
s′ ∧ ρ(s′, t′)

We say L2 refines L1, written L1 � L2, if there is a refinement ρ such that ρ(s0, t0),

where s0 and t0 are the initial states of M1 and M2, respectively.

Intuitively, refinement over Mixed LTSs allows one to convert shared behaviours to

non-shared behaviours, while preserving all the already identified non-shared behaviours.

More specifically, if L2 refines L1, then every behaviour of L1 is present in L2 either as

a shared or non-shared behaviour: Shared behaviours of L1 may turn to non-shared

behaviours, but its non-shared behaviours are preserved in L2. Dually, L2 may have

some additional non-shared behaviours, but all of its shared behaviours are present in

L1. As indicated in Definition 4.3.5, the vocabulary of L1 is a subset of that of L2. This

is because the non-shared transitions of L2 may not necessarily be present in L1, and

hence, they can be labelled by actions that are not included in the vocabulary of L1.

Figure 4.6 shows a Mixed LTS where shared transitions are shown as solid arrows and

non-shared transitions as dashed arrows. It can be shown that the Mixed LTS in Fig-
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Figure 4.6: Mixed LTS generated by flattening the Statecharts in Figure 4.9: Shared

transitions are shown as solid arrows, and non-shared transitions as dashed arrows.

ure 4.6 refines the LTS in Figure 4.5(a) where the relation is {(s, (s, x)) | s and (s, x) are

states in Figures 4.5(a) and 4.6, respectively.}.

Theorem 4.3.1 Let L1 and L2 be Mixed LTSs where L1 � L2. Then,

1. L(Lall
1 ) ⊆ L(Lall

2 )

2. L(Lshared
2 ) ⊆ L(Lshared

1 )

Proof:

By Definition 4.3.4, every Mixed LTS L has fragments Lshared and Lall which are expressible as

LTSs. By Definition 4.3.5 and definition of simulation over LTSs given in Definition 2.3.3, for two

Mixed LTSs L1 and L2 such that L2 refines L1, we have Lall
2 simulates Lall

1 and Lshared
1 simulates
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Lshared
2 . By Theorem 2.3.2, we have L(Lall

1 ) ⊆ L(Lall
2 ) and L(Lshared

2 ) ⊆ L(Lshared
1 ). More formally,

L1 � L2

⇒ (By definition of Mixed LTS (Definition 4.3.4), definition of

refinement over Mixed LTSs (Definition of 4.3.5) and

definition of simulation over LTSs (Definition 2.3.3))

Lall
1 � Lall

2 ∧ Lshared
2 � Lshared

1

⇒ (By Theorem 2.3.2)

L(Lall
1 ) ⊆ L(Lall

2 ) ∧ L(Lshared
2 ) ⊆ L(Lshared

1 )

For example, consider the model in Figure 4.5(a) and its refinement in Figure 4.6. The

model in Figure 4.5(a) is an LTS, and hence, its set of non-shared traces is empty. It can

be seen that every trace in the model in Figure 4.5(a) is present in the model in Figure 4.6

either as a shared or a non-shared trace, i.e., L(Lall
1 ) ⊆ L(Lall

2 ). Also, every shared trace

in the model in Figure 4.6 is present in Figure 4.5(a), i.e., L(Lshared
2 ) ⊆ L(Lshared

1 ). Finally,

the model in Figure 4.6 has some non-shared traces that are not present in the model

in Figure 4.5(a), e.g., the trace generated by the path (s′0, t
′
0) → (s′1, t

′
2) → (s′3, t

′
2) →

(s′4, t
′
3) → t′7. This shows that L(Lnonshared

2 ) is not necessarily a subset of L(Lnonshared
1 ) .

4.4 Assumptions

In this section, we describe the major assumptions we make to enable our Match and

Merge operators.

We present our operators for Statecharts models M1 = (S1, ŝ, <
1
h, E1, V1, R1) and

M2 = (S2, t̂, <
2
h, E2, V2, R2). We assume the sets of events, E1 and E2, and environmen-

tal/input variables are drawn from a shared vocabulary, i.e. there are no name clashes,

and no two elements represent the same concept. This assumption is reasonable for de-

sign and implementation models because events and input variables capture observable

stimuli, and for these, a unified vocabulary is often developed during upstream lifecycle
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Figure 4.7: Overview of the Match operator.

activities.

Note that since M1 and M2 describe variant specifications of the same feature, it is

unlikely for these models to interact with each other. Therefore, we assume that actions

of either M1 or M2 cannot trigger events in the other model. For example, the only

actions in the Statecharts in Figure 4.1 are callee=participant and callee=subscriber. These

actions do not cause any interaction between the Statecharts in Figure 4.1. Hence, the

Statecharts in Figure 4.1 are non-interacting. Note that studying behavioural models

with interacting behaviours and analysing their interactions is the subject of Chapter 5.

4.5 Matching Statecharts

Our Match operator (Figure 4.7) uses a hybrid approach combining static matching

(Section 4.5.1) and behavioural matching (Section 4.5.2). Static matching is indepen-

dent of Statecharts semantics and uses typographic and linguistic similarities between

state names, and similarities between state depths in the models’ hierarchy trees. Be-

havioural matching generates similarity degrees between states based on their behavioural

semantics. We aggregate these static and behavioural heuristics to produce overall simi-

larity degrees between states (Section 4.5.3). Given a similarity threshold, we can then

determine a correspondence relation ρ over the states of the input models (Section 4.5.4).
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4.5.1 Static Matching

Typographic Matching assigns to every pair (s, t) of states a normalized value in [0..1]

computed by applying the N-gram algorithm (Manning & Schütze, 1999) to the name

labels of s and t. Given a pair of strings, this algorithm produces a similarity degree

based on counting the number of their identical substrings of length N. We use a generic

implementation of this algorithm with trigrams (i.e., N = 3).

Linguistic Matching measures similarity between name labels based on their linguistic

correlations, to assign a normalized similarity value to every pair of states. We employ

the freely available WordNet::Similarity package (Pedersen et al., 2004) for this purpose.

Depth Matching uses state depths to derive a useful similarity heuristic for models

that are at the same level of abstraction. This captures the intuition that states at

similar depths are more likely to correspond to each other. Depth matching assigns a

normalized value in [0..1] to every pair (s, t) of states. The closer the depths of s and t

in their respective hierarchy trees are, the closer this value is to one. Depth matching is

not used when the input models are at different levels of abstraction.

4.5.2 Behavioural Matching

Our behavioural matching technique is reminiscent of deciding bisimilarity between state-

machines (Milner, 1989). Bisimilarity provides a natural way to characterize behavioural

equivalence. Bisimilarity is a recursive notion and can be defined in two ways, forward and

backward (Nicola et al., 1990). Two states are forward bisimilar if they can transition to

(forward) bisimilar states via identically-labelled transitions; and are (forward) dissimilar

otherwise.

Dually, two states are backward bisimilar if they can be transitioned from (back-

ward) bisimilar states via identically-labelled transitions; and are (backward) dissimilar
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otherwise.

Bisimilarity relates states with precisely the same set of behaviours, but it can-

not capture partial similarities. For example, states s4 and t4 in Figure 4.1 transit

to (forward) bisimilar states s7 and t7, respectively, with transitions labelled partici-

pant?Reject[zone=source], participant?TearDown[zone=source], subscriber?Reject[zone=target], and sub-

scriber?TearDown[zone=target]. However, despite their intuitive similarity, s4 and t4 are dis-

similar because their behaviours differ on a few other transitions, e.g., the one labelled

redirectToVoicemail[zone=target].

Instead of considering pairs of states to be either bisimilar or dissimilar, we introduce

an algorithm for computing a quantitative value measuring how close the behaviours of

one state are to those of another. Our algorithm iteratively computes a similarity degree

for every pair (s, t) of states by aggregating the similarity degrees between the immediate

neighbours of s and those of t. By neighbours, we mean either successor/child states

(forward neighbours) or predecessor/parent states (backward neighbours) depending on

which bisimilarity notion is being used. The algorithm iterates until either the similarity

degrees between all state pairs stabilize, or a maximum number of iterations is reached.

In the remainder of this section, we describe the algorithm for the forward case. The

backward case is similar. We use the notation s
a→ s′ to indicate that s′ is a forward

neighbour of s. That is, s has a transition to s′ labelled a, or s′ is child of s where a is a

special label called child. Treating children states as neighbours allows us to propagate

similarities from children to their parents.

Behavioural matching is a total function B : S1 × S2 → [0..1]. We denote by Bi(s, t)

the degree of similarity between states s and t after the ith iteration of the matching

algorithm. Initially, all states of the input models are assumed to be bisimilar, so B0(s, t)

is 1 for every pair (s, t) of states. Users may override the default initial values, for

example assigning zero to those tuples that they believe would not correspond to each

other. This provides a mechanism for users to apply their domain expertise during the
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matching process. Since behavioural matching is iterative, user input gets propagated to

all tuples and can hence induce an overall improvement in the results of matching. It is

also possible to use the results of static matching to initialize the behavioural matching,

in the same way that schema matchers can be bootstrapped (Rahm & Bernstein, 2001).

For proper aggregation of similarity degrees between states, our behavioural matching

requires a measure for comparing transition labels. A transition label is made up of an

event, and optionally, a condition and an action. We compare transition labels using

the N-gram algorithm augmented with some simple semantic heuristics. This algorithm

is suitable because of the assumption that a shared vocabulary for observable stimuli

already exists. We improve transition label comparison by using the variable assignments

in the action parts of transition labels for term rewriting. For example, in Figure 4.1, the

actions callee = participant and callee = subscriber suggest that the transition label callee?Ack

is similar to participant?Ack and subscriber?Ack. We account for this by (automatic) term

replacement prior to applying the N-gram algorithm. The algorithm assigns a similarity

value L(a, b) in [0..1] to every pair (a, b) of transition labels.

We have also explored the use of analytical reasoning for comparing transition labels.

For example, the N-gram algorithm would find a rather small degree of similarity between

conditions (x ∧ y) ∨ z and (x ∨ z) ∧ (y ∨ z), whereas analytical reasoning, e.g. by a

theorem prover, would identify these conditions as identical. Our experimentation with

this idea indicates that such reasoning over labels is expensive and also unnecessary

because examples such as the above are not very common in practice.

Having described the initialization data (B0) and transition label comparison (L), we

now describe the computation of B. For every pair (s, t) of states, the value of Bi(s, t),

is computed from: (1) Bi−1(s, t); (2) similarity degrees between the forward neighbours

of s and those of t after step i− 1; and (3) comparison between the labels of transitions

relating s and t to their forward neighbours.

We formalize the computation of Bi(s, t) as follows. Let s
a→ s′. To find the
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best match for s′ among the forward neighbours of t, we need to maximize the value

L(a, b)× Bi−1(s′, t′) where t
b→ t′.

The similarity degrees between the forward neighbours of s and their best matches

among the forward neighbours of t after iteration i − 1 is computed by

X =
∑

s
a→s′ max

t
b→t′
L(a, b)× Bi−1(s′, t′). And the similarity degrees between the for-

ward neighbours of t and their best matches among the forward neighbours of s after

iteration i − 1 are computed by Y =
∑

t
a→t′ max

s
b→s′
L(a, b)× Bi−1(s′, t′). We denote the

sum of X and Y by Sum i(s, t).

The value of Bi(s, t) is computed by first normalizing Sum i(s, t) and then taking its

average with Bi−1(s, t):

Bi(s, t) = 1
2

( Sumi(s,t)
|succ(s)|+|succ(t)| + Bi−1(s, t)

)
In the above formula, |succ(s)| and |succ(t)| are the number of forward neighbours of s

and t, respectively. The larger the Bi(s, t), the more the behaviours of s and t are alike.

This computation is performed iteratively until the difference between Bi(s, t) and

Bi−1(s, t) for all pairs (s, t) becomes less than a fixed ε > 0. If the computation does not

converge, the algorithm stops after some maximum number of iterations.

4.5.3 Combining Different Similarity Measures

To obtain overall similarity degrees between states, we need to combine the results from

different heuristics. There are several approaches to this, including linear and nonlinear

averages, and machine learning. Learning-based techniques have been shown to be effec-

tive when proper training data is available (Mandelin et al., 2006). At this stage, we do

not have sufficient training data to employ such techniques. In our current implementa-

tion, we use a simple approach based on linear averages.

We generate an aggregate value for static heuristics, denoted by S, by taking the
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s0 s1 s2 s3 s4 s5 s6 s7

t0 .87 .63 .54 .03 .08 .07 .57 .58

t1 .48 .70 .92 .17 .17 .26 .20 .23

t2 .08 .18 .17 .65 .30 .31 .31 .29

t3 .07 .19 .17 .66 .30 .32 .30 .30

t4 .07 .15 .17 .23 .64 .30 .30 .30

t5 .08 .15 .25 .22 .24 1.0 .04 .28

t6 .58 .45 .17 .22 .30 .30 1.0 .63

t7 .56 .45 .17 .22 .31 .28 .62 1.0

t8 .55 .45 .17 .22 .30 .35 .62 .62

(a) Combined C matching results for the models

in Figure 4.1.

(s0, t0), (s2, t1), (s3, t2), (s3, t3),

(s4, t4), (s5, t5), (s6, t6), (s7, t7),

(s1, t0), (s1, t1), (s6, t7), (s6, t8),

(s7, t6), (s7, t8)
(b) A correspondence relation ρ.

(s0, t0), (s4, t4), (s2, t1), (s5, t5),

(s3, t2), (s6, t6), (s3, t3), (s7, t7)
(c) ρ after revisions of Sec 4.5.4

and sanity checks of Sec 4.6.1.

Figure 4.8: Results of matching for call logger.

maximum of typographic and linguistic similarities, and computing its weighted average

with depth similarity. Behavioural similarity, B, is computed as the maximum of for-

ward behavioural and backward behavioural matching. To produce an overall combined

measure, denoted C, we take a weighted average of B with S. Figure 4.8(a) illustrates C

for the models in Figure 4.1. Here, we use a 4-to-1 ratio for averaging name similarities

(max. of typographic and linguistic) with depth similarity, and use equal weights for

averaging S and B. These weights, which we arrived at by experimentation, are also

used for the evaluation in Section 4.8.

4.5.4 Translating Similarities to Correspondences

To obtain a correspondence relation between M1 and M2, the user sets a threshold for

translating the overall similarity degrees into a relation ρ. Pairs of states with similarity

degrees above the threshold are included in ρ, and the rest are left out. In our example,

if we set the threshold value to 60%, we obtain the correspondence relation ρ shown

in Figure 4.8(b). Since matching is a heuristic process, ρ should be reviewed and, if
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necessary, adjusted by the user. We assume that the user would remove the spurious

pairs (s6, t7), (s6, t8), (s7, t6) and (s7, t8) from ρ. As we will discuss in Section 4.6.1, the

resulting relation needs to be further revised before merge.

4.6 Merging Statecharts

In this section, we describe our Merge operator for Statecharts. The input to this operator

is a pair of Statecharts models M1 and M2, and a correspondence relation ρ. The output

is a merged model if ρ satisfies certain sanity checks. Otherwise, a subset of ρ violating

the checks is identified.

4.6.1 Sanity Checks for Correspondence Relations

Before applying the Merge operator, we need to ensure that ρ passes certain sanity

checks. To have behaviourally sound merges, the initial states of the input models should

correspond. If ρ does not match ŝ to t̂, we add to the input models new initial states ŝ′

and t̂′ with transitions to the old ones. We then simply add the tuple (ŝ′, t̂′) to ρ. Note

that we can lift the behavioural properties of the models with the old initial states to

those with the new initial states. For example, instead of evaluating a temporal property

p at ŝ (resp. t̂), we check AXp at ŝ′ (resp. t̂′), where AX denotes the universal next-time

operator.

To construct merges that are structurally sound, ρ must satisfy the following condi-

tions for every (s, t) ∈ ρ:

1. (monotonicity) If ρ relates a proper descendant of s (resp. t) to a state x in M2

(resp. M1), then x must be a proper descendant of t (resp. s).

2. (relational adequacy) Either the parent of s is related to an ancestor of t, or the

parent of t is related to an ancestor of s by ρ.
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Monotonicity ensures that ρ does not relate an ancestor of s to t (resp. t to s) or to

a child thereof. Relational adequacy ensures that ρ does not leave parents of both s and

t unmapped; otherwise, it would not be clear which state should be the parent of s and

t in the merge. Note that descendant, ancestor, parent, and child are all with respect to

each model’s hierarchy tree, <h.

Pairs in ρ that violate any of the above conditions are reported to the user. In our

example, the relation shown in Figure 4.8(b) has three monotonicity violations: (1) s0

and its child s1 are both related to t0; (2) t0 and its child t1 are both related to s1; and

(3) s1 and its child s2 are both related to t1. Our algorithm reports {(s0, t0), (s1, t0)},

{(s1, t0), (s1, t1)}, and {(s1, t1), (s2, t1)} as conflicting sets. We assume that the user

addresses these conflicts by eliminating (s1, t0) and (s1, t1) from ρ. The resulting relation,

shown in Figure 4.8(c), passes all sanity checks and can be used for merge.

4.6.2 Merge Construction

To merge M1 and M2, we first need to identify their shared and non-shared parts with

respect to ρ. A state x is shared if it is related to some state by ρ, and is non-shared

otherwise. A transition r = 〈x, a, c, α, y, prty〉 is shared if x and y are respectively related

to some x′ and y′ by ρ, and further, there is a transition r′ from x′ to y′ whose event is

a, whose condition is c, whose priority is prty , and whose action is α′ such that α = α′,

or α and α′ are independent. A pair of actions α and α′ are independent, if executing

them in either order results in the same system behaviour (Clarke et al., 1999). For

example, z = x and y = x are two independent actions, but x = y + 1 and z = x are

not independent. r is non-shared otherwise. Notice that there is no requirements for the

actions of r and r′ to be identical.

