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We discuss the problem of refining partial specifications of software systems at different

levels of abstraction. In general, refinement is the process of deriving an implementation

from a specification and verifying the correctness of the derivation. Recently, partial spec-

ifications have been advocated for describing software systems mainly because they do

not impose a commitment to all decisions made at initial stages of software development

life-cycle.

Using finite-state transition systems with partial transitions and propositions as our

modeling formalism, we define a refinement relation that is insensitive to finite stuttering.

We refer to our proposed refinement relation as stuttering refinement relation. We, then,

present a logical characterization of this refinement relation and describe an algorithm

for computing it.
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Chapter 1

Introduction

Reactive systems are those which maintain ongoing interactions with their environ-

ments [MP92]. Examples of reactive systems include air traffic control systems, med-

ical systems, and network protocols. The process of developing a reactive system can

be logically divided into three major phases: specification, implementation, and verifica-

tion [Lar89]. The specification of a system is a high-level description of the requirements

of that system, and the implementation is a low-level program or process that realizes

the specification. Both the specification and the implementation of a reactive system are

usually expressed in terms of state transition systems.

The verification phase is a formal proof of correctness of the implementation with

respect to the specification. Many notions of correctness are based on finding a rela-

tion between the state-space of the implementation and that of the specification, and

then showing that the relation preserves the logical properties of the specification in the

implementation. Such a relation is referred to as a refinement relation [AL91].

In the existing frameworks that follow the above-mentioned paradigm, traditional

formalisms (e.g. Kripke Structures, Labeled Transition Systems) are typically used for

representing specifications and implementations; and the verification phase is usually

based on relating an implementation to a specification through a simulation relation. In
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Chapter 1. Introduction 2

a simulation relation, it is asserted that every behavior that is possible in the implemen-

tation of a system is also possible in its specification. In other words, the implementation

is only capable of exhibiting those behaviors that are allowed by the specification; there-

fore, an abstract specification may allow behaviors that are not realized by a concrete

implementation.

The frameworks based on traditional formalisms have three major drawbacks: Firstly,

the scope of simulation-based verification is restricted to universal properties. Secondly,

although the specification can fix the borders that the implementation is not permitted to

cross, it cannot describe the obligations of the implementation. Thirdly, we need to use a

modeling formalism that is capable of describing partial or uncertain behaviors. This is

because the implementation of a large system may not be immediately derivable from the

initial specification; rather, the implementation phase may consist of a series of small and

successive refinement steps (the so-called stepwise-refinement [Lar89]). Therefore, there

may be some incomplete or partial behaviors in the state transition systems corresponding

to the intermediate refinement steps.

Partial specifications [LT88, Lar89, HJS01, HJS02] are desirable because they do not

impose a commitment to all decisions made at initial stages of software development life-

cycle. Moreover, partial models can distinguish between guaranteed behaviors, i.e. what

is required, and admissible behaviors, i.e. what is permitted. Thus, we can enforce the re-

alization of guaranteed behaviors in the implementation and simultaneously, ensure that

the implementation does not violate admissible behaviors. The other advantage of par-

tial modeling formalisms is that refinement relations defined over partial models preserve

both existential and universal properties. Hence, the verification of an implementation

against a specification can be performed in a more detailed fashion.

In this thesis, we discuss the problem of refining partial specifications of software

systems at different levels of abstraction. We show how to establish a refinement relation

between a specification, which is given as a partial state transition system with some
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Figure 1.1: The relationships between refinement relations

variables and transitions marked as incomplete, and an implementation, which takes the

form of a complete or fully-defined state transition system. In general, the verification of

an implementation against a specification involves comparing a pair of models at different

levels of abstraction, where a single transition in the higher-level model may correspond to

several transitions in the lower-level one [AL91]. For this reason, the refinement relation

that we consider is insensitive to finite stuttering. We refer to this refinement relation

as stuttering refinement relation. This refinement relation is defined in such a way that

the guaranteed behaviors in a specification simulate those in the refined system, and the

admissible behaviors in the refined system simulate those in the specification.

Figure 1.1 illustrates the relationships between the stuttering refinement relation and

some of the existing refinement relations. We briefly describe these relationships through

some examples.

Figure 1.2 shows two complete state transition systems that are bisimilar. As seen in
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Figure 1.2: An example of bisimulation relation over complete models

the figure, the two models exhibit the same behaviors. Thus, both truth and falsehood

are preserved, and therefore, the analysis can be performed in a very detailed fashion.

However, in a bisimulation relation, the involved models are indeed equal. As a result,

bisimulation cannot be defined over models at different levels of abstraction. Further-

more, since models are complete, they cannot describe incompleteness and uncertainty.

Figure 1.3 shows an example of refinement relation [LT88, Lar89, HJS01] over partial

models. In this figure, MA is a partial model, andMC is a refinement ofMA. InMA, states

s1 and s2 have unknown variables causing MA to have some behaviors that can neither

be accepted nor refuted. In a refinement relation, it is asserted that every accepted (resp.

refuted) behavior of MA is necessarily accepted (resp. refuted) in MC , but no assumption

can be made about unknown behaviors of MA. Therefore, refinement relation preserves

both truth and falsehood. However, there are some unknown properties in MA that have

an arbitrary value in MC . A shortcoming of refinement relations over partial models is

that they assume models to be at the same level of abstraction. Therefore, the size of

the abstract model is not necessarily minimal.

Figure 1.4 shows an example of stuttering bisimulation relation over complete models.

As seen in the figure, MA does not observe the variable r. Thus, there are some states

and transitions in MC that are missing in MA. A stuttering bisimulation relation is
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Figure 1.4: An example of stuttering bisimulation relation over complete models

a bisimulation relation that is defined over models at different levels of abstraction.

However, since stuttering bisimulation is defined over complete models, we can only hide

a fixed set of variables in all states of a model. More precisely, even if we want to abstract

from a variable in a few states of a model, we have to hide it in all states of that model.

Figure 1.5 shows an example of stuttering refinement over partial models. This rela-

tion can be studies from two different prospectives:

• A stuttering refinement relation is a stuttering bisimulation relation that is defined

over partial models. Thus, as shown in Figure 1.5, different sets of variables can be

hidden in different states. For example, in state s0, variable r is hidden, whereas,
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Figure 1.5: An example of stuttering refinement relation over partial models

in state s1, variables p and q are hidden.

• A stuttering refinement relation is a refinement relation over partial models that can

deal with models at different levels of abstraction. That is a state in the abstract

model may be realized by a sequence of states in the concrete model. For example,

in Figure 1.5, state s0 (in MA) is realized by a sequence, t0 → t1, of states (in MC).

Stuttering refinement has all the advantages of the existing refinement relations: it pre-

serves both truth and falsehood; it relates models at different levels of abstraction; and

it is defined over partial models.

1.1 Related work

The theory of Modal Specifications has been proposed in [LT88, Lar89]. Modal specifi-

cations have been specifically designed to provide a means for describing partial specifi-

cations. In [LT88, Lar89], Modal specifications are expressed in terms of Modal Transi-

tion Systems which are Labeled Transition Systems with two types of transitions: may-

transitions and must-transitions. In Chapter 3, we transfer the results and the refinement

relation in [LT88, Lar89] to a state-based setting where a simplified version of Kripke
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Modal Transition Systems [HJS01] are used as the modeling formalism.

Stuttering bisimulation has originally been introduced in [BCG88]. A structural and

inductive definition of stuttering bisimulation is given in [NV95]. In Chapter 4, we lift

the definition of stuttering bisimulation in [NV95] from the context of traditional mod-

eling formalisms to the context of partial modeling formalisms and obtain a divergence-

sensitive refinement relation on partial specifications that takes finite stuttering into

account.

1.2 Structure of the thesis

The remainder of this thesis is organized as follows: Chapter 2 covers the preliminaries

including relations and functions, lattice theory, transition systems, temporal logics, and

behavioral preorders and equivalences. Chapter 3 outlines the refinement relation over

partial modeling formalisms that has been explained in [HJS01], and is, indeed, a state-

based version of the refinement relation proposed in [LT88, Lar89]. Chapter 4 discusses

our proposed notion of stuttering simulation and stuttering refinement on partial models.

The chapter also includes logical characterization results of these refinement relations and

presents two algorithms one of which computes stuttering simulation and the other of

which computes stuttering refinement. Finally, Chapter 5 presents our conclusions and

future work.



Chapter 2

Preliminaries

In this chapter, we discuss notational issues and present some background information.

2.1 Relations and functions

Let Σ1 and Σ2 be sets. A binary relation R ⊆ Σ1 × Σ2 is defined as a set of pairs. We

often write binary relations in infix notation, i.e. (s, t) ∈ R is written as sRt. A binary

relation R ⊆ Σ × Σ is

• reflexive if ∀s ∈ Σ · sRs.

• symmetric if ∀s, t ∈ Σ · sRt⇒ tRs.

• anti-symmetric if ∀s, t ∈ Σ · sRt ∧ tRs⇒ s = t.

• transitive if ∀s, t, r ∈ Σ · sRt ∧ tRr ⇒ sRr.

A binary relation is a preorder relation if it is reflexive and transitive. A preorder re-

lation that is also symmetric is an equivalence relation. A preorder relation that is

anti-symmetric is a partial order relation. Let ≤1 be a partial order on Σ1, and let

≤2 be a partial order on Σ2. A function f : Σ1 → Σ2 is said to be monotonic if

s ≤1 t⇒ f(s) ≤2 f(t) for every s, t ∈ Σ1.

8
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Definition 2.1 A binary relation R ⊆ Σ1 × Σ2 is image finite if and only if for every

s ∈ Σ1, the set {t ∈ Σ2 | sRt} is finite.

2.2 Lattice theory and fixpoint theorem

Let S be a set and let v be a partial order on S. The pair (S,v) is called a partially

ordered set or poset, for short. Let (S,v) be a poset, T ⊆ S, and s, s′ ∈ S. When s v s′,

we say that s is below s′ or s′ is above s. An element s ∈ S is a lower bound for T if

and only if s is below all elements of T ; it is an upper bound for T if and only if it is

above all elements of T . A lower bound for T is the greatest lower bound (glb) for T if

and only if it is above any lower bound for T . An upper bound for T is the least upper

bound (lub) for T if and only if it is below any upper bound for T . A poset (S,v) is a

complete lattice if and only if any subset T of S has an lub and a glb in S.