The goal of the Merge operator is to construct a model that contains shared behaviours

of the input models as normal behaviours and non-shared behaviours as variabilities. To

represent variabilities, we use parameterization (Gomaa, 2004): Non-shared transitions
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(Link Callee, 
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(Link Callee,
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(Waiting, 
Pending)

(Timer Started, 
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(Log Failure, 
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[ID=voicemail] subscriber?Ack
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[zone=target,
ID=voicemail]

participant?Reject [zone=source] OR
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(s2, t1)
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(s3, t3)

(s4, t4)

(s5, t5)

(s6, t6) (s7, t7) t8

Figure 4.9: Resulting merge for call logger.

are guarded by conditions denoting the transitions’ origins, before being lifted to the

merge. Non-shared states can be lifted without any provisions – these states are reachable

only via non-shared (and hence, guarded) transitions.

Below, we describe our procedure for constructing a merge. We denote by M1+ρM2 =

(S+, ŝ+, <
+
h , E+, V+, R+) the merge of M1 and M2 with respect to ρ.

States and Initial State. (S+ and ŝ+) The set S+ of states of M1 +ρ M2 has one element for

each tuple in ρ and one element for each state in M1 and M2 that is non-shared. The initial

state of M1 +ρ M2, ŝ+, is the tuple (ŝ, t̂).

Events and Variables. (E+ and V+) The set E+ of events of M1 +ρ M2 is the union of those

of M1 and M2. The set V+ of variables of M1 +ρ M2 is the union of those of M1 and M2

plus a reserved enumerated variable ID that accepts values M1 and M2.

Hierarchy Tree. (<+
h ) The hierarchy tree <+

h of M1 +ρ M2 is computed as follows. Let s be a

superstate in M1 (the case for M2 is symmetric), and let s′ be a child of s.
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• if s is mapped to t by ρ,

- if s′ is mapped to a child t′ of t by ρ, make (s′, t′) a child

of (s, t) in M1 +ρ M2.

ts
s′ t′

(s, t)
(s′, t′)=⇒

-otherwise, if s′ is non-shared, make s′ a child of (s, t) in

M1 +ρ M2.

ts
s′

(s, t)

=⇒ s′

• otherwise, if s is non-shared

- if s′ is mapped to a state t′ by ρ, make (s′, t′) a child of s

in M1 +ρ M2.

s
s′ t′ (s′, t′)=⇒

s

-otherwise, if s′ is non-shared, make s′ a child of s in

M1 +ρ M2.

s
s′ =⇒

s
s′

Transition Relation. (R+) The transition relation R+ of M1 +ρ M2 is computed as follows. Let

r = 〈s, a, c, α, s′, prty〉 be a transition in M1 (the case for M2 is symmetric).

• (Shared Transitions) if r is shared, add to R+ a transition corresponding to r with

event a, condition c, action α (if α = α′) or action α;α′ (if α 6= α′), and priority prty .

Note that due to the definition of shared transitions and our assumptions in Section 4.4,

α and α′ are independent, and hence, the order of concatenation of α and α′ is unim-

portant here.

• (Non-shared Transitions) otherwise, if r is non-shared, add to R+ a transition

corresponding to r with event a, condition c∧ [ID = M1], action α, and priority prty .

As an example, Figure 4.9 shows the resulting merge for the models of Figure 4.1 with

respect to the relation ρ in Figure 4.8(c). The conditions shown in boldface in Figure 4.9

capture the origins of the respective transitions. For example, the transition from (s4, t4)

to t8 annotated with the condition ID=voicemail indicates a variable behaviour that is

applicable only for clients subscribing to voicemail.

Two points need to be noted about our merge construction: (1) The construction

requires that states be either atomic or superstates (OR states) – as noted in Section 4.3,
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parallel states (AND states) are replaced by their semantically equivalent non-parallel

structures before merge. To keep the structure of the merged model as close as possible

to the input models, non-shared parallel states can be exempted from this replacement

when their descendants are all non-shared too. Such parallel states (and all descendants

thereof) can be lifted verbatim to the merge. (2) Our definition of shared transitions

is conservative in the sense that it requires such transitions to have identical events,

conditions, and priorities in both input models. This is necessary to ensure that merges

are behaviourally sound and deterministic. However, such a conservative approach may

result in redundant transitions. These redundancies arise due to logical or unstated re-

lationships between the events and conditions used in the input models. For example, in

Figure 4.9, the transitions from (s2, t1) to (s3, t2) and to (s3, t3) fire actions callee = sub-

scriber and callee=participant, respectively. Thus, in state (s3, t3), the value of callee is equal

to participant, and in state (s3, t2), it is equal to subscriber. This allows us to replace the

event callee?Ack[ID=basic] on transition from (s3, t2) to (s4, t4) by subscriber?Ack[ID=basic],

and merge the two out-going transitions from (s3, t2) into one transition with label sub-

scriber?Ack. Similarly, the two transitions from (s3, t3) to (s4, t4) can be merged into one

transition with label participant?Ack. Identifying such redundancies and addressing them

requires human intervention.

4.7 Tool Support

In this section, we describe our implementation for the Match and Merge operators

described in Sections 4.5 and 4.6, respectively.

4.7.1 Tool Support for Matching

We have implemented our Match operator and have used it for the evaluation described

in Section 4.8. Our Match operator takes Statecharts models stored as XML files and
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computes similarity values for static matching, behavioural matching and their combina-

tions. Our implementation also offers the option of generating a binary correspondence

relation for a given threshold value. This relationship, after revisions and adjustments

by the user, can be used to specify the model mappings in our merge tool described in

Section 4.7.2.

Our Match tool is written entirely in Java. It is roughly 4.5K lines of code, of which

1.2K is the N-gram package (Manning & Schütze, 1999), 1K implments the glue code

for interacting with WordNet::Similarity package (Pedersen et al., 2004), 1.9K implements

our behavioural matching formulation (Section 4.5.2), and the rest is the parser for XML

files and the code for interacting with the user. We have made this tool available at

http://www.cs.toronto.edu/∼shiva/MatchTool/.

4.7.2 Tool Support for Merging

We have implemented our Merge operator as part of a model merging tool called TReMer

(Tool for Relationship-Driven Model Merging) (Sabetzadeh et al., 2007a). An extension

of TReMer, i.e., TReMer+(Sabetzadeh et al., 2008), which is capable of performing global

consistency checking is available at http://www.cs.toronto.edu/∼mehrdad/tremer/.

The main idea behind TReMer is to make all information about the relationships between

models explicit, and indeed suggest that model relationships should be treated as first-

class artifacts in the model merging procedure (Brunet et al., 2006). This treatment has

two main advantages:

1. It allows us to hypothesize alternative relationships between models and study the

result of merge for each alternative. This is particularly useful in distributed devel-

opment environments where software models are created by developers working in

distributed teams, and as a result, one can never be entirely sure how the concepts

in different models relate to one another.
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2. It provides the flexibility to define different types of model relationships and to

associate each type with certain merge algorithms. This addresses the observation

that model merging may be utilized to achieve different goals at different stages

of the development. For example, in early stages, we may merge a set of models

as a way to unify the vocabularies of different stakeholders. For this purpose, it

is convenient to treat models as syntactic objects without rigorous semantics. In

later stages, however, we often want to account for the semantics of models and

produce merges that preserve certain semantic properties. This means that we may

need to apply different merge algorithms to a set of models as they move through

different stages of development. These algorithms typically require different types

of relationships to be built between models (e.g., syntactic and semantic).

TReMer provides a general framework for model merging whereby the relationships

between models can be specified explicitly. Figure 4.10 shows an outline of this frame-

work: Given a set of models, users can define different types of relationships between

them and for each type, explore alternative ways of mapping the models to one another.

The models and a selected set of relationships are then used to compute a merge by

applying an appropriate merge algorithm. The merge is then presented to users for fur-

ther analysis which may lead to the discovery of new relationships or the invalidation of

some of the existing ones. Users may then want to start a new iteration by revising the

relationships and executing the subsequent activities.

TReMer currently supports two model merging algorithms: One based on our Merge

operator described in Section 4.6 for merging behavioural models, and the other for

merging conceptual models in requirements modelling. For details on the latter merge

algorithm, refer to (Sabetzadeh & Easterbrook, 2006). TReMer consists of two main

components: (1) A graphical front-end1 allowing users to visually express their mod-

1The front-end cannot represent hierarchical models. Currently, we use a generalization relation
between states to illustrate the state hierarchy tree.
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Figure 4.10: Overview of TReMer.

els, specify different relationships between these models, and hypothesize and compute

merges, and (2) A library of merge algorithms. These algorithms communicate with the

front-end in a uniform way via an abstract interface for the merge operation. The key

idea that allows us to have such an interface is the treatment of model relationships as

first-class artifacts.

In the rest of this section, we illustrate our behavioural merging tool using a concrete

example. We use two views on the photo-taking functionality of a camera2: Figure 4.11(a)

shows a perspective where the flash and non-flash (normal) shooting modes are not dis-

tinguished and the film-cartridge loading procedure is ignored. Further, the perspective

has a transition from Responsive to Shooting meaning that the camera can take a

photo even without achieving focus. In the second perspective, Figure 4.11(b), flash and

non-flash shooting are distinguished and cartridge loading is modelled.

Behavioural merging of the state-machines in Figure 4.11 proceeds as follows: The

user begins by defining a relationship between the states of the input models. Currently,

TReMer’s user interface allows one to define one-to-one or many-to-one mappings from

the states of a model to those of another. To define such mappings, the two models are

shown side-by-side. A state correspondence is established by first clicking on a state of the

2The camera example is similar to that used in Section 3.1.1 except that here models are not be-
haviourally consistent. Furthermore, in this chapter, we use action-based state machines to describe the
camera models, whereas in Chapter 3, we focused on state-based transition systems.
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(a) Without Flash (b) With Flash

Figure 4.11: Two perspectives on a camera

Figure 4.12: Behavioural mapping between the models in Figure 4.11

model on the left and then on a state of the model on the right. For example, Figure 4.12

shows a behavioural mapping between the input state-machines in Figure 4.11. Note that

the relationship in Figure 4.12 is a many-to-one relation. To describe many-to-many

relations such as the one shown in Figure 4.13 (note the additional mapping between
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Figure 4.13: A many-to-many relation between the models in Figure 4.11

Auto-Focus and Responsive), the user needs to first decompose the relation into two

many-to-one mappings, and then specify each mapping separately using the TReMer’s

user interface.

The next step is to compute the merge with respect to the mappings defined above.

TReMer computes the union of the one-to-many mappings between a pair of models to

obtain the original many-to-many relation. It then applies the merge procedure described

in Section 4.6 to generate a merged model. The result is shown in Figure 4.14. As can

be seen from the figure, non-shared behaviours are guarded by conditions denoting the

originating model that exhibits those behaviours.

4.8 Evaluation

The ultimate evaluation of our work is whether developers faced with model management

tasks find our approach helpful. In some contexts, developers may find it relatively easy

to identify matches by hand, for example if the models are small, and the developers are

very familiar with them. Our approach to matching is valuable if it offers a quick way to

identify appropriate matches with reasonable accuracy, in situations where matches are
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Figure 4.14: Behavioural merge of the models in Figure 4.11
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Figure 4.15: Results of static, behavioural, and combined matching.

hard to find by hand, for example where the models are complex, or the developers are

less familiar with them. On the other hand, computing merge by hand is always likely to

be laborious; our approach to merge is therefore useful if it produces semantically correct

results and scales well.

Here, we present some initial steps to evaluate our work. First, we discuss the com-

plexity of our Match and Merge operators, to show that they scale. We assess our Match
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operator by measuring the accuracy of the relations it produces, in comparison with the

assessment of a domain expert. We assess our Merge operator by proving that it preserves

the behavioural properties of the input models.

4.8.1 Complexity

Let n1 and n2 be the number of states in the input models, and let m1 and m2 be the

number of transitions in these models. The space and time complexities of comput-

ing typographic and linguistic similarity scores between individual pairs of name labels

are negligible and bounded by a constant. The space complexity of Match is then the

storage needed for keeping a state similarity matrix and a label similarity matrix (L in

Section 4.5.2) and is O(n1 × n2 +m1 ×m2). The time complexity of static matching is

O(n1 × n2) and of behavioural matching – O(c × m1 × m2), where c is the maximum

allowed number of iterations for the behavioural matching algorithm.

The space complexity of Merge is linear in the size of the correspondence relation ρ

and the input models. Theoretically, the size of ρ is O(n1 × n2). In practice, we expect

the size of ρ to be closer to max(n1, n2) giving us linear space complexity for practical

purposes. This was indeed the case for our models (see Table 4.1). The time complexity

of Merge is O(m1 ×m2).

4.8.2 Accuracy of Match

As with all heuristic matching techniques, the results of our Match operator should be

reviewed and adjusted by users to obtain a desired correspondence relation. In this sense,

a good way to evaluate a matcher is by considering the number of adjustments users would

need to make to the results it produces. A matcher is effective if it neither produces too

many incorrect matches (false positives) nor misses too many correct matches (false

negatives).

We use two well-known metrics, namely, precision, and recall, to capture this intuition.
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Precision measures quality (i.e., low number of false positives) and is the ratio of correct

matches found to the total number of matches found. Recall measures coverage (i.e.,

low number of false negatives) and is the ratio of the correct matches found to the total

number of all correct matches. For example, if our matcher produces the relation in

Figure 4.8(b) and the desired relation is Figure 4.8(c), the precision and recall is 8/14

and 8/8, respectively.

A good matching technique should produce high precision and high recall. However,

these two metrics tend to be inversely related: improvements in recall come at the cost of

reducing precision and vice versa. The Software Engineering literature suggests that for

information retrieval tasks, users are willing to tolerate a small decrease in precision if it

can bring about a comparable increase in recall (Hayes et al., 2003). We expect this to

be true for model matching, especially for larger models: it is easier for users to remove

incorrect matches rather than find missing ones. On the other hand, precision should

not be too low. A precision less than 50% indicates that more than half of the found

matches are wrong. In the worse case, it may take users more effort to remove incorrect

matches and find missing correct matches than to do the matching manually.

We evaluated the precision and recall of our Match operator by applying it to a set

of Statecharts models describing different telecom features at AT&T. We studied three

pairs of models, describing variant specifications of telecom features at AT&T. One of

these is the call logger feature in Section 4.1.1. Simplified versions of the variants of this

feature were shown in Figure 4.1. The other two features are remote identification and

parallel location. Remote identification is used for authenticating a subscriber’s incoming

calls. Parallel location, also known as find me, places several calls to a subscriber at

different addresses in an attempt to find her.

In Table 4.1, we show some characteristics of the studied models. For example, the

first variant of the remote identification feature has 24 states and 44 transitions, and the

second one has 19 states and 31 transitions. The correct relation (as identified manually
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Feature Variant I Variant II All Correct

# states # transitions # states # transitions Matches

Call Logger 18 40 21 63 11

Remote Identification 24 44 19 31 12

Parallel Location 28 71 33 68 16

Table 4.1: Characteristics of the studied models.

by our domain expert) consists of 12 pairs of states. The Statecharts models of these

features are available in Appendix A.

To compare the overall effectiveness of static matching, behavioural matching, and

their combination, we compute their precision and recall for thresholds 3 ranging from

0.95 down to 0.5. The results are shown in Figure 4.15.

In the studied models, states with typographically similar names were likely to cor-

respond. Hence, typographic matching, and by extension, static matching have high

precision. However, static matching misses several correct matches, and hence has low

recall. Behavioural matching, in contrast, has lower precision, but high recall. When

the threshold is set reasonably high, combined matching has precision rates higher than

those of static and behavioural matching on their own. This indicates that static and

behavioural matching are filtering out each other’s false positives. Recall remains high

in the combined approach, as static matching and behavioural matching find many com-

plimentary high-quality matches.

Table 4.2 shows the precision-recall tradeoff points, which we believe to be reasonable

for the studied examples. As shown in the table, for thresholds between 0.75 and 0.85,

our combined matcher achieved a precision of more than 50% and a recall of more than

80%.

3Recall that threshold is the cutoff value used for determining the correspondence relation from the
similarity degrees (see Section 4.5.4).
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Feature Threshold Precision Recall

Call Logger 0.80 54% 82%

Remote Identification 0.75 55% 100%

Parallel Location 0.85 51% 81%

Table 4.2: Tradeoff precisions and recalls.

4.8.3 Correctness of Merge

In this section, we prove that our merge procedure described in Section 4.6.2 is behaviour-

preserving. The proof goes by first flattening Statecharts models. In Definition 4.3.3,

we provided a technique for converting Statecharts to flat state machines, i.e., LTSs.

The procedure for flattening parameterized Statecharts is exactly the same, except that

the result is a Mixed LTS rather than an LTS. Specifically, transitions labelled by a

condition on the reserved variable ID are replaced by non-shared transitions, and the

rest of the transitions – by shared ones. For example, Figure 4.6 shows the Mixed LTS

corresponding to the parameterized model in Figure 4.9. It can be seen that guarded

transitions in Figure 4.9 are replaced by non-shared transitions in Figure 4.6.

Given input Statecharts models M1 and M2, and their merge M1 +ρ M2, let L1 and

L2 be the LTSs corresponding to M1 and M2, respectively, and let L1+2 be the Mixed

LTS corresponding to M1 +ρ M2. We show that L1+2 is a common refinement of L1 and

L2, i.e., L1+2 refines both L1 and L2.

Theorem 4.8.1 Let M1, M2, M1 +ρ M2 be given, and let L1, L2, and L1+2 be their

corresponding flat state machines, respectively. Let Act1 and Act2 be the set of output

actions of M1 and M2, respectively, and let E1 and E2 be the set of actions of L1 and L2,

respectively. Then, L1 � L1+2@{E1 ] E2 \ Act2} and L2 � L1+2@{E1 ] E2 \ Act1}.

Before we give the proof, we provide an inductive definition, equivalent to Defini-

tion 4.3.5, for the refinement relation �.
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Definition 4.8.1 We define a sequence of refinement relations �0, �1, . . . on S1 × S2

as follows:

• �0= S1 × S2

• s �n+1 t iff

∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′ ⇒ ∃t′ ∈ S2 · t

e
=⇒

all
t′ ∧ s′ �n t′

∀t′ ∈ S2 · ∀e ∈ E2 ∪ {τ} · t
e−→

shared
t′ ⇒ ∃s′ ∈ S1 · s

e
=⇒

shared
s′ ∧ s′ �n t′

The largest refinement relation is defined as
⋂

i≥0 �i.

Note that since L1 and L1+2 are finite structures, the sequence �0, �1, . . . is finite as

well.

Proof:

To prove L1 � L1+2@{E1 ] E2 \Act2}, we show that the relation

ρ1 = {(s, s) | s ∈ S1 ∧ s ∈ S+} ∪ {(s, (s, t)) | s ∈ S1 ∧ (s, t) ∈ S+}

is a refinement relation between L1 and L1+2.

Note that in this proof, we assume that any typle (s, t) ∈ ρ where s is a state in M1 and

t a state in M2 is replaced by its corresponding tuples (s′, t′) such that s′ is a correspond-

ing state to s in L1 and t′ is a corresponding state to t in L1+2. For example, relation ρ

in Figure 4.8(c), which is defined between Statecharts in Figure 4.1, is replaced by the relation

{(s′0, t′0), (s′1, t′2), (s′2, t′1), (s′3, t′1), (s′3, t′2), (s′4, t′3), (s′5, t′4), (s′6, t′5), (s′7, t′6)} between the flat LTSs in

Figure 4.5.

To show that ρ1 is a refinement, we prove that ρ1 is a subset of the largest refinement relation,

i.e., ρ1 ⊆
⋂

i≥0 �i. The proof follows by induction on i:

Base case. ρ1 ⊆�0. Follows from the definition of ρ1 and the fact that �0= S1 × S+.

Inductive case. Suppose ρ1 ⊆�i. We prove that ρ1 ⊆�i+1.

By Definition 4.8.1, we need to show for every (s, r) ∈ ρ1,
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1. ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′ ⇒ ∃r′ ∈ S+ · r

e=⇒
all

r′ ∧ s′ �i r′

2. ∀r′ ∈ S+ ·∀e ∈ (E1]E2∪{τ})\Act2 ·r
e−→

shared
r′ ⇒ ∃s′ ∈ S1 ·s

e=⇒
shared

s′∧s′ �i r′

Here is the proof,

1. We identify four different cases:

Case 1: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

∃t, t′ ∈ S2 · (s, t) ∈ ρ ∧ (s′, t′) ∈ ρ

⇒ (by construction of M1 +ρ M2 in Section 4.6.2 and definition of ρ1)

r = (s, t) ∧ ∃(s′, t′) ∈ S+ · (s, t)
e−→

all
(s′, t′) ∧ (s′, (s′, t′)) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = (s′, t′))

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i r′

Case 2: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

∃t ∈ S2 · (s, t) ∈ ρ∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ

⇒ (by construction of M1 +ρ M2 in Section 4.6.2)

r = (s, t)∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ (s, t) e−→
all

s′

⇒ (by definition of S+ and ρ1)

∃t ∈ S2 · r = (s, t) ∧ ∃s′ ∈ S+ · (s, t)
e−→

all
s′ ∧ (s′, s′) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = s′)

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i r′

Case 3: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

6 ∃t ∈ S2 · (s, t) ∈ ρ ∧ ∃t′ ∈ S2 · (s′, t′) ∈ ρ

⇒ (by construction of M1 +ρ M2 in Section 4.6.2)

r = s ∧ ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ s
e−→

all
(s′, t′)

⇒ (by definition of S+ and ρ1)

∃(s′, t′) ∈ S+ · s
e−→

all
(s′, t′) ∧ (s′, (s′, t′)) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = (s′, t′))

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i (s′, t′)
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Case 4: ∀s′ ∈ S1 · ∀e ∈ E1 ∪ {τ} · s
e−→

all
s′∧

6 ∃t ∈ S2 · (s, t) ∈ ρ∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ

⇒ (by construction of M1 +ρ M2 in Section 4.6.2)

r = s∧ 6 ∃t′ ∈ S2 · (s′, t′) ∈ ρ ∧ s
e−→

all
s′

⇒ (by definition of S+ and ρ1)

∃s′ ∈ S+ · s
e−→

all
s′ ∧ (s′, s′) ∈ ρ1

⇒ (by the inductive hypothesis, and let r′ = s′)

∃r′ ∈ S+ · r
e−→

all
r′ ∧ s′ �i r′

2. By construction of merge in Section 4.6.2, for any shared transition r
e−→

shared
r′ in L1+2,

we have

• if e 6= τ , then ∃(s, t), (s′, t′) ∈ ρ · r = (s, t) ∧ r′ = (s′, t′).

• if e = τ , then ∃(s, t), (s, t′) ∈ ρ · r = (s, t) ∧ r′ = (s, t′).

∀r′ ∈ S+ · ∀e ∈ (E1 ] E2) \Act2 · r
e−→

shared
r′∧(

∃(s, t), (s′, t′) ∈ ρ · r = (s, t) ∧ r′ = (s′, t′) ∧ e 6= τ
∨

∃(s, t), (s, t′) ∈ ρ · r = (s, t) ∧ r′ = (s, t′) ∧ e = τ
)

⇒ (by construction of M1 +ρ M2 in Section 4.6.2)

∃(s, t), (s′, t′) ∈ ρ · r = (s, t) ∧ r′ = (s′, t′) ∧ s
e−→

shared
s′ ∧ e 6= τ

∨
∃(s, t), (s, t′) ∈ ρ · r = (s, t) ∧ r′ = (s, t′) ∧ s

e=⇒
shared

s ∧ e = τ

⇒ (by definition of ρ and ρ1)

∃s′ ∈ S1 · s
e−→

shared
s′ ∧ (s′, (s′, t′)) ∈ ρ1 ∧ e 6= τ

∨
s

τ=⇒
shared

s ∧ (s, (s, t′)) ∈ ρ1

⇒ (by the inductive hypothesis)

∃s′ ∈ S1 · s
e=⇒

shared
s′ ∧ s′ �i r′

The above proves that ρ1 ⊆
⋂

i≥0 �i. Since ρ1 also relates s0, i.e., the initial state of L1, to

(s0, t0), i.e., the initial state of L1+2, ρ1 is indeed a refinement relation between L1 and L1+2. Note

that ρ1 might not be the largest refinement relation, but any refinement relation that includes the

initial states of its underlying models can preserve their temporal properties.
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To prove L2 � L1+2, we show that the relation

σ2 = {(t, t) | t ∈ S+ ∧ t ∈ S2} ∪ {(t, (s, t)) | t ∈ S2 ∧ (s, t) ∈ S+}

is a refinement relation between L2 and L1+2. The proof is symmetric to the above proof.

Recall that by our definition in Section 4.6.2, shared transitions r and r′ must have

identical events, conditions, and priorities, but they may generate different output ac-

tions. The reason that we do not require actions of shared transitions to be identical

is that by our assumption in Section 4.4, the input Statecharts are non-interacting, and

hence, actions in one input model do not trigger any event in the other model. In our

merge procedure, for any pair of shared transitions r and r′, we create a single transition

r′′ in the merge that can produce the union of the actions of r and r′. Thus, the trace

generated by r′′ may not exactly match the traces of r and r′. For example, consider the

shared transitions

s2
setup[zone=target]/callee==subscriber−−−−−−−−−−−−−−−−−−−−−−−−→ s3 and t1

setup[zone=target]−−−−−−−−−−−→ t3

in Figure 4.1. These transitions are lifted to the transition

(s2, t1)
setup[zone=target]/callee==subscriber−−−−−−−−−−−−−−−−−−−−−−−−→ (s3, t3)

in the merge in Figure 4.9, but the action callee=subscriber does not exist in Figure 4.1(b).

Thus, we need to hide this action when comparing the merge with the model in Fig-

ure 4.1(b). Figure 4.16 shows the Mixed LTS corresponding to the merge in Figure 4.9

where actions callee==subscriber and callee==participant are hidden. It can be seen that this

Mixed LTS is a refinement of the LTS corresponding to the model in Figure 4.1(b) where

the refinement relation is {((s, t), t) | (s, t) and t are states in Figure 4.9 and 4.1(b),

respectively. }.

By Theorems 4.3.1 and 4.8.1, we have

(1) L(Lshared
1+2 @{E1 ]E2 \Act2}) ⊆ L(Lall

1 ), and L(Lshared
1+2 @{E1 ]E2 \Act1}) ⊆ L(Lall

2 ).

That is, the set of shared, i.e., unguarded, behaviours of the merge is a subset of
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setup [zone =target]

setup [zone=source]

participant?Ack subscriber?Ack

redirectToVoicemail
[zone=target]

participant?Reject [zone=source] OR
participant?TearDown [zone=source] OR

subscriber?Reject [zone=target] OR
subscriber?TearDown [zone=target]

participant?TearDown OR
subscriber?TearDown

participant?Accept [zone=source] OR
subscriber?Accept [zone=target]

callee?Ack

callee?Ack

τ

τ

participant?Unavail [zone=source]OR
subscriber?Unavail [in target-zone]

(s′
0, t

′
0)

(s′
2, t

′
1)

(s′
1, t

′
2)

(s′
3, t

′
1)

(s′
3, t

′
2)

(s′
4, t

′
3)

(s′
5, t

′
4)

(s′
6, t

′
5) (s′

7, t
′
6) t′7

Figure 4.16: Mixed LTS which is equivalent to the Statecharts in Figure 4.9 except that

actions callee=participant and callee==subscriber are hidden.

the behaviours of the individual input models. Therefore, any behaviour which is

not present in neither of the input models is not present in the unguarded fragment

of their merge. In other words, any negative behaviour, i.e., safety property, that

holds over the input models also holds over the unguarded fragment of their merge.

(2) L(Lall
1 ) ⊆ L(Lall

1+2), and L(Lall
2 ) ⊆ L(Lall

1+2). That is, behaviours of the individual

input models are present as either shared, i.e., unguarded, or non-shared, i.e.,

guarded, behaviours in their merge. Thus, the merge preserves all positive traces

of the input models.

In short, the merge includes, in either guarded or unguarded form, every behaviour

of the input models. A change in the correspondence relation (ρ) does not cause any

behaviours to be added to or removed from the merge, but may make some guarded

behaviours unguarded, or vice versa. The use of parameterization for representing be-

havioural variabilities allows to generate behaviour-preserving merges for models that

may even be inconsistent.
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As noted in Section 4.3, our models have deterministic semantics, achieved by assign-

ing priority labels to transitions. Our merge construction respects transition priorities

and ensures that merges are deterministic as well.

Section 4.6 described our procedure for merging pairs of models. This can be extended

to n-ary merges by iteratively merging a new input model with the result of a previous

merge, with two minor modifications: the reserved variable ID (in the merge procedure

of Section 4.6.2) will range over subsets of the input model indices. In this case, the order

in which the binary merges are applied does not affect the final result.

4.9 Related Work

In this section, we compare our work with the research on model matching and model

merging in the areas of software engineering and databases.

4.9.1 Matching

Approaches to this problem can be categorized into two groups: exact and approximate.

Exact matching is concerned with finding structural or behavioural conformance relations

between models. Examples of structural relations are graph homomorphisms, and those

of behavioural relations are bisimulation or simulation relations, or variants of these re-

lations defined in process algebra (van Glabbeek, 1993). Finding exact correspondences

between models has applications in many fields including graph rewriting, pattern recog-

nition, program analysis, and compiler optimization. However, it is not very useful for

matching distributed models because the vocabularies and behaviours of these models

seldom fit together in an exact way, and thus, exact conformance relations between these

models are unlikely to be found.

In any situation where models are developed independently, model matchers provide a

way to discover the relationships between models, for example, to compare variants (Man-



Chapter 4. Merging Variant Feature Specifications 101

delin et al., 2006), to identify inconsistencies (Spanoudakis & Finkelstein, 1997), and to

support reuse (Maiden & Sutcliffe, 1992). Sophisticated matching tools, e.g. (Bernstein

et al., 2004), can handle models that use different vocabularies and different levels of

abstraction. In most of these applications, heuristic techniques are used for matching.

These techniques yield values denoting a likelihood of correspondence between elements of

different models. In database design, finding correspondences between database schemata

is referred to as schema matching (Rahm & Bernstein, 2001). State-of-the-art schema

matchers, such as Protoplasm (Bernstein et al., 2004), combine several heuristics for

computing similarities between schema elements. Our typographic and linguistic heuris-

tics (Section 4.5.1) are very similar to those used in schema matching, but our other

heuristics are tailored to behavioural models.

Several approaches to matching have been proposed in software engineering. (Maiden

& Sutcliffe, 1992) employs heuristic reasoning for finding analogies between a problem

description and already existing domain abstractions. (Ryan & Mathews, 1993) uses ap-

proximate graph matching for finding overlaps between concept graphs. (Alspaugh et al.,

1999) proposes term matching based on project glossaries for finding similarities between

textual scenarios. (Mandelin et al., 2006) combines diagrammatic and syntactic heuris-

tics for finding matches between architecture models. None of these were specifically

designed for behavioural models and are either inapplicable or unsuitable for matching

Statecharts models.

In concurrency theory, several notions of behavioural conformance have been proposed

to capture the behavioural similarity between models with quantitative features such as

time or probability (van Breugel, 2008). For these models, a discrete notion of similarity,

i.e., models are either equivalent or they are not, is not helpful because minor changes in

the quantitative data may cause equivalent models to become inequivalent, even if the

difference between their behaviours is very minor. Therefore, instead of equivalences that

result in a binary answer, one needs to use relations that can differentiate between slightly
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different and completely different models. Examples of such relations are stochastic or

Markovian notions of behavioural similarity (e.g., (de Alfaro et al., 2004a; Sokolsky

et al., 2006)). Our formulation of behavioural similarity (Section 4.5.2) is analogous to

these similarity relations. Their goal is to define a distance metric over the space of

(quantitative) reactive processes and study the mathematical properties of the metric.

Our goal, however, is to obtain a similarity measure that can detect pairs of states with

a high degree of behavioural similarity.

4.9.2 Merging

Model merging spans several application areas. In database design, merge is an important

step for producing a schema capturing the data requirements of all stakeholders (Bern-

stein, 2003). Software engineering deals extensively with model merging – several pa-

pers study the subject in specific domains, including early requirements (Sabetzadeh &

Easterbrook, 2006), static UML diagrams (Alanen & Porres, 2003; Mehra et al., 2005;

Letkeman, 2006; Zito et al., 2006), declarative specifications (Jackson, 2002), scenar-

ios (Whittle & Schumann, 2000), and state-machines (Sabetzadeh & Easterbrook, 2003;

Uchitel & Chechik, 2004).

Generally speaking, the above approaches can be categorized into two groups based

on the mathematical machinery that they use to define and automate the merge process:

(1) approaches based on algebraic graph-based techniques, and (2) approaches based on

behaviour preserving relations. Approaches in the first group view models as graphs, and

formalize the relationships between models using graph homomorphisms that map models

directly or indirectly through connector models (Sabetzadeh & Easterbrook, 2006). These

approaches, while being general, are not particularly suitable for merging behavioural

models because model relationships are restricted to graph homomorphisms which are

tools for preserving model structure, rather than behavioural properties.

We show the difference between structure-preserving and behaviour-preserving merges
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Figure 4.17: An example showing the difference between preservation of structure and

behaviour: (a) modelM1; (b) modelM2; (c) a possible merge ofM1 andM2 that preserves

their behaviours; and (d) a possible merge of M1 and M2 that preserves their structure.

using a simple example. Consider the models M1 and M2 in Figures 4.17(a) and (b),

and let ρ = {(s0, t0), (s1, t1), (s1, t2), (s2, t3), (s2, t4)}. The model in Figure 4.17(c) shows

a merge of M1 and M2 that preserves the structure of the input models: It is possible to

embed each of M1 and M2 into M1+2 using graph homomorphisms. This merge, however,

does not preserve the behaviours of M1 and M2, because it collapses two behaviourally

distinct states t1 and t2 into a single state r1 in the merge. The model in Figure 4.17(d) is

an alternative merge ofM1 andM2 which is constructed based on the notion of refinement:

It can be shown that M ′
1+2 refines both M1 and M2 with respect to the refinement given

in Definition 4.3.5. As shown in the figure, states t1 and t2 are respectively lifted to two

distinct states q1 and q2 in this merge. By basing the notion of merge on refinement,

we can choose to keep states distinct in the merged model even if ρ maps them to one

single state in the other model. This is because refinement is more flexible than graph

homomorphism. Homomorphisms do not allow us to map one state to several states

because this deos not respect the structure of the underlying state machine graphs.

Refinements, however, allow us to change the structure of the input models, e.g., we

can duplicate states, as long as the behaviours of the models are properly lifted to their

merge.