For a function f : S → S, an element x ∈ S is a fixed point (fixpoint) of f if and only

if f(x) = x. Theorems which produce fixpoints of certain maps have been extensively

used in computer science. The following theorem expresses one of the most well-known

fixpoint theorems:

Theorem 2.2 (Knaster-Tarski fixpoint theorem) [DP02] Let (S,v) be a complete

lattice and let f : S → S a monotonic function. Then

l =
⊔
{x ∈ S | x v f(x)}

is a fixpoint of f . Further, l is the greatest fixpoint (gfp) of f . Dually, f has a least

fixpoint (lfp), given by
d
{x ∈ S | f(x) v x}.

2.3 Transition systems

A transition system is a tuple M = (Σ,→) consisting of a set Σ of states and a transition

relation →⊆ Σ × Σ. A transition system is total if for every s ∈ Σ, there exists t ∈ Σ
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such that s → t. For the sake of brevity, we sometimes write ∀s → s′ (resp. ∃s → s′)

when we mean ∀s′ ∈ Σ · s→ s′ (resp. ∃s′ ∈ Σ · s→ s′).

A path in a transition system M is an infinite sequence s̄ = s0s1 · · · of states

such that ∀i ∈ N · si → si+1. A prefix in a transition system M is a finite sequence

s̄prefix = s0s1 · · · sk (k ≥ 0) of states such that ∀0 ≤ i < k · si → si+1. A subsequence of

s̄ or s̄prefix is called a block. A partitioning of s̄ or s̄prefix is a (finite or infinite) sequence

B0 = {s0, · · · , si0}, B1 = {si0+1 · · · si1}, · · · of blocks of s̄ or s̄prefix . A partitioning of

s̄prefix is always finite. When a partitioning of s̄ is finite, the last block of the partitioning

is infinite. A path s̄ starts with a prefix of s̄ and continues with an infinite path called

the suffix of s̄. For s ∈ Σ, a (M, s)-path (or an s-path when M is clear from the context)

is a path in M that starts from s; similarly for prefixes. We use paths(s) to denote the

set of all s-paths and prefixes(s) to denote all the s-prefixes.

Definition 2.3 M is called finitely branching if and only if the transition relation → is

image finite.

A transition system extended with a set Ap of atomic propositions and a labeling

function I : Σ×Ap → {>,⊥} is a Kripke Structure. The labeling function specifies what

propositions hold in each state. A transition system M = (Σ,→,Act) where Act is a set

of action symbols and the transition relation → is a subset of Σ × Act × Σ is called a

Labeled Transition System (LTS).

Transition systems have been extensively used in systems specification. In general,

there are two popular approaches to specification: state-based and action-based. In the

state-based approach, an execution of a system is viewed as a sequence of states in which

every state is an assignment of values to some set of propositions. The action-based

approach views an execution as a sequence of actions. Kripke Structures fall into the

former approach, while LTSs fall into the latter.

A Kripke Modal Transition System (KMTS) [HJS01] is a transition system
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M = (Σ,→must ,→may , Imust , Imay ,Ap) where both Mmust = (Σ,→must , Imust ,Ap) and

Mmay = (Σ,→may , Imay ,Ap) are Kripke Structures subject to the constraints that

→must⊆→may and ∀p ∈ Ap · Imust(s, p) ⇒ Imay(s, p). Our definition of KMTS is a simpli-

fied version of that introduced in [HJS01]. In [HJS01], KMTSs are modal Doubly Labeled

Transition Systems [NV95]. Doubly labeled Transition Systems combine the features of

Labeled Transitions Systems and Kripke Structures. In our definition, however, KMTSs

are modal Kripke Structures. More precisely, in our definition, the set of action symbols,

Act , does not exist.

Let M = (Mmust ,Mmay) be a KMTS. A path in Mmust is called a must-path in M .

Dually, a path in Mmay is called a may-path in M . Since Mmust ⊆Mmay , every must-path

is a may-path as well, but not vice versa; similarly for prefixes and transitions.

The following two relations define two preorder relations over the set of states in

Kripke Structures and KMTSs based on the labeling functions:

Definition 2.4 Let M = (Σ,→, I,Ap) be a Kripke Structure, and let s, t ∈ Σ. The

preorder relation R0 ⊆ Σ × Σ is a binary relation such that sR0t if and only if:

• ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

Definition 2.5 Let M = (Mmust ,Mmay) be a KMTS, and let s, t ∈ Σ. A preorder

relation �0⊆ Σ × Σ is a binary relation such that t �0 s if and only if:

• ∀p ∈ Ap · Imust(s, p) = > ⇒ Imust(t, p) = >

• ∀p ∈ Ap · Imay(t, p) = > ⇒ Imay(s, p) = >

2.4 Temporal logics

A major ingredient of every formal method is its approach to expressing system proper-

ties. In reactive systems, we typically use temporal logics to express systems properties.
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Examples of temporal logics include µ-calculus [Koz83], CTL∗ [EH86], CTL [CES86],

and LTL [Pnu77]. µ-calculus, CTL, and CTL∗ are branching-time logics, while LTL is

a linear-time logic. In this thesis, we use CTL to express properties of Kripke Struc-

tures and KMTSs. CTL is able to express both universal properties, i.e. properties that

have to hold along all paths, and existential properties, i.e. properties that have to hold

along some path, as well as safety properties, i.e. nothing bad may happen, and liveness

properties, i.e. something good has to happen.

Definition 2.6 The abstract syntax of the logic CTL is inductively defined as follows:

φ ::= > | ⊥ | p | φ ∧ φ | φ ∨ φ | ¬φ | EXφ | AXφ |

EFφ | AFφ | E[φUφ] | A[φUφ] | EGφ | AGφ

where p ∈ Ap.

The following definition describes the semantics of CTL on Kripke Structures:

Definition 2.7 For a Kripke Structure M and a CTL formula φ, [[φ]] ⊆ Σ is defined as

follows:

[[>]] , Σ

[[⊥]] , ∅

[[p]] , {s ∈ Σ | I(s, p) = >}

[[φ1 ∧ φ2]] , [[φ1]] ∩ [[φ2]]

[[φ1 ∨ φ2]] , [[φ1]] ∪ [[φ2]]

[[¬φ]] , Σ \ [[φ]]

[[EXφ]] , {s ∈ Σ | ∃s′ ∈ Σ · (s→ s′ ∧ s′ ∈ [[φ]])}

[[EGφ]] , {s ∈ Σ | ∃s̄ ∈ paths(s) · ∀si ∈ s̄ · si ∈ [[φ]]}

[[E[φUψ]]] , {s ∈ Σ | ∃s̄prefix ∈ prefixes(s) · ∃sj ∈ s̄prefix · (sj ∈ [[ψ]] ∧

∀si ∈ s̄prefix · (i < j ⇒ si ∈ [[φ]]))}
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The remaining operators are defined as follows:

[[A[φUψ]]] , [[¬E[¬ψU¬φ ∧ ¬ψ] ∧ ¬EG¬ψ]]

[[AXφ]] , [[¬EX¬φ]]

[[AFφ]] , [[A[>Uφ]]]

[[EFφ]] , [[E[>Uφ]]]

[[AGφ]] , [[¬EF¬φ]]

The following definition gives the semantics for CTL on KMTSs. This semantics

coincides exactly with the multi-valued semantics of CTL proposed in [CDEG03] when

the truth set is the 3-valued Kleene logic [Kle52].

Definition 2.8 Let M = (Mmust ,Mmay) be a KMTS, and let φ be a CTL formula. We

define [[φ]]> ⊆ Σ, i.e. the set of states that satisfy φ, and [[φ]]⊥ ⊆ Σ, i.e. the set of states

that refute φ, as follows:

[[>]]> , Σ

[[⊥]]> , ∅

[[p]]> , {s ∈ Σ | Imust(s, p) = >}

[[φ1 ∧ φ2]]
> , [[φ1]]

> ∩ [[φ2]]
>

[[φ1 ∨ φ2]]
> , [[φ1]]

> ∪ [[φ2]]
>

[[¬φ]]> , [[φ]]⊥

[[EXφ]]> , {s ∈ Σ | ∃s′ ∈ Σ · (s→must s′ ∧ s′ ∈ [[φ]]>)}

[[EGφ]]> , {s ∈ Σ | ∃s̄ ∈ must-paths(s) · ∀si ∈ s̄ · si ∈ [[φ]]>}

[[E[φUψ]]]> , {s ∈ Σ | ∃s̄prefix ∈ must-prefixes(s) · ∃sj ∈ s̄prefix · (sj ∈ [[ψ]]> ∧

∀si ∈ s̄prefix · (i < j ⇒ si ∈ [[φ]]>))}
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[[>]]⊥ , ∅

[[⊥]]⊥ , Σ

[[p]]⊥ , {s ∈ Σ | Imay(s, p) = ⊥}

[[φ1 ∧ φ2]]
⊥ , [[φ1]]

⊥ ∩ [[φ2]]
⊥

[[φ1 ∨ φ2]]
⊥ , [[φ1]]

⊥ ∪ [[φ2]]
⊥

[[¬φ]]⊥ , [[φ]]>

[[EXφ]]⊥ , {s ∈ Σ | ∀s′ ∈ Σ · (s→may s′ ⇒ s′ ∈ [[φ]]⊥)}

[[EGφ]]⊥ , {s ∈ Σ | ∀s̄prefix ∈ may-prefixes(s) · ∃si ∈ s̄prefix · si ∈ [[φ]]⊥}

[[E[φUψ]]]⊥ , {s ∈ Σ | ∀s̄ ∈ may-paths(s) · (∀sj ∈ s̄ · sj ∈ [[ψ]]⊥∨

∀sj ∈ s̄ · (sj ∈ [[ψ]]> ⇒ ∃si ∈ s̄ · (i < j ∧ si ∈ [[φ]]⊥)))}

Let c ∈ {>,⊥}. The remaining operators are defined as follows:

[[A[φUψ]]]c , [[¬E[¬ψU¬φ ∧ ¬ψ] ∧ ¬EG¬ψ]]c

[[AXφ]]c , [[¬EX¬φ]]c

[[AFφ]]c , [[A[>Uφ]]]c

[[EFφ]]c , [[E[>Uφ]]]c

[[AGφ]]c , [[¬EF¬φ]]c

ACTL, i.e. universal CTL, and ECTL, i.e. existential CTL, are subsets of CTL in the

former of which the only allowed path quantifier is A and in the latter of which the only

allowed path quantifier is E. Furthermore, negation exists in neither ACTL nor ECTL.

In Chapter 4, we discuss the motivation for dropping the next-time operator from

temporal logics. The nextless fragment of CTL, denoted CTL−X , is the set of all CTL

formulas that do not contain EX or AX operators.