Approaches in the second group construct a merge as a common behavioural refine-

ment of the original models. Larsen et. al. (Larsen et al., 1995) show that this merge can
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be logically characterized as conjunction of the original specifications, when models are

consistent and have the same vocabulary. (Uchitel & Chechik, 2004) extends the work

of (Larsen et al., 1995) by providing support for merging models with different vocabu-

laries. This is achieved by first hiding non-shared vocabulary using τ -actions, and then

using a weaker notion of refinement, i.e., observational refinement, to relate models. This

work supports incompleteness and can also detect inconsistencies; however, the merge

operation fails when the models are inconsistent. Moreover, (Uchitel & Chechik, 2004)

does not make model relationships explicit and matching is an implicit step in the merge

process. This can make it difficult for modellers to guide the merge process as they cannot

directly hypothesize the merge alternatives. (Fischbein & Uchitel, 2008) improves the

work of (Uchitel & Chechik, 2004) partly by providing an algorithm for computing the

least common (strong) refinement of partial models. However, like (Uchitel & Chechik,

2004), (Fischbein & Uchitel, 2008) does not handle inconsistent models. Finally, Huth

and Pradhan (Huth & Pradhan, 2001) merge partial behavioural specifications where a

dominance ordering over models is given to resolve some potential inconsistencies between

models. These earlier approaches (1) do not provide support for merging models with

variabilities (or behavioural inconsistencies), (2) neither handle hierarchical notations

nor the question of reconciling the structural and behavioural aspects of state-machine

merging, and (3) do not make model relationships explicit.

In this chapter, we focused on the application of behavioural merge as a way to

reconcile models developed independently. Behavioural merge operation may arise in

several other related areas, including model-based synthesis from scenarios (Uchitel &

Chechik, 2004), program integration (Horwitz et al., 1989), and merging declarative

specifications (Jackson, 2002). While these approaches deal with different notations in

settings different from ours, like our work their main challenge is preservation of semantics

and support for handling inconsistencies.

Several approaches to variability modelling have been proposed in software mainte-
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nance and product line engineering. For example, (Halmans & Pohl, 2003) provides an

elaborate view of modelling variability in use-cases by distinguishing between aspects

essential for satisfying customers’ needs and those related to the technical realization of

variability. Our merge operator makes use of parameterization for representing variabil-

ities between different models. This is a common technique in modelling behavioural

variability in Statecharts models (Gomaa, 2004). A similar parameterization technique

has been used in (Faulk, 2001) for capturing variability in SCR tables.

In requirements and early design model merging, variabilities are often treated as

inconsistencies (Easterbrook & Chechik, 2001; Uchitel & Chechik, 2004; Sabetzadeh

& Easterbrook, 2006). Some of these approaches require that only consistent models

be merged (Uchitel & Chechik, 2004). However, others tolerate inconsistency, and can

represent the inconsistencies explicitly in the resulting merged model (Easterbrook &

Chechik, 2001; Sabetzadeh & Easterbrook, 2006). Our work is similar to the latter

group as we explicitly model inconsistencies between models using parameterization.

4.10 Limitations

Our work has a number of limitations which we have listed below.

Our evaluation in Section 4.8 may not be a comprehensive assessment of the effective-

ness of our Match operator: Firstly, in our evaluation, we assume that a matching relation

agreeable to all users can be found. In practice, this may not be the case (Melnik, 2004).

A more comprehensive evaluation would require several independent subjects to provide

their desired correspondence relations, and use these for computing an average precision

and recall. Secondly, matching results can be improved by proper user guidance, which

we did not measure here. More specifically, in Section 4.8, we evaluated Match as a fully

automatic operator. In practice, it might be reasonable to use Match interactively, with

the user seeding it with some of the more obvious relations, and pruning incorrect rela-
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tions iteratively. We expect that such an approach will improve accuracy. Alternatively,

a developer might prefer to assess the output of the Match operator by computing the

Merge, and inspecting the resulting model for validity. This way, each correspondence

relation is treated as a hypothesis for how the models should be combined, to be adjusted

if the resulting merge does not make sense. We plan to investigate whether this approach

is feasible.

As noted in Section 4.6.2, shared parallel states are replaced with their semantically

equivalent non-parallel structures. This may result in discontinuities between the con-

ceptual structuring of the merge and that of the input models when parallel states have

many substates. In our telecom models, parallel states have no more than a few substates

each (less than five); therefore, the merged models still retained the essential structure

of the input models. An alternative approach to handling parallel states may be needed

for domains that make more extensive use of parallelization.

ECharts have a number of advanced features including transitions with multiple par-

allel source states and transitions with history targets. Since match is a heuristic process,

we can either ignore these or find an approximating representation for them. We have

not yet investigated how such features affect the accuracy of our Match operator. Our

Merge operator can handle these features as long as they are non-shared. However, it

currently does not provide explicit support for these features.

4.11 Conclusion

We presented an approach to matching and merging of Statecharts. Our Match opera-

tor includes heuristics that use both static and behavioural properties to match pairs of

states in the input models. Preliminary evaluations show that this combination produces

higher precision than relying on static or behavioural properties alone. Our Merge op-

erator produces a combined model in which variant behaviours of the input models are
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parameterized using guards on their transitions. The result is a merge that preserves the

behaviours of the input models. We have developed a proof-of-concept implementation

of these operators.

Models which have been developed distributedly may relate to one another in a va-

riety of ways. The work presented in this chapter focuses on merging a collection of

inter-related models when relationships describe overlaps between models’ behaviours.

Sometimes relationships describe behavioural interactions, in particular, when models

are independent components or features of a system. In situations where models are

interacting, Match describes how models interact through their interfaces, (e.g., how

messages are communicated, or how data is exchanged between models), and Merge

provides a way to combine models with respect to the semantics of communication. A

pervasive problem in this context is that, while individual models behave correctly, their

interaction may result in undesired behaviours. In Chapter 5, we study this problem

and propose a technique for constructing a system of interacting models such that their

undesirable behaviours are not retained.



Chapter 5

Composing Features and Analysing

Interactions

5.1 Introduction

Synthesis of system compositions from a given set of features is an important and very

challenging problem. In this chapter, we make a step towards this goal by describing an

efficient technique for synthesizing feature-based systems that are arranged in a pipeline

architecture. We identify and formalize a design pattern that is commonly used in feature-

based development. We show that this pattern enables compositional synthesis of feature

arrangements. In particular, the pattern allows us to add or remove features from an

existing system without having to reconfigure the system from scratch. We describe an

implementation of our technique and evaluate its applicability and effectiveness using a

set of telecommunication features from AT&T, arranged within the DFC architecture.

5.1.1 Synthesizing Feature-based Systems

Feature-based development has long been used as a way to provide separation of concerns,

to facilitate maintenance and reuse, and to support software customization based on

108
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end-user needs (Prehofer, 1997; Li et al., 2002; Harrison et al., 2002; Batory, 2004; Li

et al., 2005). Individual features typically capture specific units of functionality with

direct relationships to the requirements that inspired the software system in the first

place (Fisler & Krishnamurthi, 2005). By closely mirroring requirements, features make

it easier to reconfigure or expand a system as its underlying requirements change over

time.

To meet the desirable properties expected from a feature-based system, the interac-

tions among its features need to be constrained and orchestrated. This is often done by

putting features in a suitable arrangement, typically a linear one such as a stack or a

pipeline, that inhibits undesirable interactions.

Existing research on feature interaction analysis, e.g., (Pomakis & Atlee, 1996; Jack-

son & Zave, 1998; Hay & Atlee, 2000; Hall, 2000; Plath & Ryan, 2001; Li et al., 2002;

Felty & Namjoshi, 2003; Bruns, 2005), largely concentrates on reasoning about and re-

solving undesirable interactions between a set of features whose arrangement is given a

priori. Yet a complementary problem, of how to automatically synthesize an arrange-

ment when one is not given, has not been studied much. The problem is important – it

currently takes substantial expertise and effort to find an arrangement of features that

does not result in undesirable interactions.

Unfortunately, a naive attempt at automatically arranging features is infeasible: there

is an exponential number of alternative arrangements to consider when searching for a

desirable one. Hence, we need compositional techniques that can reduce the problem

of finding a desirable arrangement into smaller subproblems. This need becomes even

more pressing in systems that evolve over time, where features are periodically added,

removed, or revised. Without compositional techniques for synthesizing evolving systems,

new arrangements of features may have to be created from scratch after each change.

Our goal is to provide compositional techniques for synthesizing software systems

from an evolving, arbitrarily large set of (different) features. To achieve this goal, we
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draw inspiration from the literature on component-based software. A general way to

enable compositional reasoning about systems with an arbitrary number of components

is by exploiting behavioural similarities between components. For example, (Emerson &

Namjoshi, 2003; Emerson & Kahlon, 2000) show that system-wide verification tasks can

be decomposed if components exhibit identical or virtually identical behaviours. The mo-

tivation for the work is verification of low-level operating system protocols, e.g., mutual

exclusion where several identical copies of a process attempt to enter a critical section.

More recent work, e.g., (Betin-Can et al., 2005), explores similar ideas to bring com-

positional reasoning to software systems in which components have diverse behaviours.

There, the required degree of similarity between components is achieved by having com-

ponents implement a design pattern.

5.1.2 Contributions of This Chapter

In this chapter, we aim to study how the design patterns used in feature-based develop-

ment can enable compositional synthesis of feature arrangements. We ground our work

on pipelines – popular architectures for building feature-based systems (Braithwaite &

Atlee, 1994; Jackson & Zave, 1998; Hay & Atlee, 2000; Li et al., 2002) which allow

one to define the overall behaviour of a system in terms of a simple composition of the

behaviours of the individual features (Shaw & Garlan, 1996).

A common objective in designing feature pipelines is to minimize the visibility of each

feature to the rest. This is to ensure that individual features can operate without relying

on those appearing before or after them in the pipeline (Shaw & Garlan, 1996). To realize

this objective, features are usually designed so that they engage in defining the overall

behaviour of the system only when their function is needed. More precisely, features alter

the flow of signals in the pipeline only when they are providing their service; otherwise,

they let the signals pass through without side-effects. The ability of a feature to remain

unobservable to other features when it is not providing its service is called transparency.
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We argue that transparency is sufficient to make pipeline synthesis compositional,

requiring the analysis of just pairs of features to determine their relative order in the

overall pipeline. In particular, we make the following contributions:

1. We formalize the transparency pattern of behaviour and show that for features

implementing this pattern, global constraints can be inferred on the order of the

features through pairwise analysis of the features.

2. We describe a sound and complete compositional algorithm for synthesizing pipeline

arrangements. Given a set of features and a set of safety properties describing

undesirable interactions, our algorithm computes an arrangement of the features

that is safe for the given properties. Specifically, the algorithm uses the safety

properties to compute a set of pairwise ordering constraints between the features.

Due to the transparent behaviour of the features, any global ordering that violates

a pairwise ordering constraint can be deemed unsafe and pruned from the search

space of the solution, leaving a relatively small number of global orderings to be

generated and verified by the algorithm. Our algorithm is change-aware in the

sense that after adding or modifying a feature, we need to update only the pairwise

ordering constraints related to that particular feature and reuse the remaining

constraints from the previous system.

3. We report on a prototype implementation of our synthesis algorithm, applying it

to a set of AT&T telecom features to find a safe arrangement for them in the

Distributed Feature Composition (DFC) architecture (Jackson & Zave, 1998). Our

algorithm could automatically and efficiently compute a safe arrangement for the

DFC features in our study.
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Figure 5.1: A simplified linear DFC scenario.

5.1.3 Organization of This Chapter

The rest of the chapter is organized as follows. In Section 5.2, we motivate our work

using an example from the telecom domain. In Section 5.3, we formalize features as I/O

automata and define a notion of binding for describing pipelines. Section 5.4 is the main

contribution of this chapter. It formalizes the transparency pattern that guarantees that

synthesis can be done compositionally. We describe our synthesis algorithm in Section 5.5

and its implementation in Section 5.6. In Section 5.7, we evaluate our technique on a set

of AT&T telecom features. We review related work and compare it with our approach

in Section 5.8. We discuss the limitations of our approach in Section 5.9, and conclude

this chapter with a summary of contributions and a discussion on potential extensions

of this work in Section 5.10.

5.2 Motivation

We motivate our work by analyzing a simplified instance of a telecom scenario (see

Figure 5.1). Features in this scenario are arranged in a pipeline and include Call Blocking

(CB), Record Voice Mail (RVM), Quiet Time (QT), Sequential Find Me (SFM), No

Answer Time Out (NATO), and Answer Confirm (AC).

Pipeline features communicate by passing signals to their immediate neighbours. Sig-

nals that travel end-to-end pass through all features, allowing each feature to perceive
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Figure 5.3: Possible orderings of the features in Figure 5.2.

and modify the overall function of the pipeline. For example, Figure 5.1 shows the flow

of the signals setup and unavail. There are many other signal types, but we show only

the most relevant ones here.

The communication between the features in a pipeline is either buffered or unbuffered

(synchronous). The former facilitates reliable communication but complicates reasoning:

it is known that verification of a distributed system with unbounded buffers is undecid-

able (Brand & Zafiropulo, 1983). Instead, we assume that features communicate through

synchronous message passing, which makes for more tractable reasoning but imposes re-

strictions on the design of features: they should be responsive to all potential input at

all time, i.e., they should be input-enabled. This requirement is captured in a number

of standard formalisms for describing concurrent systems, e.g., I/O automata (Lynch
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Figure 5.4: Fragments of the compositions of the features in Figure 5.2 with respect to

the orderings in Figure 5.3.

& Tuttle, 1987). For example, all the features in Figure 5.1 are enabled for setup and

unavail.

To refer to the directions within a pipeline, we use the terms upstream (right to left)

and downstream (left to right). In our example, the setup signal travels downstream, and

the unavail signal travels upstream. For features F and F ′ in a pipeline, we write F < F ′

to indicate that F is upstream (“to the left of”) of F ′. For example, in Figure 5.1, CB

< NATO.
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Figure 5.2 shows the state machines for CB and RVM in the pipeline of Figure 5.1.

The purpose of CB is to block calling requests coming from addresses on a blocked list.

CB becomes active by receiving a setup signal containing initialization data such as the

directory numbers of the caller and callee. Using this data and its internal logic, CB

decides whether the caller should be blocked. If so, it moves to the blocked state and

tears down the call; otherwise, it moves to the idle state and effectively becomes invisible.

The purpose of RVM is to record a voicemail message when the callee is not available.

Like CB, RVM is activated on receipt of a setup signal. It then remains in its waiting state

until it receives an unavail signal, indicating that the callee is unavailable or is unable to

receive the call. If the media resource is available, RVM moves to the recording state and

lets the caller leave a voicemail message. Otherwise, if the media resource is unavailable,

e.g., the mailbox quota for the user is exceeded, RVM moves to its idle state.

In Figure 5.2, a label “e1/e2” on a transition indicates that the transition is triggered

by action “e1” and generates action “e2” after being taken. Transitions can be triggered

either by input actions, those received from the outside, or by internal actions. When

taken, a transition generates zero or more internal or output actions. It is assumed

that the actions generated by a state machine do not trigger any transition of that state

machine. To distinguish between input, output, and internal actions, we append to each

action e the symbol “?” if e is an input action, the symbol “!” if e is an output action, and

the symbol “;” if e is an internal action. Further, to disambiguate between the actions

of different state machines, we prefix every action with the name of the state machine it

belongs to.

Feature Interaction. The behaviour of the composition of the features in a pipeline

depends on the ordering of the features, and the goal of our work is to synthesize an

ordering which will guarantee absence of undesirable compositions. For example, suppose

we are trying to avoid the composition: “RVM should not record a message if CB blocks
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the caller” (Zave, 1999), formalized as the following negative trace1:

NS 1 = cb.reject; rvm.voicemail;

CB and RVM can be put in a pipeline one of the two ways, shown in Figure 5.3.

The ordering in Figure 5.3(a) yields the composition in Figure 5.4(a), and the one in

Figure 5.3(b) – the composition in Figure 5.4(b). These compositions were computed

based on the parallel composition semantics in synchronous mode of communication (Mil-

ner, 1989). The composition in Figure 5.4(a) results in an undesirable interaction: the

path from (s0, t0) to (s3, t4) generates the trace NS 1, i.e., “rvm.voicemail;” comes after

“cb.reject;”. The composition in Figure 5.4(b), on the other hand, does not exhibit NS 1,

implying that CB should come before RVM in a pipeline. Note that since the size of

these compositions is huge, Figures 5.4(a) and (b) only show the relevant fragments of

these compositions.

Synthesis Challenge. In general, finding a suitable ordering cannot be done com-

positionally when the features in a pipeline have unconstrained designs. For example,

consider sample features A and B in Figure 5.5(a) and the property “A voicemail mes-

sage should not be recorded”2, i.e., action “b.voicemail;” must not be produced by the

composition of A and B. This property does not hold over either a pipeline in which

A < B, or the one in which B < A. In the former case, A sends setup to B, and B

generates “b.voicemail;”, and in the latter case, B receives setup from the environment

and generates “b.voicemail;”. So, it may seem that the given correctness property does

not hold on a pipeline containing A and B. However, consider the new feature C in

Figure 5.5(b) which blocks the action setup. The pipeline A < C < B in Figure 5.5(b)

satisfies the given correctness property, i.e., the composition of these features, when ar-

ranged in the above order, does not generate “b.voicemail;”. This example shows that,

1The trace “rvm.voicemail; cb.reject;” could have been considered instead of NS1 as well.
2This property is used only for illustration.
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Figure 5.5: Local ordering vs. global ordering.

in general, we may not be able to infer a global ordering over the pipeline by analyzing

subsets of components. Even though the given correctness property only concerns B, our

analysis needs to consider all the components in the pipeline. Hence, given n unrestricted

components, we need to check exponentially many (n! ≈ O(2n log n)) pipeline arrangements

to find one which satisfies the properties of interest. This is intractable for all but the

most trivial pipelines.

Transparency Pattern. To be able to lift an ordering over a subset of pipeline features

to the entire pipeline, we rely on a pattern of behaviour called transparency. Each

feature implementing this pattern can exhibit an execution along which it is unobservable

(transparent). When executing transparently, a feature sends any signal received from its

left to its right, and any signal received from its right to its left, possibly with some finite

delay. Features implementing the transparency pattern can still perform their specific

functionality via other executions, or via unobservable behaviours.

For example, in Figure 5.2, CB’s transparent execution is from s0 to s2, and RVM’s

– from t0 to t3. CB behaves transparently if the call request comes from a non-blocked

address. In this case, the system proceeds as if CB were never present; otherwise, CB
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provides its service by blocking the incoming call, i.e., by taking the path from s0 to s3.

As for RVM, the feature exhibits its transparent behaviour when its media resource is

unavailable; otherwise, it allows the user to leave a voicemail message by taking the path

from t0 to t4.

For pipeline features implementing the transparency pattern, we prove the following

(Section 5.4): if a pipeline consisting of just two features F and F ′ where F < F ′ violates

a safety property ϕ, a pipeline with an arbitrary number of components in which F < F ′

violates ϕ as well. This enables a compositional algorithm for synthesizing pipeline

orderings (Section 5.5).

5.3 I/O Automata and Pipelines

We describe features as I/O automata (Lynch & Tuttle, 1987). This formalism is chosen

because

1. I/O automata allow distinguishing between the input, internal, and output actions

of features – this distinction between different types of actions is crucial for properly

describing the communications between features (Lynch & Tuttle, 1987); and

2. I/O automata are input-enabled by design. Input-enabledness makes it easier to

detect and avoid deadlocks (Lynch & Tuttle, 1987; Zave & Jackson, 2002) and

further, provides a way to terminate features that are stuck in error loops and

hence are wasting resources (Zave & Jackson, 2002).

Definition 5.3.1 (I/O automata (Lynch & Tuttle, 1987)) An I/O automaton is

a tuple A = (S, s0, E,R), where S is a finite set of states; s0 ∈ S is an initial state; E

is a set of actions partitioned into input actions (Ei), output actions (Eo), and internal

actions (Eh); and R ⊆ S × E × S is a set of transitions.
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Figure 5.6: I/O automata for the state machines in Figure 5.2.

Input actions are those that a feature receives from its environment. Internal actions

represent events scoped inside a feature and invisible outside of it. Examples of such

events include internal timers and communication with media devices. Output actions

represent a feature’s response to its input and internal actions.

An I/O automaton can be viewed as an LTS if the distinction between input, output

and internal actions is ignored. Given an I/O automaton A = (S, s0, E = Ei∪Eo∪Eh, R),

we write LTS (A) to denote the LTS (S, s0, E,R). Similar to LTSs, we write A@E ′ to

denote A with its set of actions reduced from E to E ′, and write L(A) to denote the

set of traces of A. Figures 5.6(a) and (b) show the I/O automata for the state machines

in Figures 5.2(a) and (b), respectively. The labels of the input and output actions of

these I/O automata have infixes “r” (right) and “l” (left); these indicate the directions

in which these actions are communicated (see Definition 5.3.2).
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We say a state s is enabled for an action e if s has an outgoing transition labelled e.

A state s is quiescent if s is not enabled for any output or internal actions. Intuitively,

an automaton in a quiescent state is strictly waiting for an input from its environment.

An I/O automaton A is input-enabled if the following conditions hold:

1. A returns promptly to some quiescent state after leaving one. We assume the exe-

cution time of transitions labelled with output and internal actions to be negligible.

Thus, prompt return to a quiescent state means that output and internal actions

never block the execution, and further, no cycle of transitions labelled with only

internal and output actions exists.

2. Quiescent states of A are enabled for all input actions. For example, states s0, s3,

and s5 in Figure 5.6(a) are quiescent and are enabled for all input actions of CB,

i.e., “cb.l.setup?” and “cb.r.unavail?”.

As shown in Figure 5.1, each feature has one port on its left and one on its right side,

and actions can be sent or received from either of these two ports. To be able to refer

to the direction of communication in a pipeline, we augment I/O automata with action

mappings which specify the port from which an action is sent or received.

Definition 5.3.2 (Features) A feature F is a tuple (AF , f) where AF is an I/O au-

tomaton, and f : Ei ∪Eo → {r, l} is a function that maps every input and output action

of F to either the right, r, or the left, l, port of F . We write “F.r.e” (or, respectively,

“F.l.e”) to say that action e is mapped to port “r” (or, respectively, “l”).

Note that f does not map the internal actions of a feature because these actions are

invisible outside the feature.

In Figure 5.1, the smaller boxes attached to the features denote the ports. Ac-

tions are visualized as small circles on the appropriate ports. For example, CB has an

(output) action “cb.r.setup!” mapped to its right port, and RVM has an (input) action

“rvm.l.setup?” mapped to its left port.
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To formally specify how two consecutive features in a pipeline communicate, we define

a notion of binding for connecting the right port of one feature to the left port of another.

Definition 5.3.3 (Pipeline Bindings) Let F1 and F2 be consecutive features in a pipeline;

let R = {e ∈ E1 | f1(e) = r}; and let L = {e ∈ E2 | f2(e) = l}. A (pipeline) binding B ⊆ R×L

between F1 and F2 is a one-to-one correspondence relation between L and R that relates

input actions only to output actions, and output actions only to input actions; i.e.,

(e1, e2) ∈ B =⇒
(
(e1 ∈ Eo

1 ∧ e2 ∈ Ei
2) ∨ (e1 ∈ Ei

1 ∧ e2 ∈ Eo
2)

)
For a binding B, we say an action is shared if it occurs in some tuple of B, and non-

shared otherwise.

The links between the features in Figure 5.1 can be expressed as bindings. For example,

the CB–RVM link in the figure is characterized by the following binding:

B = {(cb.r.setup!, rvm.l.setup?), (cb.r.unavail?, rvm.l.unavail!)}

which indicates that the output action “cb.r.setup!” (of CB) synchronizes with the input

action “rvm.l.setup?” (of RVM), and the input action “cb.r.unavail?” (of CB) synchronizes

with the output action “rvm.l.unavail!” (of RVM).

In our working example, bindings are meaningful only if they relate actions with iden-

tical signal names. For example, had we considered an additional upstream-traveling sig-

nal unknown in Figure 5.1, it would have been incorrect to, say, relate actions

“cb.r.unknown?” and “rvm.l.unavail!”. Thus, in this chapter we assume that features

use a unified set of signals and all bindings are based on signal name equivalences. On

the other hand, we recognize that there may be domains where this assumption does not

hold: features may refer to a shared signal by different names, or refer to non-shared

signals by the same name. Through making mappings between actions explicit, all such

bindings can be captured by Definition 5.3.3 directly.
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To obtain the overall behaviour of a set of communicating features, we compose them

with respect to the bindings established between them. To this end, we define a parallel

composition of I/O automata, whereby features synchronize their shared actions and

interleave their non-shared ones.

Definition 5.3.4 (Composition of Pipeline Features) Let F1 and F2 be consecutive

features in a pipeline linked by a binding B. The parallel composition of F1 and F2 with

respect to B, denoted F1||BF2, is a feature (A, f) where

• A = (S1 × S2, (s0, t0), E = Ei ∪ Eo ∪ Eh, R) with Ei, Eo, Eh, and R defined as

follows:

Ei = (Ei
1 ∪ Ei

2) \ {e | e is a shared input action}

Eo = (Eo
1 ∪ Eo

2) \ {e | e is a shared output action}

Eh = (Eh
1 ∪ Eh

2 ) ∪B

R = {((s, t), e, (s′, t)) | (s, e, s′) ∈ R1 ∧ e is a non-shared action}
⋃

{((s, t), e, (s, t′)) | (t, e, t′) ∈ R2 ∧ e is a non-shared action}
⋃

{((s, t),(e, e′),(s′, t′)) |(s, e, s′)∈R1∧(t, e′, t′)∈R2∧(e, e′)∈B}

• f = (f1 ∪ f2) \ {e | e is a shared action}

The above is the same as the standard definition of parallel composition for I/O

automata (Lynch & Tuttle, 1987), except that we use bindings to explicitly specify the

shared actions prior to composition. Since bindings are one-to-one, it easily follows that

the ||B operator is associative. Thus, the global composition of the features in a pipeline

can be formulated as a series of binary compositions.

5.4 Formalizing Transparency

Intuitively, if a feature F implements the transparency pattern (motivated in Section 5.2),

then there is some environment that coerces F to exhibit its transparent behaviour. For
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example, CB (in Figure 5.2) exhibits its transparent execution, i.e., from s0 to s2, when

data from the environment indicates that the callee has not blocked the caller. Since

pipeline features act independently (Jackson & Zave, 1998; Shaw & Garlan, 1996), each

feature can be coerced into its transparent execution independently of other features.

In this section, we formalize the above intuition and prove (in Theorem 5.4.1) that if

all features implement the transparency pattern, the following holds:

“If a pipeline with two features (F followed by F ′) violates a safety property ϕ, a pipeline

with an arbitrary number of features in which F < F ′ violates ϕ as well.”

We exploit this result in Section 5.5 to provide a compositional algorithm for ordering

features in a pipeline.

The formalization of the transparency patternG is shown in Figure 5.7. It is expressed

as an I/O automaton with generic input actions G.l.〈x〉? and G.r.〈y〉?, and generic output

actions G.l.〈y〉! and G.r.〈x〉!. State S0 is quiescent, and states S1 and S2 are transient. A

feature implementing this pattern can exhibit some execution along which it forwards any

signal it receives from its left port onto its right port, and vice versa. On this execution,

a feature can delay the transmission of actions for a finite amount of time to perform its

internal behaviours, but is not allowed to add or omit any actions, or to change the order

of actions being transmitted. If the environmental data is such that a feature has to

provide its service in response, the feature chooses a non-transparent execution or simply

fulfills its functionality through internal actions on its transparent execution.

The cycle between states S0 and S1 in Figure 5.7 (hereafter, the downstream cycle)

handles signals that travel downstream, and the cycle between S0 and S2 (hereafter, the

upstream cycle) handles signals traveling upstream. To adapt the generic transparency

pattern to a specific pipeline problem, we need a copy of the downstream cycle for every

signal traveling downstream, and a copy of the upstream cycle for every signal traveling

upstream. For example, Figure 5.8 shows the adaptation, P , of the pattern to the pipeline

in Figure 5.1. Since this pipeline has one downstream traveling signal, setup, and one
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S0

S2S1〈y〉! 〈y〉?
〈x〉? 〈x〉!

rl
G.l.〈x〉?

G.r.〈x〉!

G.r.〈y〉?

G.l.〈y〉!

Figure 5.7: G: Generic transparency pattern.

S1
S2

S0
P.l.setup?

P.r.setup! P.l.unavail!

P.r.unavail?
setup? setup!

unavail! unavail?

l r

Figure 5.8: P : Adaptation of the generic transparency pattern to the pipeline in Fig-

ure 5.1.

upstream traveling signal, unavail, P has one copy of the downstream and one copy of

the upstream cycle. Had we considered further signals, we would have had more copies

of the corresponding cycles in this adaptation.

We characterize the implementation relation between a feature and its adaptation by

weak simulation (see Definition 2.3.3), which allows us to relate features with different

sets of actions. Having such flexibility is key: although the features in a pipeline share

the same input and output actions with the pattern adaptation, each feature has its own

set of internal actions. For example, consider features CB and RVM in Figure 5.6. CB’s

internal actions are “cb.reject;” and “cb.accept;”, whereas RVM’s are “rvm.res unavail;”,

“rvm.res avail;” and “rvm.voicemail;”. Such internal actions are not used in P in Fig-

ure 5.8.

To establish a simulation relation between a feature and its pattern adaptation,

we need to hide the feature’s internal actions. For example, after replacing actions

“cb.reject;” and “cb.accept;” of CB and “rvm.voicemail;” of RVM with τ , both CB and
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RVM simulate P . The simulation relation for CB is

{(s0, S0), (s1, S1), (s2, S1), (s3, S0), (s6, S2), (s7, S2), (s8, S1)}

and for RVM is

{(t0, S0), (t1, S1), (t2, S0), (t3, S2), (t4, S2), (t5, S0), (t6, S2),

(t7, S1), (t8, S2), (t9, S1)}

Before giving the main result of this section, Theorem 5.4.1, we state two lemmas used

in the proof of the theorem. For the remainder of this section, let P be the adaptation

of the generic transparency pattern, G, for a particular pipeline.

Lemma 1 Let F be a feature, and let B1 bind F.r to P.l. If F violates a desired safety

property, so does F ||B1P . Similarly, let B2 bind P.r to F.l. If F violates a desired safety

property, so does P ||B2F .

Proof:

We provide the proof for the first case, i.e., binding B1. The proof for the second case, i.e., binding

B2, is symmetric. The proof follows from the following two steps:

I. We first show that F � F ||B1P .

Let F = (Σ1, s0, R1, E1), and let P = (Σ2 = {S0, S1, S2, . . . , Sn}, S0, R2, E2) where S0 is

quiescent and S1, . . . , Sn are non-quiescent (e.g., see Figure 5.8). Define Φ ⊆ (Σ1×(Σ1×Σ2))

as follows:

1. (s0, (s0, S0)) ∈ Φ and

2. For every s, s′ ∈ Σ1 such that s
e−→ s′,

-Internal: if e is an internal action, or is an input action

received from left, or is an output action sent to left; then

(1) (s, (s, S0)) ∈ Φ; and (2) (s′, (s′, S0)) ∈ Φ.

s′

S0

e

F P

e

e

s
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-Input: if e is an input action received from right; then (1)

(s, (s, S0)) ∈ Φ; (2) (s, (s, Si)) ∈ Φ such that Si ∈ Σ2 and

S0
e?−→ Si; and (3) (s′, (s′, S0)) ∈ Φ.

s′

S0

F P

Si

S0

e?e?

e!

e

s

-Output: if e! is an output action sent to right; then (1)

(s, (s, S0)) ∈ Φ; (2) (s′, (s′, Si)) ∈ Φ such that Si ∈ Σ2 and

S0
e?−→ Si; and (3) (s′, (s′, S0)) ∈ Φ.

s′

S0

F P

Si

S0

e?e! e

e!

s

By Definition 5.3.4, F ||B1P = (Σ1 × Σ2, (s0, S0), R||, E1 ∪ E2). Let Σ3 be the set of states

of F ||B1P reachable from (s0, S0). We first note that Φ ⊆ Σ1 × Σ3. This is because the

above construction follows the definition of parallel composition (Definition 5.3.4). More

specifically,

Internal: I/O automaton F moves on its action e; and P remains on its state S0.

Input: I/O automaton P receives e? from its right and moves to state Si. Then, P moves

from Si back to S0, sending action e! to its left (i.e., to F ). This causes F to move

from s to s′ on its input action e?.

Output: I/O automaton F moves on its output action e!, sending action e to P . This

causes P to move from S0 to Si where S0
e?−→ Si. Then, P sends e! to its right and

moves back to S0.

We argue that Φ is a simulation between F and F ||B1P . By our construction of Φ, for every

s ∈ Σ1 reachable from s0, there is a tuple (s, (s, S0)) ∈ Φ. It is easy to show that every state

s of F is simulated by state (s, S0) of F ||B1P . Thus, s0 is simulated by (s0, S0), and hence,

Φ is a simulation relation between F and F ||B1P .
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II. Let σneg be a negative trace. By I., we have L(F ) ⊆ L(F ||B1P ). Thus, σneg ∈ L(F ), implies

that σneg ∈ L(F ||B1P ). Therefore, if F violates a safety property, so does F ||B1P .

The following lemma states that if the features in a pipeline implement the trans-

parency pattern, so does the entire pipeline. That is, the features cannot prohibit one

another from exhibiting their transparent behaviour.

Lemma 2 Let F1, . . . , Fn be consecutive features in a pipeline, where Bi binds Fi.r

to Fi+1.l. If every Fi (1 ≤ i ≤ n) implements (i.e., weak simulates) P , so does the

composition

F1||B1F2||B2 . . . ||Bn−1Fn.

Proof:

We first recall two standard results on parallel composition of state transition systems (see (Clarke

et al., 1999)).

(1) for every M1, M2 and M3, if M1 � M2 then M3||M1 � M3||M2.

(2) for every M , we have M � M ||M

The proof follows by induction on n. The base case, n = 1, is trivial. Let F = F1||B1F2||B2 . . . ||Bn−2Fn−1.

P � F1 ∧ . . . ∧ P � Fn

(by the inductive hypothesis)

⇒ P � F ∧ P � Fn

(by (1))

⇒ P ||Bn−1Fn � F ||Bn−1Fn ∧ P ||Bn−1P � P ||Bn−1Fn

(by transitivity of �)

⇒ P ||Bn−1P � F ||Bn−1Fn

(by (2))

⇒ P � F ||Bn−1Fn
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(a) (b)

F F ′ F1 F Fi Fj F ′ Fn

Figure 5.9: An illustration for Theorem 5.4.1.

Note that the actions of the left and right ports of all features F1, . . . , Fn are the same as those

of P . Thus, all bindings B1, . . . , Bn are identical. Therefore, for any Bi, the operator ||Bi can be

used to compose any pair of features or any feature with P .

Finally, we present the main theorem of this section:

Theorem 5.4.1 Let F, F ′, F1, . . . , Fn be pipeline features, and let F , F ′ and every Fi

(1 ≤ i ≤ n) implement P . If the pipeline in Figure 5.9(a) does not satisfy a desired

safety property, neither does the pipeline in Figure 5.9(b).

Proof:

Let X1 be the pipeline segment from F1 to Fi−1, X2 be the segment from Fi to Fj , and X3 be the

segment from Fj+1 to Fn in Figure 5.9(b). Suppose X is the pipeline obtained by replacing each

X1, X2 and X3 in Figure 5.9(b) with P , i.e., X consists of F , F ′ and three instances of P . By

Lemma 2, if X is not safe, neither is the pipeline in Figure 5.9(b). By Lemma 1 and Theorem 2.3.2

in Section 2.3.2, if the pipeline in Figure 5.9(a) is not safe, neither is X.