2.5 Behavioral preorders and equivalences

Let M = (Σ, →, I, Ap) be a Kripke Structure, and let s, t ∈ Σ. The preorder relation

R ⊆ Σ × Σ is a simulation relation [Mil89] such that sRt if and only if:
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1. ∀p ∈ Ap · I(s, p) = I(t, p)

2. ∀s′ ∈ Σ · (s→ s′ ⇒ ∃t′ ∈ Σ · (t→ t′ ∧ s′Rt′))

Let M = (Σ, →, I, Ap) be a Kripke Structure, and let s, t ∈ Σ. The equivalence

relation ≡⊆ Σ × Σ is a bisimulation relation [Mil89] such that s ≡ t if and only if:

1. ∀p ∈ Ap · I(s, p) = I(t, p)

2. ∀s′ ∈ Σ · (s→ s′ ⇒ ∃t′ ∈ Σ · (t→ t′ ∧ s′ ≡ t′))

3. ∀t′ ∈ Σ · (t→ t′ ⇒ ∃s′ ∈ Σ · (s→ s′ ∧ s′ ≡ t′))

States s and t are said to be bisimilar if and only if they satisfy the same CTL

formulas [HM85, BCG88]. A state s is similar to a state t if and only if any ACTL

formula that holds in t also holds in s [HM85, BCG88]. In other words, CTL is a logical

characterization of bisimulation, and ACTL is a logical characterization of simulation. It

should be pointed out that bisimulation (resp. simulation) can be logically characterized

by CTL (resp. ACTL) only when the underlying transition system is finitely branching.



Chapter 3

Refinement on Partial Specifications

Development by sound refinement steps is an important method for showing the correct-

ness of an implementation of a system with respect to its specification. Various notions

of behavioral refinement have been proposed. In branching-time approaches, refinement

relations fall into two categories: equivalence relations (e.g. bisimulation) and preorder

relations (e.g. simulation). This categorization reflects an interesting trade-off between

the expressive power of the logic that characterizes a refinement relation and the flexi-

bility of the refinement relation in providing a reasonably good state space reduction.

The analysis of software systems can be performed in a sufficiently detailed way if

conducted within a bisimulation-equivalence class. This is because bisimulation equiva-

lence can be characterized by CTL∗ which is a very expressive logic capable of describing

both liveness and safety properties. However, bisimulation leaves no room for state space

reduction because the behaviors of the abstract specification and the concrete imple-

mentation of the system must be bisimilar. Simulation-based analysis, in contrast, is

restricted to a smaller fragment of logical properties because it cannot preserve both

safety and liveness properties. But simulation has the flexibility required for state space

reduction. Therefore, at one extreme, we have bisimulation with fairly limited state

space reducibility but powerful property preservation; and at the other extreme, we have

16
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simulation with the opposite features.

In this chapter, we outline a refinement relation that is somewhere in between these

two extremes. This refinement relation, which has been proposed in [HJS01], is defined

in such a way that it preserves both safety and liveness properties and also achieves a

good state space reduction. The key to making this possible is to represent abstract

systems using partial models rather than conventional classical models. We use a sim-

plified version of Kripke Modal Transition Systems [HJS01] as the underlying basis for

our partial modeling formalism. Other examples of partial models are χKripke Struc-

tures [CDEG03], Modal Transition Systems (MTSs) [LT88, Lar89], and Partial Kripke

Structures (PKSs) [BG99]. Since the above-mentioned partial modeling formalisms can

be translated into one another [GJ03], the refinement relation presented in this chapter

can be adapted to any of these formalisms in more-or-less the same way.

3.1 Simulation on Kripke Structures

In this section, simulation relation and its logical characterization are reviewed. The

results of this section are used in the proof of the logical characterization theorem of the

refinement relation described in the next section.

In this chapter, all preorder relations, i.e. simulations and refinements, are defined

between two states of a single model M , but intuitively, we expect a refinement relation

to be defined between the states of two different models. This does not pose a problem

because the same definitions can be used for relating the states of a model M1 to those

of another model M2 through constructing the disjoint union M1 ⊕M2, and formulating

the refinement relation within M1 ⊕M2 in such a way that the refinement relation is a

subset of Σ1 × Σ2.

Definition 3.1 (Simulation on Kripke Structures) [HJS01] Let M = (Σ,→, I,Ap)

be a Kripke Structure, and let R ⊆ Σ × Σ be a binary relation such that ∀s, t ∈ Σ· sRt
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if and only if:

1. ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

2. ∀s′ ∈ Σ · (s→ s′ ⇒ ∃t′ ∈ Σ · (t→ t′ ∧ s′Rt′))

Then, R is called a simulation relation. The largest simulation relation is denoted Rsim .

In Definition 3.1, a state s is simulated by a state t if every atomic proposition that

is true in s is also true in t, but in the conventional definition of simulation (given in the

Preliminaries chapter), the set of atomic propositions that are true in s must be equal to

the set of atomic propositions that are true in t.

In general, two states s and t are different according to some relation R if there is

some logical property φ in a logic L such that φ distinguishes s from t and L is the logic

that characterizes R. As we will see later, the logic characterizing the simulation relation

Rsim does not have negation. Therefore, a state s is similar to a state t when the set

of positive atomic propositions of s is a subset of the set of positive atomic propositions

of t.

The intuition behind simulation is that a transition from a state s can be mimicked by

another transition from a state t when sRsimt. The relation Rsim is typically used to refine

a specification Spec into an implementation Imp. More precisely, an implementation Imp

refines a specification Spec if Spec simulates Imp. Thus, every behavior exhibited by Imp

is permitted by Spec, or alternatively, the set of behaviors of Imp is a subset of the set

of behaviors of Spec.

The simulation relation Rsim can logically be characterized by a propositional modal

logic, denoted L3 [Pnu86]. The logic L3, which is only capable of expressing existential

properties, has the following abstract syntax:

φ ::= > | p | φ1 ∧ φ2 | φ1 ∨ φ2 | EXφ

where p ∈ Ap.
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For any Kripke Structure M and any property φ ∈ L3, we use [[φ]] to denote the set

of states that satisfy φ. In other words, for a state s and a property φ, s � φ ⇔ s ∈ [[φ]]

and s 2 φ⇔ s /∈ [[φ]].

Theorem 3.2 (Logical characterization of Rsim) [HJS01] sRsimt if and only if

∀φ ∈ L3 · s ∈ [[φ]] ⇒ t ∈ [[φ]].

Proof

⇒ Let φ be a L3 formula. We prove the lemma by induction on the structure of φ.

-φ = p

s ∈ [[p]]

⇒ (by Definition 2.7)

I(s, p) = >

⇒ (by the assumption that sRsimt)

I(t, p) = >

⇒ (by Definition 2.7)

t ∈ [[p]]

-φ = ϕ ∧ ψ

s ∈ [[ϕ ∧ ψ]]

⇒ (by Definition 2.7)

s ∈ ([[ϕ]] ∩ [[ψ]])

⇒ (by the definition of ∩)

s ∈ [[ϕ]] ∧ s ∈ [[ψ]]

⇒ (by the inductive hypothesis)

t ∈ [[ϕ]] ∧ t ∈ [[ψ]]

⇒ (by the definition of ∩)

t ∈ ([[ϕ]] ∩ [[ψ]])

⇒ (by Definition 2.7)

t ∈ [[ϕ ∧ ψ]]
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-φ = EXϕ

s ∈ [[EXϕ]]

⇒ (by Definition 2.7)

s ∈ {s ∈ Σ | ∃s′ ∈ Σ · (s→ s′ ∧ s′ ∈ [[ϕ]])}

⇒ (by the assumption that sRsimt, and by the inductive hypothesis)

t ∈ {t ∈ Σ | ∃t′ ∈ Σ · (t→ t′ ∧ t′ ∈ [[ϕ]])}

⇒ (by Definition 2.7)

t ∈ [[EXϕ]]

⇐ Assume that ∀φ ∈ L3 · s ∈ [[φ]] ⇒ t ∈ [[φ]]. We show sRsimt. Since Rsim is the

largest simulation relation, we need to prove that the pair (s, t) is an element of

some simulation relation R ⊆ Rsim . We define a binary relation R′ as follows:

sR′t if and only if ∀φ ∈ L3 · s ∈ [[φ]] ⇒ t ∈ [[φ]]. We prove that the conditions of

Definition 3.1 are satisfied by R′.

Condition 1: Follows from the fact that Ap ⊂ L3.

Condition 2: Suppose s → s′. We show that there exists t′ such that t → t′

and s′R′t′. Suppose this is not the case. Consider the set C of successors of

t. Because the model is finitely branching, C is finite. We distinguish the

following two cases:

1. C is empty. Let ϕ be a L3 formula such that s′ ∈ [[ϕ]]. Thus, s ∈ [[EXϕ]].

Since sR′t, we conclude that t ∈ [[EXϕ]]. But t does not have any outgoing

transitions; therefore, t /∈ [[EXϕ]] - Contradiction.

2. C is not empty, say C = {t′1, t
′
2, · · · , t

′
n} with n ≥ 1. For every

t′i ∈ C, we have (s′, t′i) /∈ R′. Thus, by the definition of R′, there exist for-

mulas ϕ1, · · · , ϕn ∈ L3 such that s′ ∈ [[ϕi]]∧ t
′
i /∈ [[ϕi]] for every 1 ≤ i ≤ n.

But, this implies s ∈ [[EX (ϕ1 ∧ · · · ∧ ϕn)]], while t /∈ [[EX (ϕ1 ∧ · · · ∧ ϕn)]];

therefore, (s, t) /∈ R′ - Contradiction.
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Dually, we can prove that:

Theorem 3.3 sRsimt if and only if ∀ϕ ∈ L� · t ∈ [[ϕ]] ⇒ s ∈ [[ϕ]].

L� [Pnu86] is the dual of L3 and can only express universal properties. The abstract

syntax of L� is as follows:

φ ::= > | p | φ1 ∧ φ2 | φ1 ∨ φ2 | AXφ

where p ∈ Ap.

Thus, when a state s is related to a state t by the relation Rsim , the universal prop-

erties that have been proven to be correct in t are preserved in s, and the existential

properties that evaluate to true in s are true when evaluated in t. More precisely, the

relation Rsim preserves existential properties in one direction and universal properties in

the other. A major drawback in any kind of analysis based on Rsim is that the scope

of verification is limited to universal properties (or existential properties in the reverse

direction). In order to capture both universal and existential properties, a refinement

relation over partial models has been proposed in [HJS01]. This refinement relation is

the subject of the next section.