In Section 5.5, we use Theorem 5.4.1 to propose an efficient pipeline ordering algo-

rithm. Another application of this theorem, which we do not consider in this paper, is for

pipeline verification. Specifically, it follows from the contrapositive of the theorem that if

a given pipeline satisfies a safety property, any subsequence of the pipeline satisfies that

property as well.
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5.5 Compositional Synthesis

In this section, we describe the algorithm for computing ordering of features in a pipeline,

to ensure that they do not admit any of the undesirable interactions. The algorithm,

OrderPipeline, is shown in Figure 5.10. The main engine of this algorithm is the

function FindPairwiseConstraints, shown in Figure 5.11, which computes a set C

of ordering constraints between feature pairs. These constraints are inferred by model

checking the two possible compositions of each feature pair against the safety properties

defined over that pair. For example, let F1 = CB and F2 = RVM, and let negTr = NS 1

(see Section 5.2). With these inputs, FindPairwiseConstraints yields CB < RVM

because the property NS 1 holds in the composition where CB comes before RVM (line

5 in Figure 5.11), but not in the other composition (line 7). The resulting constraint

CB < RVM is added to C (line 11) which is returned on line 16. By Theorem 5.4.1, a

pipeline ordering that does not respect pairwise ordering constraints is unsafe, and thus

inadmissible. This provides us with an effective strategy for pruning the search space for

solutions.

Given a pair of features, FindPairwiseConstraints can infer an ordering over

the pair, if exactly one of their two possible compositions violates the given properties.

Otherwise, if neither composition violates the properties, the features in question can

be put in any order, and hence no constraint is derived (line 15). If both compositions

violate the properties, FindPairwiseConstraints returns error (line 9). In this case,

the given features need to be revised before they can be put together in a pipeline; hence,

OrderPipeline terminates unsuccessfully (line 3).

If FindPairwiseConstraints does not return error, OrderPipeline enters a

repeat-until loop (lines 4–8). Every iteration of this loop starts by finding a permutation

of the n features comprising the pipeline that satisfies the set of constraints computed

by FindPairwiseConstraints. Such a permutation, called T, satisfies a set C of con-

straints if for every constraint Fk < Fl in C, we have T[k] < T[l], i.e., feature Fk is
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Algorithm. OrderPipeline

Input: - Features F1, . . . , Fn with action sets E1, . . . , En, respectively.

- A set negTr ⊆ (
⋃

1≤k≤nEk)
∗ of negative traces.

Output: A permutation, T, of 1 to n giving an order on F1, . . . , Fn.

1: C := FindPairwiseConstraints(F1, . . . , Fn, negTr)

2: if (C = error) :

3: return error

4: repeat

5: T:= Next permutation of 1, 2, · · · , n satisfying C

6: Let Bi bind FT[i].r to FT[i+1].l for 1 ≤ i < n

// Bi connects the feature at position i to the one at position i+ 1

7: safe := ModelCheck(FT[1]||B1 . . . ||Bn−1FT[n], negTr)

8: until safe

9: return T

Figure 5.10: Algorithm for pipeline ordering.

positioned to the left of feature Fl in the pipeline. For example, let F1 = CB, F2 =

QT, and F3 = RVM. The permutation T satisfying constraints { CB < RVM, RVM <

QT} is [1, 3, 2]. Afterwards, a global composition of the features is built with respect

to the computed permutation T. If this composition satisfies all the given properties, T

is returned as a solution. Otherwise, the loop continues until a solution is found, or all

permutations that satisfy C are exhausted. In the latter case, OrderPipeline returns

error.

Notice that merely satisfying C does not make a given permutation T a solution to the
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Algorithm. FindPairwiseConstraints

Input: Features F1, . . . , Fn and negative trace negTr.

Output: A set C or pairwise ordering constraints.

1: C := ∅

2: for 1 ≤ k < l ≤ n: // choose a pair Fk, Fl

3: negTr′ := negTr ∩ (Ek ∪ El)
∗ // restrict negTr to Fk and Fl

4: B1 := Binding(Fk.r, Fl.l) // put Fk before Fl

5: safe1 := ModelCheck(Fk||B1Fl, negTr′)

6: B2 := Binding(Fl.r,Fk.l) // put Fk after Fl

7: safe2 := ModelCheck(Fk||B2Fl, negTr′)

8: if (¬safe1 ∧ ¬safe2) :

9: return error

10: if (safe1 ∧ ¬safe2) :

11: add Fk < Fl to C

12: else if (¬safe1 ∧ safe2) :

13: add Fl < Fk to C

14: else : // i.e., safe1 ∧ safe2

15: do nothing // inconclusive result; no constraint on Fk w.r.t. Fl

16: return C

Figure 5.11: Algorithm for finding pairwise ordering constraints.

pipeline ordering problem. For example, consider features A and B in Figure 5.12(a)3.

3This example is similar to that given in Section 5.2, but the details are not identical.
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a.setup?
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b.setup?

b.error;
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B
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unavail!
unavail?

unavail!
unavail?

setup?

unavail?

Figure 5.12: Local ordering vs. global ordering.

The composition of A and B in the figure is safe for the trace “b.error;”, i.e., “the

error action is unreachable”. However, once feature C is inserted between A and B in

Figure 5.12(b), the resulting pipeline is no longer safe for this property: Theorem 5.4.1

only guarantees safety violations to lift from a pairwise to the global setting. However,

safety properties that are satisfied over a pair of features are not necessarily lifted4.

Therefore, we need to check all safety properties over the global composition induced

by a candidate ordering. Further, although in practice most safety property traces are

expressed over pairs of features, we can envision traces that refer to several and potentially

to all features in the system. Checking such properties requires the construction of a

global composition.

Our pipeline ordering algorithm is sound because we construct a global composition

and verify it against all the given properties. The algorithm is complete because by The-

orem 5.4.1, it never prunes an ordering that is a possible solution to the pipeline ordering

problem. Finally, the algorithm is change-aware, allowing for the reuse of synthesis re-

sults across changes to pipelines. Specifically, after adding or modifying a feature F , we

4The features in Figure 5.12 can be completed to implement the transparency pattern and yet exhibit
the same problem.
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can reuse the pairwise constraints that do not involve F , and thus, we do not need to

reconsider all possible configurations after each change.

The scalability and effectiveness of our approach ultimately depend on how well we

can narrow down the search for potentially admissible pipeline permutations, and whether

verifying compositions (lines 5 and 7 in Figure 5.11, and line 7 in Figure 5.10) is feasi-

ble. In Section 5.7, we apply our approach to an industrial telecom example. There, we

demonstrate that substantial pruning of the search space can be achieved by utilizing the

pairwise constraints inferred from the known undesirable interactions in the domain. The

features used in our evaluation were not very large, and therefore, we could verify their

compositions in a conventional way. But, for larger systems, we can improve the scala-

bility of OrderPipeline algorithm using existing automated compositional techniques

for checking safety properties (e.g., (Cobleigh et al., 2003)).

5.6 Implementation

We have developed a prototype implementation of the pipeline ordering algorithm de-

scribed in Section 5.5. We discuss inputs to the algorithm as well as the relevant technical

details below.

5.6.1 Inputs

Our algorithm in Section 5.5 receives a set of features expressed as I/O automata and a

set of negative traces capturing undesirable interactions between these features. In order

to use standard verification tools, in our case, the LTS Analyzer (LTSA) tool (Magee &

Kramer, 2006), our tool translates the input features to LTSs and the negative traces –

to property LTSs (see Section 2.2.2).
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5.6.2 Parallel composition

Our technique requires us to compute compositions of pipeline features (lines 5 and 7

of FindPairwiseConstraints in Figure 5.11 and line 7 of OrderPipeline in Fig-

ure 5.10), for which we need to implement the parallel composition operator ||B (Defini-

tion 5.3.4) – one is not readily available in LTSA. This is achieved as follows: first, we

do an action relabelling to ensure that shared actions, with respect to a given binding

B, have identical labels in the features to be composed. We then apply LTSA’s parallel

composition operator (Definition 2.2.3) to compose the features.

5.6.3 Model checking

Since we translate negative traces to safety LTSs, model checking (lines 5 and 7 of

FindPairwiseConstraints and line 7 of OrderPipeline) can be done directly using

LTSA. Note that our technique involves model checking not only pairwise but also the

global composition (line 7 of OrderPipeline). Our tool currently uses LTSA directly

for this latter check, which has not presented a challenge so far because the number and

the size of features we have been working with so far have been relatively small (see

Section 5.7). However, this check may become an issue when analyzing larger systems,

and in the future we intend to use an enhanced version of LTSA (Cobleigh et al., 2003)

that enables compositional model checking for safety properties. This approach applies

to our work directly, since the negative traces we use are safety properties.

5.6.4 Ordering permutations

To generate ordering permutations that satisfy a given set of constraints (line 5 of Or-

derPipeline), we use a backtracking constraint solver, Choco (Laburthe & Jussien,

2008). All constraints used in our approach are binary, and for those, the state-of-the-art

look-ahead techniques for solving CSP problems are very efficient.
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5.7 Evaluation

In this section, we provide initial evidence for the usefulness of our approach through

a case study from the telecom domain. Our study involves six features from AT&T

deployed in the DFC architecture (Jackson & Zave, 1998).

When conducting the study, we had a number of goals. The first goal was to check

that the features present in the case study simulate our formalization of the transparency

pattern in Figure 5.8 (G1). The other two goals were to investigate whether our technique

can sufficiently narrow down the search for a safe pipeline ordering, which includes the

ability to identify enough negative scenarios of interaction (G2), and to evaluate the

performance of our technique on a realistic example (G3). We begin this section with a

description of the domain of our study, and discuss the experience with the above goals

in Section 5.7.2.

5.7.1 Domain Description

In DFC, a simple telecom usage is implemented by a linear pipeline such as the one

shown in Figure 5.1. The original DFC pipeline has several additional signals, e.g., avail

and unknown, which we omitted from Figure 5.1 for simplicity. The pipeline in the figure

includes six features, namely, CB and RVM (see Section 5.2), as well as QT, SFM, AC,

and NATO. A high-level description of the four new features, taken from (Zave, 1999),

is as follows:

Quiet Time (QT) enables the subscriber to avoid an incoming call by activating a

dialog with the caller, saying that the subscriber wishes not to be disturbed. If the

caller indicates that the call is urgent, this feature allows the call to go through.

Otherwise, it signals failure (unavail) upstream.

Sequential Find Me (SFM) attempts to find the callee at a sequence of locations.

If the first location does not succeed, then while all the other locations are being
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tried, the feature plays an announcement, letting the caller know that the call is

still active.

Answer Confirm (AC) uses a media resource to elicit confirmation that the call has

been answered by a person rather than by a machine. If the test is not passed, it

signals unavail upstream, even though the call was actually answered.

No Answer Time Out (NATO) signals failure (unavail) upstream if an incoming call

is not answered after a certain amount of time.

The DFC architecture supports dynamic architectural reconfiguration. This means

that features and bindings can be created, destroyed, or reassigned at runtime. In fact,

the pipeline in Figure 5.1 is a static snapshot of a dynamic structure. For example, in the

figure, each new location tried by SFM results in a new setup signal sent downstream,

and creation of new instances of AC and NATO. We do not consider such advanced

capabilities here. Specifically, we abstract away feature behaviours involving runtime

reconfiguration. Hence, a pipeline ordering synthesized by our technique is over a static

snapshot of a (potentially) dynamic DFC pipeline. In this sense, the real value of our

technique with respect to DFC is as an exploration tool through which analysts can

consider different snapshots of the same pipeline and ensure that the synthesized orderings

for these snapshots are consistent with one another.

The features in our case study are specified in Boxtalk (Zave & Jackson, 2002) – a

domain-specific language for specifying telecom features. Each Boxtalk specification is

a state machine with a set of states and a set of transitions which can be triggered by

actions. Boxtalk also provides constructs for manipulating data and media, but we do

not consider these constructs in this work. Boxtalk is similar to I/O automata in that

the models described in it are input-enabled; the language also distinguishes between

input, output, and internal actions of features (Zave & Jackson, 2002). Hence, the

control behaviours of Boxtalk specifications can be conveniently captured using our I/O
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Feature CB RVM QT SFM NATO AC

# of states 9 10 12 22 7 10

# of transitions 13 13 19 31 16 21

Table 5.1: Sizes of the resulting translations.

automata-based formalism (Definition 5.3.2).

In this case study, all of the features except NATO and CB have additional ports

through which they communicate with media resources that record speech, play an-

nouncements, detect touch-tones, etc. We have abstracted away from these ports, re-

placing their signals with internal actions such as “rvm.voicemail;”. This abstraction is

safe because the interaction of each feature with its media resource is independent and

and logically contained within the feature, thus not affecting feature composition.

5.7.2 Experience

We manually translated the six Boxtalk features into I/O automata. The sizes of the

translated models are shown in Table 5.1, whereas the original Boxtalk specifications and

the resulting I/O automata are available in Appendix B.

Our analysis indicates that all these features implement our formalization of the

transparency pattern. We already exemplified the simulation relation for CB and RVM

in Section 5.4. For the remaining features, see Appendix B. To show that a state

machine satisfies the transparency pattern, we need to prove the existence of a stuttering

simulation relation between that state machine and the pattern. There are several tools

that can check the existence of such relations, such as MAGIC (Chaki et al., 2003). The

realization of the transparency pattern satisfies goal G1 and enables the application of

our pipeline ordering algorithm.

G2. The scenarios used in our study are shown in Table 5.2 (left column). These
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scenarios came from (Zave, 1999) and from the experience of the domain expert. Note

that these scenarios may not be always known in advance. To elicit them, the domain

expert may have to inspect or monitor the models and their interactions using automated

analysis tools. Table 5.2 (right column) shows the constraints inferred by our technique

for the individual scenarios. These constraints were sufficient to conclusively order all

the features in Figure 5.1 except for the SFM feature. The role of SFM is to transform a

number that was dialed, i.e., a personal number, into some device number: a home phone,

a cell phone, etc. Scenarios involving SFM cannot be expressed as sequences of actions

because they refer to data, i.e., personal and device numbers. In this work, we do not

model data and instead rely on the domain expert to provide the constraints for SFM.

Specifically, CB, RVM, and QT should precede SFM because they are personal features,

i.e., they apply to the personal number. In contrast, AC and NATO should follow SFM

because they apply to each phone try individually, and there will be a different instance

of AC and NATO for each try. Using these additional constraints, we were able to narrow

down the set of possible global orderings to a single one.

While we had no problem in this domain where the nature of interactions between

feature pairs was well studied and well understood, our technique may be less effective

in other domains. The degree to which it narrows down the search is influenced by

factors such as the size and the number of features in the domain, the amount of domain

expertise available, and the existence of formal design guidelines for feature development,

and all of these may vary widely.

To extend the applicability of our approach to domains where an adequate set of

negative scenarios is hard to obtain, the approach can be combined with simulation and

monitoring tools which assist users in identifying additional undesirable scenarios. The

idea is that analysts often have certain heuristics for detecting “suspicious” behaviour,

even though they may not have pinned down the exact undesirable interactions. For

example, it might be dangerous for certain pairs of features to be active in the same usage
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Negative Scenario Constraint(s)

QT cannot stop a caller from leaving a voicemail message. RVM < QT

A blocked caller should not be allowed to engage in a dialogue with the

system (this is to avoid wasting expensive media resources).

CB < AC,

CB < QT

CB < RVM

If QT is enabled and the call is not urgent, the system should not disturb

the callee with a confirmation dialogue.

QT < AC

The timer interval should never include the time that the system takes

having a dialogue with a user (because that should not be included in the

time allowance for answering).

AC < NATO,

QT < NATO

Table 5.2: Negative scenarios and the resulting constraints.

scenario. The ability of a tool to report pairs of features that can be active simultaneously

may help analysts to identify additional safety properties and thus reduce the number of

feature orderings.

Different monitoring tools can be used in conjunction with our approach, but the one

that readily integrates with our formalism is LTSA’s simulation module. This module can

be used to monitor the parallel composition of a set of features and report traces leading

to suspicious behaviours. These traces can then be studied by analysts as potential

candidates for negative scenarios. Since our approach requires traces only over pairs of

features to infer ordering constraints, users can concentrate on pairwise compositions, for

which traces are typically small and intuitive enough for manual inspection.

G3. We measured the time and memory performance of the different steps in our

technique, applied to the features in our study. The reported times are for a PC with a

2.2GHz Pentium Core Duo CPU and 2GB of memory; our implementation used version

1.2 of Choco and version 2.3 of LTSA.

FindPairwiseConstraints: Executing lines 5 and 7 of this algorithm (Figure 5.11)
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involves building pairwise compositions of LTSs and model checking them. Since I/O

automata can be seen as LTSs, the sizes of our LTS translations are those shown in

Table 5.1. The number of states of the pairwise compositions ranged between 60 to 259,

and the number of transitions between 210 to 785. The running times for generating the

compositions were negligible, i.e., under 1s.

To model check the compositions, we expressed safety properties as (safety) LTSs,

which, for the properties in Table 5.2, ranged between 3 to 5 states, and 5 to 8 transitions.

For example, Figure 2.4(a) can be interpreted as a safety LTS for the property NS1

described in Section 5.2 by letting a = “cb.reject;” and b = “rvm.voicemail”. The running

times of individual model checking tasks were negligible.

For the six features in the study and the properties in Table 5.2, the total execution

time of FindPairwiseConstraints was 6.47s and the maximum required memory was

10M. The result of running the algorithm is the set of ordering constraints in the second

column of Table 5.2.

OrderPipeline: Line 5 of this algorithm (Figure 5.10) invokes a constraint solver Choco

to compute a permutation satisfying the pairwise ordering constraints. The running time

and memory usage of this step were negligible due to the nature of our CSP problem

(see Section 5.6), and resulted in a single permutation that satisfied all of the pairwise

constraints in Table 5.2.

Line 7 of the OrderPipeline algorithm requires computing a global composition of

the features. Since there is only one permutation satisfying the constraints in Table 5.2,

only one global composition needed to be built and verified. The number of states and

transitions in this global composition are 1.5× 106 and 22× 106, respectively5. The time

and memory needed for generating this composition are 71.4s and 913M, respectively.

The total model checking time, i.e., the sum of model checking times for individual

5We have observed that global compositions for other permutations are roughly of the same size.
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properties in Table 5.2, was 16min, and the maximum memory requirement was 1G.

Overall, we were able to compute a safe feature ordering in about a quarter of an hour.

The order that we computed is the same as the one that was produced by the domain

expert via manual analysis of the feature pairs. As we discussed in Section 5.2, this may

not be the case when the features do not satisfy the transparency pattern. The most

expensive part of our algorithm is model checking of a global composition, which took

about 16min. This cost is incurred no matter what approach one takes for ordering a set

of features. Even if we were to select a feature ordering randomly, we would still have to

build the global composition and verify it. Since the size of global compositions grows

quickly, compositional techniques for dealing with space explosion are needed. While we

managed to build global compositions using LTSA in our case study without resorting

to compositional analysis tools, efficient tools for checking global compositions already

exist and can be readily incorporated into our approach as discussed in Section 5.6.

5.8 Related Work

The ideas and techniques presented in this chapter are related to the following threads of

research: feature interaction analysis, compositional reasoning, and design for verification

approaches.

5.8.1 Feature interaction

Feature interaction is a well studied problem in feature-based software development, and

many approaches addressing this problem have been proposed, e.g., (Jackson & Zave,

1998; Blom et al., 1994; Hay & Atlee, 2000; Plath & Ryan, 2001; Hall, 2000; Li et al.,

2002). Some of the earlier work required extensive manual intervention. For example,

(Blom et al., 1994) proposed a logic-based approach for detecting undesirable interactions

by manually instrumenting potential interactions with exception clauses and employing
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a theorem prover for finding inconsistencies. (Plath & Ryan, 2001) developed a scheme

whereby users manually specify the join points at which new features can be inserted

into a base system. Feature interactions are explored by weaving the features and model

checking the result.

Recent approaches offer better automation: (Hay & Atlee, 2000) resolves undesir-

able interactions using predefined priorities prescribing which feature should be favoured

should a conflict arise. (Li et al., 2002) proposes a compositional method for verifying

features that are composed sequentially through known interface states. (Hall, 2000) pro-

vides an automated unification operator for combining features (described in a functional

language) with respect to given unifiers. These approaches assume that the relationships

between features (i.e., priorities in (Hay & Atlee, 2000), interfaces in (Li et al., 2002), and

unifiers in (Hall, 2000)) are developed a priori. Our work deals with a complimentary

problem of how to synthesize these relationships.

Several approaches propose the use of architectural styles, such as layered (Brooks,

1986; Pomakis & Atlee, 1996) or pipeline architectures (Jackson & Zave, 1998; Braith-

waite & Atlee, 1994), as a way to prevent undesirable interactions. The arrangement of

features within these architectures is typically done manually. Our work offers a solution

to automate this task for the pipeline architectural style.

Our work also relates to (Dominguez & Day, 2005) which focuses on verifying port-

based systems (with buffered links between features). The work builds on domain-specific

knowledge about the DFC architecture, such as regularity of feature properties and sym-

metry of communication port behaviours, to enable compositional verification of DFC

usage pipelines. However, (Dominguez & Day, 2005) does not address the synthesis of

these pipelines, and also does not exploit the transparent behaviours of DFC features for

reasoning.

The closest work to ours is that of (Zimmer, 2007) which reduces the effort of comput-

ing global feature orderings by partitioning features into categories, and then separately
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sorting the set of categories and the set of features found within each category. To make

their analysis scalable, the authors use an assumption similar to transparency which is

that features in a scenario can be arbitrarily added or removed at runtime. Reasoning

about soundness in (Zimmer, 2007) is similar to ours; however, since the authors do not

formalize transparency, they cannot reason about the completeness of their approach. In

contrast, our formalization of feature behaviours and the notion of transparency enables

us to show completeness in addition to soundness.

5.8.2 Compositional analysis

Compositional analysis extends the applicability of verification methods by reducing rea-

soning about a large system to reasoning about its individual components. For example,

assume-guarantee reasoning (Pnueli, 1985) enables verification of individual components

in conjunction with assumptions about their environment, and allows lifting of the results

to the entire system. Existing work on this topic (Cheung & Kramer, 1996) is not di-

rectly applicable to synthesis of feature-based systems because one needs to know about

the bindings between features in order to specify the environmental assumptions. How-

ever, our synthesis algorithms could directly benefit from automated assume-guarantee

techniques for safety properties, e.g., (Cobleigh et al., 2003). Specifically, our feature or-

dering algorithm in Section 5.5 involves model checking pairwise and global compositions

induced by specific bindings. These model checking tasks can be done more efficiently

using the technique of (Cobleigh et al., 2003).

5.8.3 Design for verification

Design for verification promotes the use of domain-specific patterns and guidelines to

facilitate efficient automated verification (Sharygina et al., 2001; Mehlitz & Penix, 2005;

Betin-Can et al., 2005; Cheng et al., 2005). For example, (Betin-Can et al., 2005)

provides a concurrency controller pattern for making verification of concurrent Java pro-
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grams more scalable, and (Sharygina et al., 2001) studies the use of structural design

guidelines for efficient verification of UML models. To the best of our knowledge, the

use of patterns for compositional reasoning about feature-based systems has not been

investigated previously.

5.9 Limitations

In addition to the limitations discussed in Section 5.7.1 regarding the case study from the

DFC domain, we have made two assumptions in our work which may limit the general-

izability of our approach. First, our formalism, i.e., I/O automata, captures only control

behaviours of features and cannot model their data dependencies. As a result, our analy-

sis does not address the feature interactions that may occur due to the interplay between

data values and feature behaviours. Second, our result is applicable to cases where fea-

tures have identical interfaces, and hence, can get glued together in any arbitrary order.

This may not necessarily be a common case in feature-based development, particularly

when features have distinct interfaces that can significantly constrain the number of ways

in which features can be put together.

5.10 Conclusion

In this chapter, we presented a sound and complete compositional approach for synthe-

sizing pipeline feature orderings. The formal groundwork for our technique is a pattern of

behaviour called transparency. We proved that this pattern enables inferring global con-

straints on feature arrangements through pairwise analysis of the features. We reported

on a prototype implementation and preliminary evaluation of our work for synthesizing

orderings of AT&T telecom features.

In our case study, the desired properties were described as negative traces (safety).

Our algorithm can also readily work with positive traces. In fact, a corollary of Theo-
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rem 5.4.1 is that the transparency pattern lifts existence of positive traces from a pairwise

to the global setting. We leave extending our technique to (finite) liveness, i.e., dealing

with universal positive behaviours, to future work.

Further, the properties in our case study did not contradict one another. However,

one could envision cases where some of these properties are mutually inconsistent. Our

feature ordering algorithm detects such inconsistencies as circular, or over-constrained,

orderings. Alternatively, users may want to establish consistency before applying our

algorithm, e.g., using Alloy (Jackson, 2006).

While this chapter focused on pipeline arrangements, our technique can be used for

synthesis of more complex arrangements as well. In particular, we can synthesize graph

arrangements consisting of linear pipeline segments by first synthesizing the segments

and then combining them to construct the overall system.

Our current approach assumes that each feature implements a distinct requirement.

Yet, it is possible for individual features, particularly in legacy systems, to implement

multiple functions, each invoked depending on external parameters or user preferences.

Our approach may create circular dependencies between such features. We leave the

methodology of breaking these cycles and dealing with parameterized feature arrange-

ments for future work.



Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and outline directions for

future research.

6.1 Summary of The Thesis

We studied three instances of the fusion problem for behavioural models:

Merging complementary models. In Chapter 3, we studied state machines describ-

ing complementary perspectives on a single feature of a system. We used 3-valued

logic to explicitly specify the incomplete behaviours of the state machine models.

We provided an algorithm for computing a consistency relation over the states of

the 3-valued state machines, i.e., a relation that maps states satisfying the same

temporal properties. Using this relation, we constructed a merge that preserves the

temporal properties of the original models.

Merging variant implementations of the same system. In Chapter 4, we studied

state machines describing variant specifications of individual system features. The

goal here was to merge the variants while preserving their points of difference.

We formalized variants as parameterized state machines to explicitly distinguish

146
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between common and variable behaviours. We developed heuristic techniques to

identify commonalities and variabilities between model variants, and computed

their merge based on the notion of common refinement defined over parameterized

state machines.

Composing features and analysing their interactions. In Chapter 5, we studied

the problem of interaction analysis over an evolving set of state machines that de-

scribe different features of a system. We formalized features as I/O automata which

distinguish the input, internal, and output actions of each feature. We proposed a

technique for verifying compositions of features arranged in a pipeline architecture.

To make our technique efficient for systems whose features periodically change, we

identified a pattern of behaviour which enables for the re-use of verification results

across changes to the pipeline features.

The key observations driving the research in this thesis are the following: (1) models

are often partial, inconsistent, and open; (2) to be able to combine models, we need

to make all assumptions about the relationships between the models explicit; and (3)

the process of combining a set of inter-related models depends on the nature of the

relationships between the models and the intended applications of the models.

The effectiveness of a solution to a model fusion problem depends primarily on (1) the

expressive power of the formalisms used to capture models and their relationships; (2)

the level of automation that the solution provides; and (3) the scalability of the solution.

In this thesis, we used well-studied and generalizable formalisms to capture models and

relationships. In each case, we discussed the aspects that our formalisms can and cannot

express. We provided automated algorithms for a number of important operations, e.g.,

computing consistency relations in Chapter 3, merging in Chapters 3 and 4, and model

checking feature compositions in Chapter 5. In addition, we identified other equally

important operations that cannot be fully automated, e.g., matching in Chapter 4, and
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eliciting undesirable interaction scenarios in Chapter 5. For these non-automatizable

operations, we discussed heuristics and tool-supported techniques to assist developers

in performing the operations. Finally, we evaluated our solutions on medium-sized case

studies.

6.2 Future Directions for the Thesis

In this section, we outline a list of challenges that we faced in our work, providing

suggestions for future research in the model fusion area.

6.2.1 Relationships between Models

Since relationships play a crucial role in model-based development, one has to be con-

cerned with the methods for constructing, verifying, and representing these relationships.

Developers may find it very hard to identify and manipulate model relationships man-

ually, specially when models are complex, or when the developers are not very familiar

with the models. Automatic or semi-automatic match operators, such as the one de-

scribed in our work, can allow developers to quickly identify appropriate matches with

reasonable accuracy.

These operators can be improved in a number of ways. For example, they can be used

interactively, with the developer seeding them with some of the more obvious matches,

and pruning incorrect ones iteratively. Or, they can be customized for specific domains

using learning-based techniques (Mandelin et al., 2006).

In addition to identifying model relationships, we need to ensure that these relation-

ships are semantically meaningful. One way to achieve this is to first compute the merge

of the given models with respect to their relationships, and then apply automated analy-

ses, e.g., consistency checking, to ensure that the relationships between models result in

a merge which satisfies the properties of interest (Sabetzadeh et al., 2007b). In situations
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where merges are very large, we may investigate compositional techniques to reduce rea-

soning about the merge to reasoning about smaller subsets of models and relationships.

Another significant problem is the representation of model relationships. Visual repre-

sentations are very appealing but they may not scale well for complex operational models

such as large executable Statecharts. For these models, it should be possible to express

relationships symbolically using logical formulas or regular expressions. This may lead to

a more compact and comprehensible representation of model correspondences, especially

when tuples of states in a correspondence relation agree on some logical properties or

generate similar traces or behaviours.

6.2.2 Heterogeneous Merge

Heterogeneous merge is often carried out using transformations and manipulations de-

fined at the meta-model level (Bezivin et al., 2005). Meta-model level transformations,

despite being general and flexible, typically deal only with syntactic and visual aspects

of models. To generate merges that are semantically sound and to better mechanize

the matching process, we could define meta-models that are more than just the abstract

syntax of a language, e.g., by augmenting meta-model languages with logical constraints

or behavioural specification languages such as activity and sequence models (France &

Rumpe, 2007).

6.2.3 Tool Support

Many industrial distributed and collaborative model-based development tools include

some support for model merging. A careful examination of the model merging processes

in these tools reveals a number of important shortcomings. In particular, most existing

industrial modelling platforms, e.g., the Rational Software Architect (Letkeman, 2006),

are primarily aimed at centralized development, where all developers contribute to a sin-

gle holistic model. Fragments of this model are visualized as views containing diagrams
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(potentially) in different notations, e.g., class or sequence diagrams. These tools lack

support for merging independently developed models as they often do not allow devel-

opers to explicitly construct relationships between models. In these tools, elements in

different views are considered similar only if they are different copies of the same element

in the holistic model. This is inadequate for merging independently developed models

where elements in different models may be similar due to their syntactic and semantic

characteristics.

Another issue in the holistic approach to modelling is that even if relationships are

made explicit, it is not clear whether they should be defined between models or views.

Models usually subsume views in that they contain all the information about the elements

of the views. But it would be counter-intuitive for developers to move from a view to

its model to specify relationships because models lack the visual layout of views. On the

other hand, views may not contain sufficient information for model matching because all

information about model elements may not be preserved in the views. Finding the right

level of abstraction for defining and representing relationships is an important challenge

in developing model merging tools and designing usable interfaces for these tools.

6.2.4 Verification of Collections of Inter-related Models

Fusion tasks are often intertwined with verification tasks to ensure that the manipulations

performed over models preserve their well-formedness and desired semantic properties.

For example, in Chapter 5, we employ model checking to verify that the composition of

a given set of features satisfies the desirable properties. Similarly, (Sabetzadeh et al.,

2007b) combines model merging and (intra-model) consistency checking to enable con-

struction of sound and meaningful relationships between a set of models. To build and

manage evolving systems of interrelated models, we need to devise scalable verification

techniques that (1) are robust with respect to system changes, and (2) can check not

only classical properties of models, but also non-classical ones, such as those involving
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inconsistent and incomplete aspects of models.

6.2.5 Software Reliability

Use of models provides an opportunity to design software systems with reliability in

mind rather than analyzing and testing software code for reliability after the fact. One

approach to building software systems that are reliable by design and more amenable

to scalable verification is to use generic or domain-specific guidelines and patterns for

constructing software models (Betin-Can et al., 2005). For example, in Chapter 5, we

provided a pattern of behaviour for pipeline features that allows for synthesis of reliable

feature compositions. This work can be extended by applying the current technique to

dynamically reconfigurable systems, i.e., systems whose features and architectural links

can change at run-time. This extension would enable efficient construction of reliable

software systems with support for self-management and adaptation.
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Appendix A

Models for the Evaluation in

Chapter 4

In this appendix, we first briefly describe the ECharts language – the Statecharts dialect

in which the models of Chapter 4 are described. Then, we provide the source models for

the case study of Chapter 4, and their final merges.

A.1 The ECharts Language

ECharts (Bond, 2006) is a state machine language that has been developed in AT&T

to be used in the design and implementation of telecommunication features. The syn-

tax of ECharts is the same as that of Statecharts – it supports hierarchical state ma-

chines, concurrent (orthogonal) state machines, machine synchronization, and fork/join

transitions. The semantics of the language is defined so as to enable efficient and auto-

mated code generation from ECharts models. In particular, the following decisions are

made to determinize and/or add new control over the behaviour of ECharts models: (1)

transitions are prioritized; (2) concurrency is defined as interleaving of actions; and (3)

intra-communication is only allowed between a state and its sub-states. This form of

communication is implemented based on the communication mechanism between proce-
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dures via parameter passing. In Section 4.3, we provided a formalization for ECharts

that takes into account these three semantic features. More details about the ECharts

language is available in (Bond, 2006).

A.2 Statecharts Models

In this section, we provide the source models for the case-study in Section 4.8, and

their final merges. These models were originally implemented in the ECharts language.

These implementations could be compiled and translated into Java programs using the

library echarts.jar (see (Bond, 2006)). However, they were not abstract enough for

understanding and comparing the models’ behaviours. Therefore, we first manually gen-

erated graphical Statecharts models from the ECharts implementations and studied the

graphical models to sufficiently understand their function. To apply our matcher to the

models, we encoded the graphical models in XML. These XML descriptions are avail-

able at http://www.cs.toronto.edu/∼shiva/MatchTool/models/, and have been used

as input to our matcher http://www.cs.toronto.edu/∼shiva/MatchTool/. We then

specified the models in TReMer http://www.cs.toronto.edu/∼mehrdad/tremer/ to

compute their merges. Below, we provide XML encoding of these models as well as their

visual representations in TReMer.

XML descriptions for the Statecharts models used in the case-

study in Section 4.8

To represent states and transitions, we use the following XML tags in our encoding:

state and transition. For each state tag, we specify the following attributes: (1)

state’s id, (2) a flag indicating if the state is an initial state, (3) state’s name, (4) state’s

type (a state’s type can be Atomic or superstate. In the latter case, the state’s type

is the name of a standard telecom state machine that we have decided not to expand
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further), (5) the id of the state’s parent state (if the state is root the id is -1), and (6)

the depth of the state in its corresponding state hierarchy tree. For each transition tag,

we specify the following attributes: (1) the id of the source state, (2) the id of the target

state, (3) transition’s event, (4) transition’s action, and (5) transition’s condition. Here,

we provide the XML descriptions for the call logger examples.