3.2 Refinement on Kripke Modal Transition Systems

In this section, we review the refinement relation over Kripke Modal Transition Systems

(or partial models, in general) proposed in [HJS01]. We assume that every KMTS is

total. This means that each state has at least one outgoing must or may-transition.

However, Mmust is not necessarily total.

In a KMTS, Mmust represents those behaviors of the system that are guaranteed to

be present in the final implementation, while Mmay represents those behaviors that are

not yet confirmed and may not make it to the final implementation.
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In order to reason about KMTSs, we have to define the semantics of logical properties

over them. In classical models, we can always prove either φ or ¬φ. Hence, in classical

reasoning, s /∈ [[φ]] if and only if s ∈ [[¬φ]]. In partial models, in contrast to classical

models, if s ∈ [[¬φ]] then s /∈ [[φ]], but not vice versa. Particularly, we may fail to prove a

property φ because we do not have enough information about it, but this does not imply

that we can prove ¬φ. More precisely, when there is no proof for property φ, it does not

mean that we have proved ¬φ.

In partial models, we use [[φ]]> to denote the set of states that satisfy a property φ,

and [[φ]]⊥ to denote the set of states that refute φ. To prove φ in a state s, we have to

show that s ∈ [[φ]]>, and to refute φ in s, we have to show that s ∈ [[φ]]⊥. Clearly, the

value of φ is unknown in s if s /∈ [[φ]]> and s /∈ [[φ]]⊥.

We augment the logic L3 with negation and introduce another logic denoted

PML [Var97]. PML can be extended with a fixpoint operator to form a modal fixpoint

logic, referred as µ-calculus [Koz83]. The abstract syntax of PML is as follows:

φ ::= > | p | φ1 ∧ φ2 | EXφ | ¬φ

where p ∈ Ap.

The operators ⊥, ∨, and AX are derived as ¬>, ¬φ1∧¬φ2, and ¬EX¬φ, respectively.

Definition 3.4 (Refinement) [HJS01] Let M = (Σ,→must ,→may , Imust , Imay ,Ap) be

a KMTS, and let �⊆ Σ×Σ be a binary relation such that ∀s, t ∈ Σ · t � s if and only if:

1. ∀p ∈ Ap · Imust(s, p) = > ⇒ Imust(t, p) = >

2. ∀p ∈ Ap · Imay(t, p) = > ⇒ Imay(s, p) = >

3. ∀s′ ∈ Σ · (s→must s′ ⇒ ∃t′ ∈ Σ · (t→must t′ ∧ t′ � s′))

4. ∀t′ ∈ Σ · (t→may t′ ⇒ ∃s′ ∈ Σ · (s→may s′ ∧ t′ � s′))

Then, � is called a refinement relation. The largest refinement relation is denoted �ref .
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Notice that if t �ref s, then sRsimt in Mmust and tRsims in Mmay , but not vice versa.

The refinement relation �ref derives an implementation Imp from a partial specifi-

cation Spec in such a way that the set of behaviors guaranteed in Spec is a subset of

the set of behaviors of Imp, and the set of behaviors admissible in Spec includes the

set of behaviors of Imp. In other words, �ref is capable of relating an implementation

to a specification in such a way that all behaviors guaranteed by the specification are

exhibited by the implementation and all behaviors of the implementation are admitted

by the specification.

It has been shown [HJS01] that �ref can be logically characterized by a modal µ-

calculus logic [Koz83] which is a very expressive logic and important logics like CTL∗

can be embedded into it [Dam94]. As mentioned earlier, the logic PML can itself be

extended with a fixpoint operator to give a modal µ-calculus logic. Thus, we prove the

following logical characterization theorem for PML.

Theorem 3.5 (Logical characterization of �ref ) [HJS01] t �ref s if and only if

∀φ ∈ PML · s ∈ [[φ]]> ⇒ t ∈ [[φ]]> ∧ s ∈ [[φ]]⊥ ⇒ t ∈ [[φ]]⊥

Proof

⇒ Let t �ref s and let φ ∈ PML.

Suppose s ∈ [[φ]]>. Then, s ∈ [[φ]] in Mmust . Since sRsimt in Mmust , by Theorem 3.2,

t ∈ [[φ]] in Mmust as well. Thus, t ∈ [[φ]]>.

Suppose s ∈ [[φ]]⊥. Then, s /∈ [[φ]] in Mmay . Since tRsims in Mmay , by Theorem 3.2,

t /∈ [[φ]] in Mmay as well. Thus, t ∈ [[φ]]⊥.

⇐ Assume that ∀φ ∈ PML · s ∈ [[φ]]> ⇒ t ∈ [[φ]]> and s ∈ [[φ]]⊥ ⇒ t ∈ [[φ]]⊥. We show

that t �ref s. Since �ref is the largest refinement relation, all we need to prove is

that the pair (t, s) is an element of some refinement relation �⊆�ref . We define a

binary relation �′ as follows: s �′ t if and only if ∀φ ∈ PML · s ∈ [[φ]]> ⇒ t ∈ [[φ]]>
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and s ∈ [[φ]]⊥ ⇒ t ∈ [[φ]]⊥. We prove that the conditions of Definition 3.4 are

satisfied by �′.

Conditions 1 and 2: Follow from the fact that Ap ⊂ PML.

Condition 3: Suppose s →must s′. We show that there exists t′ such that

t →must t′ and t′ �′ s′. Suppose this is not the case. Consider the set C

of all states that can be reached by a single must-transition from t. Since we

assumed that KMTSs are finitely branching, C is finite. We distinguish the

following two cases:

1. C is empty. Let ϕ be a PML formula such that s′ ∈ [[ϕ]]>. Therefore,

s ∈ [[EXϕ]]>. Since t �′ s, we conclude that t ∈ [[EXϕ]]>. But, t

does not have any outgoing must-transition; therefore, t /∈ [[EXϕ]]> -

Contradiction.

2. C is not empty, say C = {t′1, t
′
2, · · · , t

′
n} with n ≥ 1. By the assumption

that we made, we have t′i �′ s′ for every t′i ∈ C. Thus, by the definition of

�′, there exist formulas ϕ1, · · ·ϕn ∈ PML such that (s′ ∈ [[ϕi]]
> ∧ t′i /∈ [[ϕi]]

>)

∨
(s′ ∈ [[ϕi]]

⊥ ∧ t′i /∈ [[ϕi]]
⊥). We replace every formula ϕi with a formula

ϕ′
i ∈ PML such that if s ∈ [[ϕi]]

⊥ then ϕ′
i = ¬ϕi, otherwise ϕ′

i = ϕi. But

this implies s ∈ [[EX (ϕ′
1 ∧ · · · ∧ ϕ′

n)]]>, while t /∈ [[EX (ϕ1 ∧ · · · ∧ ϕn)]]>;

therefore, t �′ s - Contradiction.

Condition 4: This condition can be proved in the same as the previous condition.



Chapter 4

Stuttering Refinement on Partial

Specifications

The notion of a step made by a system has an important place in behavioral modeling.

From a system’s point of view, a step is the next moment at which some internal or

external state variable changes. Such a step is referred as a system step in [Dam96].

However, for an external observer, a system step is often non-existent because a change

in the internal variables of the system is not externally observable. From an observer’s

point of view, a step can be distinguished only when some external variable changes

in such a way that the value of at least one logical property of the system is affected.

Therefore, how a step is interpreted by an external observer depends on two factors: first,

the expressive power of the logic used for describing the properties of the system; and

second, the observable propositions of the system. The observer’s interpretation of a step

is referred as a logical step in [Dam96].

Figure 4.1 illustrates the difference between a system step and a logical step on

a simple example. Each transition of the system shown in Figure 4.1(a) represents a

system step. The set of observable variables of the system shown in Figure 4.1(a) is

{p, r}, and the system properties are expressed in CTL−X . Under these assumptions, we

25
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(b)
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logical step

Logic: CTL−X
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Observable Variables: {p, r}

Figure 4.1: System step versus. logical step

can only distinguish one logical step. This logical step is shown in Figure 4.1(b). It is

easy to check that every CTL−X property that evaluates to true or false in the system

shown in Figure 4.1(a) has the same truth value when evaluated in the system shown

in Figure 4.1(b), and vice versa. In other words, no CTL−X property can distinguish

the systems in Figures 4.1(a) and 4.1(b). However, if we choose CTL as the underlying

logic, or if we assume that the set of observable variables is {p, q, r}, then the systems in

Figures 4.1(a) and 4.1(b) are not logically equivalent, anymore. As this example shows,

the distinguishing power of CTL is more than that of CTL−X .

Many temporal logics include a next operator which describes that some property

holds in the next state along a path. The next state is usually the state that can be

reached by taking a single system step. Therefore, the next operator may refer to a

step that is not externally observable. This is usually undesirable. For example, in

Figure 4.1(b), we do not consider the transition from s0 to s1 because it does not make

sense to abstract from the variable q while still considering its changes. However, the

property EXr distinguishes between s0 and t0 because the transition from s0 to s1 is

missing at t0. Therefore, the next operator may produce different results when applied

to systems that are identical to an external observer.
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Lamport was among the pioneers to argue [Lam83] that the next operator should

not be used in specifications because it makes the logic more expressive than what it

should really be. In fact, the next operator describes some unnecessary details about the

behaviors usually ignored in high-level abstractions of a specification. More intuitively,

the next operator may provide some information about system steps, while what we are

really interested in is high-level logical steps. In [Lam83], Lamport simply drops the next

operator from the set of operators of the underlying logic. This approach is closely related

to the field of behavioral equivalences and is discussed in this chapter. Other solutions to

this problem involve parameterizing the next operator and changing its interpretation.

For example, in [PC02], a new next operator ↑ is defined in such a way that ↑ A indicates

a change in the value of an observable formula A.

A similar problem is caused by silent moves in action-based approaches. A silent

move represents a pause or a period of time during which a system is idle according to

an external observer. Silent moves in action-based approaches are analogous to system

(but not to a logical) steps in state-based approaches. Some of the proposed action-based

behavioral relations ignore silent moves in specifications. Examples of such behavioral

relations are observational or weak bisimulation relations [Mil89]. In [vG90], it has

been argued that branching bisimulation is the coarsest possible equivalence relation

that ignores silent moves and yet respects the branching structure of a system.

A state-based approach to stuttering bisimulation over Kripke Structures has been

introduced by Browne, Clarke, and Grumberg [BCG88]. They prove that states related

by a stuttering equivalence relation satisfy the same CTL∗
−X properties. In [NV95],

branching bisimulation over Labeled Transition Systems and stuttering equivalence over

Kripke Structures have been compared and a precise connection between them has been

established. Consequently, it has been shown that branching bisimulation over Labeled

Transition Systems can also be characterized by CTL∗
−X properties.

The notions of step and stuttering relation have been studied extensively in the liter-
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Figure 4.2: Logical steps in partial models

ature; however, to the best of our knowledge, these notions have never been elaborated in

the context of partial systems. In classical systems, a logical step ensures an observable

change in the value of some formula from true to false or false to true. In partial systems,

formulas may evaluate to unknown as well as true or false, and a change from unknown

to true or false does not necessarily create a logical step.

In Figure 4.2, a partial system (Figure 4.2(a)) and three different possible refinements

(Figures 4.2(b), 4.2(c), and 4.2(d)) of it are shown. According to the refinement in

Figure 4.2(b), s0 and s1 in Figure 4.2(a) are just two repetitions of t0 in Figure 4.2(b).

Therefore, no logical step exists. However, in the refinement shown in Figure 4.2(c), one

logical step between t′0 and t′1 can be identified. Figure 4.2(d) shows yet another possible

refinement, but this time, two logical steps can be identified, one from t
′′

0 to t
′′

1 and the

other from t
′′

1 to t
′′

2 .

This example illustrates that different possible refinements induce different logical

steps in a partial system. In this chapter, we define a preorder relation that relates a

partial system to all its possible refinements with different sets of logical steps. We refer
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to such a preorder relation as a stuttering refinement relation.

4.1 Stuttering simulation on Kripke Structures

In this section, we define a notion of stuttering simulation on Kripke Structures. Like in

the previous chapter, we define refinement relations between the states of a single model

M . For showing a refinement relation between the states of two different models M1 and

M2, we can construct the disjoint union, M1 ⊕M2, and formulate the refinement relation

within M1 ⊕M2 in such a way that the refinement relation is a subset of Σ1 × Σ2.

Definition 4.1 (Divergence-blind stuttering simulation) Let M = (Σ,→, I,Ap)

be a Kripke Structure, and let R ⊆ Σ × Σ be a binary relation such that ∀s, t ∈ Σ · sRt

if and only if:

1. ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

2. For every s → s1, there exists t0 = t → t1 → t2 → · · · tm−1 → tm such that

m ≥ 0, sRti for every i < m, and s1Rtm

Then, R is a divergence-blind stuttering simulation. The largest divergence-blind stutter-

ing simulation is denoted Rdbs .

The second condition of Definition 4.1 describes that if state s can make a transition

to a state s1, then state t can make a transition sequence of length zero or more to some

state tm such that s1 is related to tm and s is related to every state that lies on the

prefix from t to tm (excluding tm). In the remainder of this chapter, whenever we write

t0 → t1 → t2 → · · · tm−1 → tm, we mean a transition sequence of length zero or more, i.e.

m ≥ 0.

Definition 4.1 is a weaker version of the definition of divergence-blind equivalence

relation proposed in [NV95]. In our definition, a state s is related to a state t when the

set of atomic propositions that are true in s is a subset of the set of atomic propositions
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Figure 4.3: An example of stuttering simulation

that are true in t; while in [NV95], s is related to t when the set of atomic propositions

that are true in s is equal to the set of atomic propositions that are true in t. Thus, Rdbs

is a preorder relation, whereas the relation proposed in [NV95] is an equivalence relation.

Example 4.2 Figure 4.3 illustrates an example of stuttering simulation relation between

two Kripke Structures M1 and M2. The set of atomic propositions in both M1 and M2

is {p, q, r}. The value of each proposition not shown in the states of M1 is either false or

unknown. In this figure, there are some pairs (s, t) ∈ Σ1 ×Σ2 for which sRdbst. Here, we

only elaborate two cases:

1. s1Rdbst3: because p is true in state t3, and there exists a transition sequence

t3 → t2 → t5 corresponding to the transition s1 → s2 such that s1Rdbst2 and

s2Rdbst5.

2. s1Rdbst4: because p is true in t4, and there exists a transition sequence t4 of length



Chapter 4. Stuttering Refinement on Partial Specifications 31

s

t t′

s′

p

p¬p

¬p s ∈ [[EG¬p]]

t /∈ [[EG¬p]]

Figure 4.4: An example of dbs-simulation

zero corresponding to the transition s1 → s2 such that s1Rdbst4 and s2Rdbst4.

If states s and t cannot be distinguished by any CTL−X formula, then sRdbst. The

converse, however, is not true. For example, in Figure 4.4, sRdbst because Rdbs maps the

infinite path s → s → s → · · · to the single state t (Definition 4.1, Condition 2). Thus,

s ∈ [[EG¬p]], whereas t /∈ [[EG¬p]]. In Figure 4.4, state s is a divergent state because it

occurs on an infinite path such that all the states on that path are related to a single

state t. As this example shows, Rdbs cannot distinguish the divergent state s from the

non-divergent state t.

Different approaches to characterizing divergence-blind and divergence-sensitive stut-

tering relations have been investigated in the literature. In [NV95], the interpretation of

path formulas is changed in such a way that the existential (E) and the universal (A)

operators quantify over finite prefixes as well as infinite paths. Under the assumption

made there, EG¬p holds in state t of Figure 4.4 because t itself is a finite prefix. Having

applied this adjustment, it is possible to show that CTL−X properties logically character-

ize Rdbs . Furthermore, in [NV95], a definition has been proposed for divergence-sensitive

stuttering equivalence. This definition is, in fact, a divergence-blind stuttering equiva-

lence that is defined over Kripke Structures extended with a live-locked state, i.e. a state

with only one outgoing self-loop transition. A Kripke Structure can be extended with

a live-locked state by adding a transition from every divergent state to the live-locked

state. In [NV95], it is proved that a divergence-blind stuttering equivalence relation de-
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fined over a Kripke Structure M becomes a divergence-sensitive stuttering equivalence

over the Kripke Structure M that is extended with a live-locked state.

In [NV95], the problem to tackle is finding a stuttering equivalence relation. Thus,

divergent states are known before-hand. There, divergent states are those located on

a cycle of states all of which have the same set of atomic propositions. In our case,

however, the divergent states are not known before-hand because when a single state t

is related to a path s̄ with respect to Rdbs , we can only conclude that the set of positive

atomic propositions of t includes the set of positive atomic propositions of every state on

s̄. Therefore, in general, no assumption can be made about the set of atomic propositions

of the states on s̄. More precisely, we cannot conclude that the states on s̄ have the same

atomic propositions. This makes it impossible to use the solution proposed in [NV95] for

converting Rdbs to a divergence-sensitive stuttering relation.

In [Nam97], a formulation of stuttering bisimulation, called well-founded bisimulation,

has been proposed. The definition of well-founded bisimulation is similar to that of

bisimulation in the sense that in each step, we only need to match single transitions. This

is in contrast to the definition of stuttering bisimulation where finite sequences of states

are matched in each step. Well-founded bisimulation is a divergence-sensitive stuttering

bisimulation because it ensures that the length of every sequence of stuttering states is

finite. Therefore, a finite sequence of stuttering states is never mapped to an infinite

one. The definition of well-founded bisimulation is suitable for establishing stuttering

bisimulation relations; however, it is difficult to use this definition to prove the logical

results that characterize stuttering bisimulation.

In [Dam96], Dams has also worked on this problem. His definition of divergence-

sensitive stuttering equivalence is an adaptation of the definition of dbs-equivalence.

There, he adds a new condition (Definition 4.13, Condition 3) to the definition of dbs-

equivalence. In his definition, a state s is equal to a state t with respect to a stuttering-

sensitive equivalence relation when the following condition holds: “s is located on an
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infinite path s̄ such that all the states on s̄ are equal if and only if t is located on an

infinite path t̄ such that all the states on t̄ are equal”. Here, we also add a new condition

to the definition of Rdbs (Definition 4.1) to define the divergence-sensitive stuttering

simulation relation.

Definition 4.3 (Divergence-sensitive stuttering simulation) Let M = (Σ,→, I,Ap)

be a Kripke Structure, and let R ⊆ Σ × Σ be a binary relation such that ∀s, t ∈ Σ · sRt

if and only if:

1. ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

2. For every s → s1, there exists t0 = t → t1 → t2 → · · · tm−1 → tm such that

sRti for every i < m and s1Rtm

3. ∃s̄ ∈ paths(s) · ∀si ∈ s̄ · siRt⇒ ∃t′ · (t→ t′ ∧ ∃s′ ∈ s̄ · s′Rt′)

Then, R is a divergence-sensitive stuttering simulation. The largest divergence-sensitive

stuttering simulation is denoted Rstut .

The third condition in the above definition states that if there exists a path s̄ ema-

nating from state s such that all the states on s̄ are related to state t, then t has to have

some successor t′ such that some state s′ on s̄ is related to t′.

Example 4.4 In Figure 4.3, s1Rdbst4 and s2Rdbst4; hence, there exists an infinite path

s̄ such that all the states on s̄ are related to t4. But t4’s successor, i.e. t6, is not related

to any state on s̄, i.e. s1 and s2. Therefore, (s1, t4) /∈ Rstut and (s2, t4) /∈ Rstut .

Example 4.5 In Figure 4.3, s1Rdbst1 and s2Rdbst1; hence, there exists an infinite path s̄

such that all the states on s̄ are related to t1. However, t1 → t3 and s1Rstutt3; therefore,

s1Rstutt1 and s2Rstutt1.

The following definition, which has been adapted from [BCG88], lifts the notion of

divergence-sensitive stuttering simulation from states to paths.
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Definition 4.6 A path s̄ ∈ paths(s) (resp. a prefix s̄prefix ∈ prefixes(s)) is related to a

path t̄ ∈ paths(t) (resp. a prefix t̄prefix ∈ prefixes(t)) with respect to a preorder relation

R if and only if there exists a partitioning B0, B1, B2, · · · of s̄ (resp. s̄prefix ), and a

partitioning C0, C1, C2, · · · of t̄ (resp. t̄prefix ) such that

∀j ∈ N · (Bj 6= ∅ ∧ Cj 6= ∅ ∧ ∀s′ ∈ Bj · ∀t
′ ∈ Cj · s

′Rt′)

The following lemma extends Rstut to paths. We prove this lemma with the help of König

Lemma, using an argument similar to the one given in [BCG88].

Lemma 4.7 If sRstutt, then ∀s̄ ∈ paths(s) · ∃t̄ ∈ paths(t)· s̄Rstut t̄.