Call Logger Call Logger (VPLUS version)]

-<statemachine id="CallLogger_VPLUS">

<state id="0" initial="true" name="CallLoggerVPLUS" type="CallLoggerVPLUS" parentId="-1" depth="0"/>

<state id="1" initial="true" name="MONITOR_OUTCOME" type="MonitorOutcome" parentId="0" depth="1"/>

<state id="2" initial="false" name="TIMER_STARTED" type=" Transparent2Links" parentId="0" depth="1"/>

<state id="3" initial="false" name="LOG_SUCCESS" type="Atomic" parentId="0" depth="1"/>

<state id="4" initial="false" name="LOG_FAILURE" type="Atomic" parentId="0" depth="1"/>

<state id="5" initial="true" name="INIT2LINKS" type="InitializeTransparent2Links" parentId="1" depth="2"/>

<state id="6" initial="false" name="WAITING_FOR_OUTCOME" type="Transparent2Links" parentId="1" depth="2"/>

<state id="7" initial="false" name="SUCCESS" type="Atomic" parentId="1" depth="2"/>

<state id="8" initial="false" name="FAILURE" type="Atomic" parentId="1" depth="2"/>

<state id="9" initial="true" name="Start" type="Atomic" parentId="5" depth="3"/>

<state id="10" initial="true" name="Source" type="Atomic" parentId="5" depth="3"/>

<state id="11" initial="true" name="Target" type="Atomic" parentId="5" depth="3"/>

<state id="12" initial="false" name="LINK_CALLER" type="Atomic" parentId="5" depth="3"/>

<state id="13" initial="false" name="TRANSPARENT" type="Transparent" parentId="5" depth="3"/>

<state id="14" initial="false" name="OPEN_LINK" type="Open2Links" parentId="5" depth="3"/>

<state id="15" initial="false" name="LINK_OPENED" type="Transparent2Links" parentId="5" depth="3"/>

<state id="16" initial="false" name="LINK_UNOPENED" type="Atomic" parentId="5" depth="3"/>

<state id="17" initial="true" name="TRANSPARENT" type="Transparent" parentId="6" depth="3"/>

<state id="18" initial="false" name="OPEN_LINK" type="Open2Links" parentId="6" depth="3"/>

<transition from="9" to="12" event="setup" condition="zone=source" action="callee=par;caller=sub"/>

<transition from="9" to="12" event="setup" condition="zone=target" action="callee=sub;caller=par"/>

<transition from="10" to="12" event="" condition="" action="callee=par;caller=sub"/>

<transition from="11" to="12" event="" condition="" action="callee=sub;caller=par"/>

<transition from="12" to="13" event="callee?upack" condition="" action=""/>

<transition from="13" to="14" event="caller?open" condition="" action=""/>

<transition from="13" to="16" event="failure" condition="" action=""/>

<transition from="14" to="13" event="Link_Unopened" condition="" action=""/>

<transition from="14" to="15" event="Link_Opened" condition="" action=""/>

<transition from="15" to="6" event="" condition="" action=""/>

<transition from="17" to="18" event="sub?Open" condition="" action="opener=sub;openee=par"/>
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<transition from="17" to="18" event="par?Open" condition="" action="opener=par;openee=sub"/>

<transition from="18" to="18" event="openee?Open" condition="" action="openee?status;opener?status"/>

<transition from="18" to="17" event="Link_Opened" condition="" action=""/>

<transition from="18" to="17" event="Link_Unopened" condition="" action=""/>

<transition from="6" to="8" event="par?Reject" condition="" action=""/>

<transition from="6" to="8" event="sub?Reject" condition="" action=""/>

<transition from="6" to="8" event="par?TearDown" condition="" action=""/>

<transition from="6" to="8" event="sub?TearDown" condition="" action=""/>

<transition from="6" to="7" event="sub?Accept" condition="" action=""/>

<transition from="6" to="7" event="par?Accept" condition="" action=""/>

<transition from="7" to="2" event="" condition="" action=""/>

<transition from="8" to="4" event="V-link" condition="" action=""/>

<transition from="2" to="3" event="sub?TearDown" condition="" action=""/>

<transition from="2" to="3" event="par?TearDown" condition="" action=""/>

<transition from="16" to="17" event="" condition="" action=""/>

<transition from="17" to="8" event="par?Reject" condition="" action=""/>

<transition from="17" to="8" event="sub?Reject" condition="" action=""/>

<transition from="17" to="8" event="par?TearDown" condition="" action=""/>

<transition from="17" to="8" event="sub?TearDown" condition="" action=""/>

<transition from="17" to="7" event="sub?Accept" condition="" action=""/>

<transition from="17" to="7" event="par?Accept" condition="" action=""/>

<transition from="18" to="8" event="par?Reject" condition="" action=""/>

<transition from="18" to="8" event="sub?Reject" condition="" action=""/>

<transition from="18" to="8" event="par?TearDown" condition="" action=""/>

<transition from="18" to="8" event="sub?TearDown" condition="" action=""/>

<transition from="18" to="7" event="sub?Accept" condition="" action=""/>

<transition from="18" to="7" event="par?Accept" condition="" action=""/>

<transition from="0" to="1" event="contain" condition="" action=""/>

<transition from="0" to="2" event="contain" condition="" action=""/>

<transition from="0" to="3" event="contain" condition="" action=""/>

<transition from="0" to="4" event="contain" condition="" action=""/>

<transition from="1" to="5" event="contain" condition="" action=""/>

<transition from="1" to="6" event="contain" condition="" action=""/>

<transition from="1" to="8" event="contain" condition="" action=""/>

<transition from="1" to="7" event="contain" condition="" action=""/>

<transition from="5" to="9" event="contain" condition="" action=""/>

<transition from="5" to="10" event="contain" condition="" action=""/>

</statemachine>

Call Logger (VOIP version)]
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-<statemachine id="CallLogger">

<state id="0" initial="true" name="CallLoggerACSVOIP" type="CallLoggerACSVOIP" parentId="-2" depth="0"/>

<state id="1" initial="true" name="MONITOR_OUTCOME" type="MonitorOutcome" parentId="0" depth="1"/>

<state id="2" initial="false" name="TIMER_STARTED" type=" Transparent2Links" parentId="0" depth="1"/>

<state id="3" initial="false" name="LOG_SUCCESS" type="Atomic" parentId="0" depth="1"/>

<state id="4" initial="false" name="LOG_FAILURE" type="Atomic" parentId="0" depth="1"/>

<state id="5" initial="false" name="LOG_VOICEMAIL" type="Atomic" parentId="0" depth="1"/>

<state id="6" initial="true" name="Start" type="Atomic" parentId="1" depth="2"/>

<state id="7" initial="false" name="SOURCE_SETUP" type="Atomic" parentId="1" depth="2"/>

<state id="8" initial="false" name="LINK_SUBSCRIBER" type="Atomic" parentId="1" depth="2"/>

<state id="9" initial="false" name="LINK_PARTICIPANT" type="Atomic" parentId="1" depth="2"/>

<state id="10" initial="false" name="WAITING_FOR_OUTCOME" type="Concurrent" parentId="1" depth="2"/>

<state id="11" initial="false" name="SUCCESS" type="Atomic" parentId="1" depth="2"/>

<state id="12" initial="false" name="FAILURE" type="Atomic" parentId="1" depth="2"/>

<state id="13" initial="false" name="VOICEMAIL" type="Atomic" parentId="1" depth="2"/>

<state id="14" initial="true" name="TRANSPARENT" type="Transparent2Links" parentId="10" parallelId="0" depth="3"/>

<state id="15" initial="true" name="STATUS" type="Complex" parentId="10" parallelId="0" depth="3"/>

<state id="16" initial="true" name="WAIT" type="Atomic" parentId="15" depth="4"/>

<state id="17" initial="false" name="SUCCESS" type="Atomic" parentId="15" depth="4"/>

<state id="18" initial="false" name="FAILURE" type="Atomic" parentId="15" depth="4"/>

<state id="19" initial="false" name="VOICEMAIL" type="Atomic" parentId="15" depth="4"/>

<state id="20" initial="true" name="TRANSPARENT" type="Transparent" parentId="14" depth="4"/>

<state id="21" initial="false" name="OPEN_LINK" type="Open2Links" parentId="14" depth="4"/>

<transition from="6" to="7" event="setup" condition="zone=source" action=""/>

<transition from="6" to="8" event="setup" condition="zone=target" action=""/>

<transition from="7" to="9" event="" condition="" action=""/>

<transition from="8" to="10" event="sub?Upack" condition="" action=""/>

<transition from="9" to="10" event="par?Upack" condition="" action=""/>

<transition from="20" to="21" event="sub?Open" condition="" action="Opener=sub;Openee=par"/>

<transition from="20" to="21" event="par?Open" condition="" action="Opener=par;Openee=sub"/>

<transition from="21" to="21" event="Openee?Open" condition="" action=""/>

<transition from="21" to="21" event="Openee?status" condition="" action=""/>

<transition from="21" to="21" event="Opener?status" condition="" action=""/>

<transition from="21" to="20" event="Link_Opened" condition="" action=""/>

<transition from="21" to="20" event="Link_Unopened" condition="" action=""/>

<transition from="16" to="17" event="par?Avail" condition="zone=source" action=""/>

<transition from="16" to="17" event="sub?Avail" condition="zone=target" action=""/>

<transition from="16" to="18" event="par?Unavail" condition="zone=source" action=""/>

<transition from="16" to="18" event="sub?Unavail" condition="zone=target" action=""/>

<transition from="16" to="18" event="par?Reject" condition="zone=source" action=""/>

<transition from="16" to="18" event="sub?Reject" condition="zone=target" action=""/>
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<transition from="16" to="19" event="sub?Userstatus" condition="" action=""/>

<transition from="17" to="11" event="" condition="" action=""/>

<transition from="18" to="12" event="" condition="" action=""/>

<transition from="19" to="13" event="" condition="" action=""/>

<transition from="20" to="11" event="" condition="" action=""/>

<transition from="20" to="12" event="" condition="" action=""/>

<transition from="20" to="13" event="" condition="" action=""/>

<transition from="10" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="10" to="12" event="par?TearDown" condition="" action=""/>

<transition from="11" to="2" event="" condition="" action=""/>

<transition from="12" to="4" event="" condition="" action=""/>

<transition from="13" to="5" event="" condition="" action=""/>

<transition from="2" to="3" event="sub?TearDown" condition="" action=""/>

<transition from="2" to="3" event="par?TearDown" condition="" action=""/>

<transition from="8" to="20" event="sub?Upack" condition="" action=""/>

<transition from="8" to="16" event="sub?Upack" condition="" action=""/>

<transition from="9" to="20" event="par?Upack" condition="" action=""/>

<transition from="9" to="16" event="par?Upack" condition="" action=""/>

<transition from="20" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="20" to="11" event="par?TearDown" condition="" action=""/>

<transition from="21" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="21" to="11" event="par?TearDown" condition="" action=""/>

<transition from="16" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="16" to="11" event="par?TearDown" condition="" action=""/>

<transition from="17" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="17" to="11" event="par?TearDown" condition="" action=""/>

<transition from="18" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="18" to="11" event="par?TearDown" condition="" action=""/>

<transition from="19" to="11" event="sub?TearDown" condition="" action=""/>

<transition from="19" to="11" event="par?TearDown" condition="" action=""/>

<transition from="20" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="20" to="12" event="par?TearDown" condition="" action=""/>

<transition from="21" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="21" to="12" event="par?TearDown" condition="" action=""/>

<transition from="16" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="16" to="12" event="par?TearDown" condition="" action=""/>

<transition from="17" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="17" to="12" event="par?TearDown" condition="" action=""/>

<transition from="18" to="12" event="sub?TearDown" condition="" action=""/>

<transition from="18" to="12" event="par?TearDown" condition="" action=""/>

<transition from="19" to="12" event="sub?TearDown" condition="" action=""/>
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<transition from="19" to="12" event="par?TearDown" condition="" action=""/>

<transition from="20" to="13" event="sub?TearDown" condition="" action=""/>

<transition from="20" to="13" event="par?TearDown" condition="" action=""/>

<transition from="21" to="13" event="sub?TearDown" condition="" action=""/>

<transition from="21" to="13" event="par?TearDown" condition="" action=""/>

<transition from="16" to="13" event="sub?TearDown" condition="" action=""/>

<transition from="16" to="13" event="par?TearDown" condition="" action=""/>

<transition from="0" to="1" event="contain" condition="" action=""/>

<transition from="0" to="2" event="contain" condition="" action=""/>

<transition from="0" to="3" event="contain" condition="" action=""/>

<transition from="0" to="4" event="contain" condition="" action=""/>

<transition from="1" to="6" event="contain" condition="" action=""/>

<transition from="1" to="7" event="contain" condition="" action=""/>

<transition from="1" to="8" event="contain" condition="" action=""/>

<transition from="1" to="9" event="contain" condition="" action=""/>

<transition from="1" to="10" event="contain" condition="" action=""/>

<transition from="1" to="11" event="contain" condition="" action=""/>

<transition from="1" to="12" event="contain" condition="" action=""/>

</statemachine>

Relationship between Call Logger VPLUS and Call Logger VOIP ver-

sions

(0,0),

(1,1),

(9,6),

(12,7),

(12,8),

(12,9),

(7,11),

(8,12),

(2,2),

(3,3),

(4,4)
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Visual representation of the Statecharts models used in the case-

study in Section 4.8

Figures A.1 to A.3 show the Call Logger variants as specified in TReMer, and their

merge.

Figures A.4 to A.6 show the Parallel Location variants as specified in TReMer, and their

merge.
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Figure A.1: Call logger vplus version.
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Figure A.2: Call logger voip version.
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Figure A.3: Merge of vplus and voip for call logger.
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Figure A.4: Parallel location vplus version.
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Figure A.5: Parallel location voip version.
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Figure A.6: Merge of vplus and voip for parallel location.



Appendix B

Models for the Evaluation in

Chapter 5

In this appendix, we briefly introduce the Boxtalk language, a domain-specific language

for specifying telecom features (Zave & Jackson, 2002). Then, we describe the six Boxtalk

features studied in Chapter 5 and show that they all implement the transparency pattern.

Finally we provide the FSP models used in the evaluation of Chapter 5.

B.1 The Boxtalk Language

Boxtalk is a state machine-based domain-specific language for specifying telecommunica-

tion features (Zave & Jackson, 2002). Boxtalk is more abstract than ECharts. The main

motivation of Boxtalk is to manage programming complexity with high-level, domain-

specific abstractions rather than using nested or parallel states used in ECharts. In Sec-

tion 5.3, we described how Boxtalk features can be translated to I/O automata. Here,

we only note some important technical considerations about the translation.

• States in BoxTalk are explicitly typed as stable, transient, or terminal. While these

types do not play a role in feature interaction analysis, they can be distinguished in

183
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I/O automata if necessary: stable states are quiescent I/O automata states that can

be exited by some action other than teardown; transient states are non-quiescent

I/O automata states; and terminal states are quiescent I/O automata states that

cannot be exited by any action other than teardown.

• The vocabulary of DFC features, i.e., their input and output actions, cannot be de-

termined statically. This is because these features may be instantiated in different

telecom pipelines, and the vocabulary of a pipeline depends on the union of vo-

cabulary of its features. For example, feature RVM generates an action loggedVM,

indicating that a voicemail message was logged by RVM. The only feature that uses

this action, and hence is always enabled for it, is the call logger feature. However,

other features, should they appear between RVM and call logger in a pipeline, also

have to be enabled for loggedVM in order to let this message pass through. Yet,

these features do not need to be enabled for loggedVM if RVM and call logger do

not appear in the pipeline.

In Boxtalk, a shorthand called signal-linkage self-loop is designed to directly connect

the right and left ports of a feature, allowing features to pass arbitrary signals form

their left neighbour to their right neighbour, and vice versa. Using signal-linkages,

Boxtalk models do not need to make their vocabulary explicit. However, in general-

purpose formalisms such as I/O automata, we need to determine the vocabulary

of models statically and explicitly label their transitions with appropriate actions

from their vocabulary. In this thesis, we determined the vocabulary of the I/O

automata translations of Boxtalk features for specific instances of telecom usages.

• In DFC, architectural links, i.e., bindings, are dynamic, allowing features to change

roles at runtime. Boxtalk represents bindings between features as dynamic call

variables that can be created, destroyed, and reassigned at runtime. Since I/O

automata do not provide any means for describing bindings, we had to extend them
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as follows: First, we added a notion of action type to I/O automata to explicitly

indicate which action belongs to which call variable. We then implemented bindings

between I/O automata using a relabeling mechanism (Magee & Kramer, 2006).

However, we still could not capture dynamic aspects of DFC bindings because our

typing and relabeling mechanisms are static.

B.2 Boxtalk Models

In this section, we provide the source models for the case-study in Section 5.7. We specify

transparent behaviours of these models and provide implementation of these models in

LTSA. Figures B.1 to B.2 show the features QT, AC, NATO, and SFM, respectively.

The transparent behaviours of these state machines are as follows:

• QT: This feature behaves transparently when it is not enabled, or when it is enabled

but the call is urgent. Otherwise, QT tears down the call. (Transparent behaviour:

s0 → s1 → s3).

• AC: This feature is always transparent and its service, i.e., confirming if the callee

is available, is performed through its internal behaviour. (Transparent behaviour:

s0 → s1 → s3 and s0 → s1 → s2 → s4).

• NATO: This feature behaves transparently when the time out message is not trig-

gered. (Transparent behaviour: s0 → s1 → s2).

• SFM: This feature sequentially tries different locations to find the subscriber. This

feature behaves transparently when the callee has only one physical phone address.

In other words, when SFM only needs to try one location. (Transparent behaviour:

s0 → s1 → s3 → s4 and s0 → s1 → s3 → s5).

Figures B.3 to B.8 show the implementations of the features CB, RVM, QT, AC, NATO,

and SFM in LTSA.
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Figure B.1: Boxtalk models: QT, NATO, AC
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Figure B.2: Boxtalk model: SFM
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Figure B.3: LTS implemented in LTSA for CB.
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Figure B.4: LTS implemented in LTSA for RVM.
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Figure B.5: LTS implemented in LTSA for QT.
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Figure B.6: LTS implemented in LTSA for SFM.
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Figure B.7: LTS implemented in LTSA for NATO.
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Figure B.8: LTS implemented in LTSA for AC.
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