Proof Let M be a Kripke Structure, and let s̄ be an infinite (M, s)-path. From Defini-

tion 4.3, it follows that for every prefix s̄prefix of s̄, there exists a prefix t̄prefix such that

s̄prefixRstut t̄prefix :

sRstutt⇒ ∀s̄prefixof s̄ · ∃t̄prefix ∈ prefixes(t) · s̄prefix Rstut t̄prefix (4.1)

Using an argument based on König Lemma, we now prove that there exists a path t̄

corresponding to s̄ such that s̄Rstut t̄. We then show that t̄ has to be infinite.

We construct a tree T rooted at t in such a way that t0t1t2 · · · tn is a path in T if and

only if

• t0 = t, and

• there exists a prefix t̄prefix ∈ prefixes(t) and a prefix s̄prefix of s̄ such that the

following three conditions are satisfied.

1. t̄prefix is partitioned by a sequence

C0 = {t0u1 · · · up}, C1 = {t1v1 · · · vq}, · · · , Cn = {tnz1 · · · zw}

of blocks.
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2. s̄prefix is partitioned by a sequence B0, B1, · · · , Bn of blocks.

3. ∀0 ≤ i ≤ n ·Bi 6= ∅ ∧ Ci 6= ∅ ∧ ∀s′ ∈ Bi · ∀t
′ ∈ Ci · s

′Rstutt
′.

Intuitively, every path in T corresponds to a partitioning of some t̄prefix such that

s̄prefix Rstut t̄prefix and s̄prefix is a prefix of s̄. For every path in T , the partitioning of

its corresponding t-prefix, i.e. {B0, B1, · · · , Bn}, is denoted B and the partitioning of its

corresponding s-prefix, i.e. {C1, · · · , Cn}, is denoted C.

Suppose that the number of nodes in T is infinite. Since we assumed that the number

of states in the underlying model M is finite, T is finitely branching. Therefore, by König

Lemma, there exists an infinite path through T . Thus, for this path the number of blocks

in both B and C is infinite. Hence, there is an infinite path t̄ corresponding to s̄.

Suppose that the number of nodes in T is finite, say n′. Thus, in T , there is no path

of length n′ + 1. Therefore, for every path in T , the number of blocks in both B and C

is finite. For every path in T , we extend the last block of B, i.e. Bn, to cover all the

remaining states of s̄. This makes B a partitioning of the infinite path s̄ for every path

in T . If we prove that there exists some path in T such that ∀s′ ∈ Bn · ∀t
′ ∈ Cn · s

′Rstutt
′,

then we are done. Suppose this is not the case. Thus, for every path in T , there exists a

state s′ ∈ Bn and a state t′ ∈ Cn such that (s′, t′) /∈ Rstut . This implies that there exists

a prefix of s̄ without any corresponding t-prefix, this contradicts the premise 4.1.

The above argument implies that for every infinite path s̄, there exists a corresponding

finite or infinite path t̄. Now, we show that t̄ has to be infinite:

First, if the partitioning of s̄ has an infinite number of blocks, then so does the

partitioning of t̄, meaning that t̄ is infinite.

Otherwise, suppose that the partitioning of s̄ has a finite number of blocks

B = {B0, B1, · · · , Bn}. Thus, the partitioning of t̄ has a finite number of blocks

C = {C0, C1, · · · , Cn} as well. If t̄ is finite, all Ci’s are finite. But, Bn is infinite be-

cause s̄ is. Without loss of generality, assume that Cn has a single state tl. We have

just shown that ∀si ∈ Bn · siRstuttl. Hence, by Definition 4.3 (Condition 3), there exists
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some state tl+1 such that tl → tl+1 and some state s′ ∈ Bn such that s′Rstuttl+1. This

contradicts the finiteness of t̄; thus, t̄ must be infinite.

Lemma 4.8 If sRstutt, then ∀φ ∈ ECTL−X · s ∈ [[φ]] ⇒ t ∈ [[φ]].

Proof By induction on the structure of φ. If φ is a propositional formula of the form p

or φ1 ∧ φ2, then the lemma follows from Theorem 3.2.

It suffices to prove the lemma for EG and EU because EG and EU form an adequate

set for ECTL−X .

Notice that according to the semantics of EG and EU , a witness for the property

EGφ is an infinite path, while a witness for the property E[ϕUψ] is a finite prefix.

- φ = EGφ :

s ∈ [[EGφ]]

⇒ (by Definition 2.7)

∃s̄ ∈ paths(s) · ∀si ∈ s̄ · si ∈ [[φ]]

⇒ (by Lemma 4.7, and sRstut t)

∃t̄ ∈ paths(t) · ∀tj ∈ t̄ · ∃si ∈ s̄ · siRstut tj

⇒ (by the inductive hypothesis)

∃t̄ ∈ paths(t) · ∀tj ∈ t̄ · tj ∈ [[φ]]

⇒ (by Definition 2.7)

t ∈ [[EGφ]]

- φ = E[ϕUψ] :

Let s̄1 be an s-prefix witnessing E[ϕUψ], and let t̄1 be a t-prefix such that s̄1Rstut t̄1,

and let B0, B1, · · ·Bn, (resp. C0, C1, · · · , Cn) be the partitioning of s̄1 (resp. t̄1).

Since s̄1 witnesses E[ϕUψ], there exists si ∈ s̄1 such that si ∈ [[ψ]] and

∀sj ∈ s̄1 · j < i⇒ sj ∈ [[ϕ]]. Now, suppose that Bk is the first block in the par-

titioning of s̄1 such that si ∈ Bk. Therefore, there exists a block Ck in the par-

titioning of t̄1 such that ∀t′ ∈ Ck · siRstutt
′. Thus, by the inductive hypothesis,
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∀t′ ∈ Ck · t
′ ∈ [[ψ]]. Moreover, ∀sj ∈ Bk′ · k′ < k ⇒ sj ∈ [[ϕ]]. Since s̄1Rstut t̄1, we

have ∀t′ ∈ Ck′ · k′ < k ⇒ ∃sj ∈ Bk′ · sjRstutt
′. Therefore, by the inductive hypoth-

esis, ∀t′ ∈ Ck′ · k′ < k ⇒ t′ ∈ [[ϕ]]. Hence, ∃t̄1 ∈ prefixes(t)·∃ti′ ∈ t̄1 ·ti′ ∈ [[ψ]],∀j ′ <

i′ · tj′ ∈ [[ϕ]], which provides a witness for t ∈ [[E[ϕUψ]]].

Taking advantage of the same technique used in [Dam96], we prove the following lemma:

Lemma 4.9 If ∀φ ∈ ECTL−X · s ∈ [[φ]] ⇒ t ∈ [[φ]], then sRstutt.

Proof Assume that ∀φ ∈ ECTL−X · s ∈ [[φ]] ⇒ t ∈ [[φ]]. We show that sRstutt. Since

Rstut is the largest stuttering simulation relation, it is sufficient to prove that the pair

(s, t) is an element of some stuttering simulation R ⊆ Rstut . We define a binary relation

R′ as follows: sR′t if and only if ∀φ ∈ ECTL−X · s ∈ [[φ]] ⇒ t ∈ [[φ]]. We now prove

that R′ is a stuttering simulation by showing that the conditions of Definition 4.3 are

satisfied by R′.

Condition 1: Follows from the fact that Ap ⊂ ECTL−X .

Condition 2: Suppose s → s1. We want to show that there exists t → t1 → · · · → tm

such that sR′ti for every i < m and s1R
′tm. Suppose this is not the case. Consider

a set C:

C = {〈t0 = t, · · · , tm−1, tm〉 | t0 → · · · → tm−1 → tm ∧ sR′t0 · · · sR
′tm ∧

(s1, t0) /∈ R′ · · · (s1, tm) /∈ R′ ∧ ∀ti, tj · i 6= j ⇒ ti 6= tj}

Intuitively, a tuple 〈t0, · · · , tm−1, tm〉 is in C if the transition sequence t0 → · · · → tm

is a t-prefix, t̄prefix , where every state on t̄prefix is distinct and every state on t̄prefix

is related to s but not to s1.

Since the number of states in the underlying Kripke Structure is finite, and no

redundancy is permitted in the elements of C, C is finite. Notice that C is non-
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empty because 〈t〉 ∈ C. Let C = {〈t11, · · · , t
1
m1−1, t

1
m1

〉, · · · , 〈tn1 , · · · , t
n
mn−1, t

n
mn

〉}

with n ≥ 1. For every 1 ≤ i ≤ n, we distinguish two cases:

1. There is no state timi+1 such that timi
→ timi+1 and (s, timi+1) /∈ R′. In this

case, we choose ϕ′
i = >.

2. There exists some state timi+1 such that timi
→ timi+1 and (s, timi+1) /∈ R′.

Therefore, by the definition of R′, we can choose ϕ′
i ∈ ECTL−X such that

s ∈ [[ϕ′
i]] ∧ timi+1 /∈ [[ϕ′

i]]; moreover, since sR′tij, we have tji ∈ [[ϕ′
i]] for every

1 ≤ j ≤ mi.

Therefore, there exists a formula ϕ′, i.e. ϕ′ = ϕ′
1 ∧ · · · ∧ϕ′

n, such that s satisfies ϕ′.

Furthermore, for every tuple e in C, all the states of e satisfy ϕ′ but the successors

of the last state of e do not satisfy ϕ′.

Since (s1, t
i
j) /∈ R′ for any 1 ≤ i ≤ n and 1 ≤ j ≤ mi +1, we choose ϕ′′

ij ∈ ECTL−X

in such a way that s1 ∈ [[ϕ′′
ij]] ∧ t

i
j /∈ [[ϕ′′

ij]] for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi + 1.

If some timi+1 does not exists, we assume ϕ′′
i,mi+1 = >.

Thus, there exists a formula ϕ′′, i.e. ϕ′′ =
∧

1≤i≤n(
∧

1≤j≤mi+1
ϕ′′

ij), such that s1

satisfies ϕ′′, but for every tuple e in C, none of the states of e or the successors of

the last state of e satisfy ϕ′′.

Hence, s ∈ [[E[ϕ′Uϕ′′]]] because s ∈ [[ϕ′]], and s1 ∈ [[ϕ′′]]. But, every t-path contains

some 〈ti1, · · · t
i
mi
〉, and for every tij ∈ 〈ti1, · · · t

i
mi
〉, we have tij ∈ [[ϕ′]], tij /∈ [[ϕ′′]],

and for every successor timi+1 of the last state of 〈ti1, · · · t
i
mi
〉, we have timi+1 /∈

[[ϕ′]] ∧ timi+1 /∈ [[ϕ′′]]. Thus, we conclude that t /∈ [[E[ϕ′Uϕ′′]]]. This implies that

there is some formula φ such that s ∈ [[φ]] ∧ t /∈ [[φ]]. By the definition of R′, we

have (s, t) /∈ R′ - Contradiction.

Condition 3: Suppose there exists s̄ ∈ paths(s) such that ∀si ∈ s̄ · siR
′t. We want to

show that there is some s′ ∈ s̄ and some t→ t′ such that s′Rt′. Suppose this is not
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the case. We distinguish two cases:

1. t does not have any outgoing transition. Thus, s ∈ [[EG>]]. But, t /∈ [[EG>]]

because t does not have any outgoing transition - Contradiction.

2. t has some outgoing transition. Then, every t-path contains a state from the

set C = {t′′|t → t′′ ∧ ∀s′ ∈ s̄ · (s′, t′′) /∈ R′}. Since t has some outgoing

transition, and the number of states in the underlying Kripke Structure is

finite, C is nonempty and finite. Thus, C = {t′′1, t
′′
2, · · · , t

′′
n} with n ≥ 1.

By the assumption that we made, we have (sj, t
′′
i ) /∈ R′ for every t′′i ∈ C and ev-

ery sj ∈ s̄. Thus, by the definition of R′: ∃ϕij ∈ ECTL−X · sj ∈ [[ϕij]] ∧ t
′′
i /∈ [[ϕij]].

Hence, for every t′′i ∈ C, there exists a formula ϕi, i.e. ϕi =
∨

sj∈s̄ ϕij, such

that t′′i /∈ [[ϕi]] but ∀sj ∈ s̄ · sj ∈ [[ϕi]]. Thus, s ∈ [[EG
∧

1≤i≤n ϕi]], but as every

t-path contains some t′′i such that t′′i /∈ [[ϕi]], we have t /∈ [[EG
∧

1≤i≤n ϕi]]. This

implies that there is some formula φ such that s ∈ [[φ]] ∧ t /∈ [[φ]]. By the

definition of R′, we have (s, t) /∈ R′ - Contradiction.

Example 4.10 In Figure 4.3, s1Rstutt1 and s1 ∈ [[EGp ∨ q]]. Therefore, by Lemma 4.8,

we can conclude that t1 ∈ [[EGp ∨ q]].

The following definition is a variant of the definition of stuttering simulation (Defini-

tion 4.3).

Definition 4.11 Let M = (Σ,→, I,Ap) be a Kripke Structure, and let R ⊆ Σ × Σ be

a binary relation such that ∀s, t ∈ Σ · sRt if and only if 1:

1. ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

1Recall Definition 2.4
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2. For every s → s1, there exists t0 = t → t1 → t2 → · · · tm−1 → tm such that

sRtm−1, sR0ti for every i < m− 1, and s1Rtm

3. ∃s̄ ∈ paths(s) · ∀si ∈ s̄ · siRt⇒ ∃t′ · (t→ t′ ∧ ∃s′ ∈ s̄ · s′Rt′)

Then, R is a divergence-sensitive stuttering simulation. The largest such relation is

denoted Rstut1 .

At first glance, the above definition may seem weaker than Definition 4.3, but Lemma 4.12

shows that both definitions, in fact, result in the same preorder relation.

Lemma 4.12 Rstut = Rstut1 .

Proof

⇒ Obvious.

⇐ Suppose sRstut1 t for states s, t ∈ Σ. We prove that sRstutt. Since Rstut is the largest

stuttering simulation relation, it suffices to show that the pair (s, t) is an element

of some stuttering simulation relation R′ ⊆ Rstut . Consider a binary relation R′ as

follows: sRstut1 t⇒ sR′t. We argue that R′ satisfies the conditions of Definition 4.3.

Condition 1: Follows from Definition 4.11, Condition 1.

Condition 2: Suppose s → s1. By Definition 4.11, there exists t0 = t → t1 →

· · · → tm such that sR′tm−1, sR0ti for every i < m − 1, and s1R
′tm. We

prove that sR′ti for every i < m by induction on i. For i = m − 1, we have

sR′tm−1. Suppose sR′ti+1. We have to prove sR′ti. We show that R′ satisfies

the conditions of Definition 4.3.

Condition 1: ∀p ∈ Ap · I(s, p) = > ⇒ I(ti, p) = >. This follows from the

fact that sR0ti.

Condition 2: Suppose s→ s1. By the inductive hypothesis, there exists a se-

quence
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ti+1 → · · · → tm of states such that sR′tj for i + 1 < j < m and s1R
′tm.

Since sR′ti+1, there exists a sequence ti → ti+1 → · · · → tm of states such

that sR′tj for i < j < m and s1R
′tm.

Condition 3: Follows from sR′ti+1.

Condition 3: Follows from Definition 4.11, Condition 3.

As a result of Lemma 4.12, for every state ti on a sequence t̄prefix = t0 → · · · → tm−1

of states, we have sRstutti if sRstuttm−1 and sR0tj for every tj ∈ t̄prefix . An interesting

case of Definition 4.11 is when tprefix forms a cycle. By Lemma 4.12, in order to prove

that sRstutti for every state ti on a cycle t̄cycle , it suffices to show sRstutt for a single state

t on t̄cycle , and sR0t
′ for other states t′ on t̄cycle .

In the remainder of this section, we prove that for a symmetric relation R, Defini-

tion 4.3 coincides with the definition of stuttering equivalence proposed in [Dam96]. The

definition of stuttering equivalence [Dam96] for Kripke Structures is as follows:

Definition 4.13 (Stuttering equivalence) [Dam96] Let ≡⊆ Σ×Σ be a symmetric

relation such that ∀s, t ∈ Σ · s ≡ t if and only if:

1. ∀p ∈ Ap · I(s, p) = I(t, p)

2. For every s → s1, there exists t0 = t → · · · → tm−1 → tm such that

t ≡ ti for every i < m and s1 ≡ tm

3. s occurs on an infinite path s̄ such that ∀si ∈ s̄ · s ≡ si if and only if t occurs on

an infinite path t̄ such that ∀ti ∈ t̄ · t ≡ ti

Then, ≡ is a divergence-sensitive stuttering equivalence. The largest stuttering equiva-

lence is denoted by ≡stut .

We prove that ≡stut is equal to the following definition:
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Definition 4.14 Consider a symmetric relation ≡⊆ Σ×Σ such that ∀s, t ∈ Σ · s ≡ t

if and only if:

1. ∀p ∈ Ap · I(s, p) = > ⇒ I(t, p) = >

2. For every s → s1, there exists t0 = t → t1 → t2 → · · · tm−1 → tm such that

s ≡ ti for every i < m and s1 ≡ tm

3. ∃s̄ ∈ paths(s) · ∀si ∈ s̄ · si ≡ t⇒ ∃t′ · (t→ t′ ∧ ∃s′ ∈ s̄ · s′ ≡ t′)

Then, ≡ is a divergence-sensitive stuttering equivalence. The largest such stuttering

equivalence is denoted by ≡stut1 .

The following lemma states that both of the above definitions result in the same equiva-

lence relation.

Lemma 4.15 Both ≡stut and ≡stut1 induce the same equivalence relation.

Proof

⇐ Let s ≡stut1 t. We define an equivalence relation ≡′ as follows: s ≡stut1 t ⇒ s ≡′ t.

We prove that ≡′ satisfies the conditions of Definition 4.13.

Condition 1: Follows from Definition 4.14, Condition 1 because ≡stut is symmet-

ric.

Condition 2: Follows from Definition 4.14, Condition 2.

Condition 3: Suppose s is on an infinite path s̄ such that ∀si ∈ s̄ · si ≡′ s.

Since s ≡′ t, we have ∀si ∈ s̄ · si ≡
′ t. By Definition 4.14, we conclude that

∃t′ · ∃s′ ∈ s̄ · t→ t′ ∧ s′ ≡′ t′. Since ∀si ∈ s̄ · si ≡
′ t, we have ∃t · t→ t′ ∧ t ≡′ t′.

Since the number of states is finite, there eventually exists a cycle t → t1 →

· · · → tm (t = tm), denoted t̄cycle , such that ∀ti ∈ t̄cycle · ti ≡
′ t. Therefore,

there exists an infinite path t̄ such that ∀ti ∈ t̄ · t ≡′ ti.
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⇒ Let s ≡stut t. We define an equivalence relation ≡′ as follows: s ≡stut t⇒ s ≡′ t. We

prove that ≡′ satisfies the conditions of Definition 4.14.

Condition 1: Follows from Definition 4.13, Condition 1.

Condition 2: Follows from Definition 4.13, Condition 2.

Condition 3: Suppose that ∃s̄ ∈ paths(s) · (∀si ∈ s̄ · si ≡′ t). Since s ≡′ t, we

have ∀si ∈ s̄ · si ≡
′ s. By Definition 4.13, there exists some path t̄ such that

∀ti ∈ t̄ · ti ≡′ t. Therefore, ∃t′ · t → t′ ∧ t′ ≡′ t. Since t ≡′ s, we have

∃t′ · ∃s′ ∈ s̄ · t→ t′ ∧ t′ ≡′ s′.

4.2 An algorithm for stuttering simulation

In this section, we propose an algorithm for computing Rstut by modifying the stuttering

equivalence computation algorithm given in [GV90, BFH+92] so as to produce a preorder

relation rather than an equivalence relation.

In the rest of this section, let M1 = (Σ1, →1, I1, Ap) and M2 = (Σ2, →2, I2, Ap)

be Kripke Structures. Further, let variables s and t range over Σ1 and Σ2, respectively.

We will hereafter drop the subscripts of →1, →2, I1, and I2 wherever there is no ambiguity.

We want to find all pairs (s, t) of states such that sRstutt. In order to achieve this, we

first give an algorithm for finding Rdbs , (Definition 4.1). Then, we show that by adding

a simple step to the algorithm for Rdbs , we obtain an algorithm for Rstut .

Definition 4.16 Let R ⊆ Σ1×Σ2 be a preorder relation. A devision set 2 PR is defined

as follows:

PR , {Bsi
| si ∈ Σ1;Bsi

6= ∅;∀t ∈ Σ2 · siRt⇔ t ∈ Bsi
}

2Division sets in this algorithm are analogous to partition sets in [GV90].
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The elements of a division set are called blocks.

Let R,R′ ⊆ Σ1 × Σ2. A division set PR = {Bsi
| si ∈ Σ1} refines a division set

PR′ = {B′
si
| si ∈ Σ1} if ∀si ∈ Σ1 ·Bsi

⊆ B′
si
. A division set PR′ is coarser than a division

set PR if and only if PR refines PR′ .

Example 4.17 It can be verified that PRdbs
refines PR0

. This is because for every

B′
si

∈ PR0
and Bsi

∈ PRdbs
, we have Bsi

⊆ B′
si
. Letting t ∈ Bsi

, we get siRdbst by

Definition 4.16. Then, by Definition 4.1, we get siR0t. Thus, t ∈ B′
si
.

Definition 4.18 Let PR be a division set, and let Bsi
, Bsj

∈ PR. We define pos(Bsi
, Bsj

)

as the set of all those states in Bsi
from which, after some initial stuttering, a state in

Bsj
can be reached:

pos(Bsi
, Bsj

) , {t ∈ Bsi
| ∃n ≥ 0 · ∃t0 = t→ · · · → tn · ∀i < n · ti ∈ Bsi

∧ tn ∈ Bsj
}

We are now ready to give the algorithm for computing Rdbs . This algorithm, which

has been shown in Figure 4.5, starts with an initial division set P0. Then, in every

iteration of the while-loop (lines 3-14), it refines the division set P into a finer division

set P ′. The algorithm terminates when the division set produced in a step k is equal

to that produced in step k − 1. In each iteration of the while-loop (lines 3-14), every

Bsi
∈ P ′ is replaced with the set

⋂
∀si→sj

pos(Bsi
, Bsj

). If some block Bsi
turns out to be

empty (line 7) in an iteration of the while-loop, then the algorithm will terminate.

Before stating the proof of correctness and termination of the algorithm in Figure 4.5,

we give some preliminary definitions.

Definition 4.19 The function F : P(Σ1 × Σ2) → P(Σ1 × Σ2) is defined as follows:

F(X) , {(s, t) ∈ X | (s, t) ∈ R0 ∧ ∀s′ ∈ Σ1 · s→ s′ ⇒ ∃t0 = t→ t1, · · · ,→ tm·

(s, ti) ∈ X for every i < m ∧ (s′, tm) ∈ X}
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1: P ′ = P = P0

2: stable = ⊥

3: while not stable do

4: for Bsj
∈ P ′ do

5: for every si ∈ Σ1 such that si → sj do

6: Bsi
= pos(Bsi

, Bsj
)

7: if Bsi
= ∅ then exit

8: end for

9: end for

10: if P = P ′ then

11: stable = >

12: end if

13: P = P ′

14: end while

Figure 4.5: An algorithm for Rdbs

Since Rdbs is the largest divergence-blind stuttering simulation relation defined over

Σ1 × Σ2, we have:

Rdbs =
⋃
{R | R is a divergence-blind stuttering simulation relation}

It is easy to prove that:

∀X ⊆ Σ1 × Σ2 · (F(X) = X ⇔ X is a divergence-blind stuttering simulation relation)

Furthermore, F is monotonic over (P(Σ1 × Σ2),⊆), and (P(Σ1 × Σ2),⊆) is a complete

lattice with ∩ and ∪ as glb and lub operators. Thus, by Knaster-Tarski Theorem [DP02],

we can conclude that Rdbs is the greatest fixpoint of F. Finally, by the finiteness of Σ1

and Σ2:

Rdbs = Fn(Σ1 × Σ2) for some n ≥ 0
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The number of iterations, i.e. n, is bounded by the length of the longest acyclic path

between the states of M1. Thus, n is bounded by the number of states in M1, i.e.

n ≤ |Σ1|.

Definition 4.20 Let PR be a division set. A set XPR
⊆ Σ1 × Σ2 is the corresponding

tuple set of PR if:

XPR
= {(s, t) | s ∈ Σ1; t ∈ Bs}

Lemma 4.21 If P0 = PR0
, then the algorithm shown in Figure 4.5 computes PRdbs

, and

the while-loop of the algorithm (lines 3-14) terminates after at most |Σ1| iterations.

Proof Let XP ′ be the corresponding tuple set of the division set P ′ on line 10. We

prove that XP ′ = F(XP ) where XP is the corresponding tuple set of the division set P

on line 10.

XP ′ = {(s, t)|Bs ∈ P ′; t ∈ Bs}

⇒ (by Algorithm in Figure 4.5)

Bs ∈ P ′ ⇒ Bs =
⋂
{pos(Bold

s , Bs′)|s → s′; Bold
s ∈ P ; Bs′ ∈ P}

⇒ (by Definition 4.18)

Bs ∈ P ′ ⇒ Bs = {t ∈ Bold
s | ∀s → s′ · ∃n ≥ 0 · ∃t0 = t → · · · → tn · ∀i < n · ti ∈ Bold

s ∧ tn ∈ Bs′}

⇒ (by Definition 4.20)

XP ′ = {(s, t)|∀s → s′ · ∃n ≥ 0 · ∃t0 = t → · · · → tn · ∀i < n · (s, ti) ∈ XP ∧ (s′, tn) ∈ XP }

⇒ (by Definition 4.19 and by the assumption that P0 = PR0
)

XP ′ = F(XP )

Hence, the for-loop (lines 4-9) computes F. Thus, the final devision set PRdbs
is computed

after at most |Σ1| iterations of the while-loop in Figure 4.5.

Now, we present an efficient implementation of the for-loop (lines 4-9) that runs in

O(m1×m2) time. Therefore, the overall running time of the algorithm is O(n1×m1×m2).

Some of the steps in our implementation are similar to those in the implementation of

the algorithm proposed in [GV90].
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We refer to the transitions between the states in a same block as internal transitions

and those between the states in different blocks as external transitions. Assume that

there exists a cycle t̄cycle consisting of only internal transitions in some block Bsi
of the

initial division set PR0
. If we prove that there exists a block B ′

si
∈ PRdbs

such that ti ∈ B′
si

for some state ti ∈ t̄cycle , then, by Lemma 4.12, all the states on t̄cycle are present in B′
si
.

In other words, we only need to show some state of t̄cycle is present in a block of the final

division set in order to be able to infer that all states of t̄cycle are present in that block.

Therefore, as a preprocessing step, we look for cycles consisting of internal transitions in

every Bsi
∈ PR0

and collapse these cycles to one state. More importantly, it is sufficient

to implement this algorithm for the case where blocks contain no cycles consisting of

internal transitions.

For Bsi
∈ P , we define the set bottom(Bsi

) consisting of the states that have no

successor in Bsi
as follows [GV90]:

bottom(Bsi
) , {t ∈ Bsi

| ∀t′ ∈ Σ2 · (t→ t′ ⇒ t′ /∈ Bsi
)}

The following lemma expresses an important observation that has been exploited in

the implementation of our algorithm.

Lemma 4.22 Given a pair of blocks Bsi
and Bsj

, for every state t ∈ bottom(Bsi
), we

have t ∈ pos(Bsi ,Bsj ) if and only if either t ∈ Bsj
or there exists a state t′ such that

t→ t′ and t′ ∈ Bsj
.

The basic idea of the algorithm is shown in Figure 4.6. In order to compute pos(Bsi
, Bsj

)

for blocks Bsi
and Bsj

, we check every t ∈ bottom(Bsi
) to see if either t ∈ Bsj

or there

exists some state t′ ∈ Bsj
such that t→ t′. Since there is no cycle of internal transitions

in Bsi
, there must be a path of internal transitions from every non-bottom state in Bsi

to some bottom state in Bsi
. Hence, if for every bottom state in Bsi

, we show that some

state in Bsj
is reachable by taking at most one step, then we can conclude that from

every state in Bsi
, after some initial stuttering steps, some state in Bsj

is reachable.
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bottom states
Bs′′j

Bs′j

Bsj

Bsi

Figure 4.6: Blocks and bottom states

In our algorithm, for every pair of states si and sj such that si → sj, we compute

pos(Bsi
, Bsj

). To do this, we scan the bottom states in Bsi
. If we cannot reach a state in

Bsj
from a bottom state in Bsi

by taking at most one step, then we remove that bottom

state from Bsi
. After scanning all the bottom states in Bsi

, if some bottom state has been

removed, then we scan the non-bottom states in Bsi
and remove those non-bottom states

from which none of the states in Bsj
or current bottom states in Bsi

can be reached.

To improve the running time of the algorithm, we need some preprocessing steps. The

implementation of the algorithm includes four preprocessing steps. Here, we explain these

preprocessing steps, the required data structures, and the main part of the algorithm.

In the implementation of the algorithm, for each block, state, and transition, there is a

corresponding record of type block, state, and transition, respectively. In the arguments

given hereafter in this section, we will not distinguish between transitions, states, blocks,

etc. and the data structures representing them. We assume that for each of the Kripke
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structures M1 and M2, there is a linked list of the states of that Kripke Structure (see

Figure 4.7). In M1, each state si points to the list of its predecessors, denoted pre(si),

and in M2, each state ti points to the list of its successors, denoted succ(ti). Furthermore,

in M2, each state contains a pointer to an array of length n1 called block-trace. For a

state ti, ti.block-trace[j] is true if and only if ti ∈ Bsj
. We use ti.block-trace to refer

to the block-trace array that belongs to state ti
3.

pre(s1 ) succ(t1 )

sn1

s2

s1 t1

t2

tn2

Kripke Structure M2Kripke Structure M1

Bs1

Bs2

Bsn1

t1.block-trace

Figure 4.7: Data structures for Kripke Structures M1 and M2

The first preprocessing step is constructing the initial division set PR0
. This can be

done by scanning all states si ∈ Σ1 and accumulating in Bsi
all the states tj ∈ Σ2 such

that siR0tj. The fragment of code that constructs the initial division set PR0
is shown

in Figure 4.8.

Example 4.23 If we execute construct-P0 on the Kripke Structures in Figure 4.3, we

obtain Bs1
= {t1, t2, t3, t4} and Bs2

= {t1, t4, t5}. Moreover, the block-trace arrays of

the states of M1 are as follows:

t1.block-trace = {1 7→ >, 2 7→ >}, t2.block-trace = {1 7→ >, 2 7→ ⊥},

t3.block-trace = {1 7→ >, 2 7→ ⊥}, t4.block-trace = {1 7→ >, 2 7→ >},

3It is obvious that . binds tighter than [ ].
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1: proc construct-P0

2: for si ∈ Σ1 do

3: for tj ∈ Σ2 do

4: if siR0tj then

5: add tj to the block Bsi

6: tj.block-trace[i] = >.

7: end if

8: end for

9: end for

Figure 4.8: Procedure for computing PR0

t5.block-trace = {1 7→ ⊥, 2 7→ >}, t6.block-trace = {1 7→ ⊥, 2 7→ ⊥}.

After executing construct-P0, we have a linked list of blocks such that each block in

the linked list points to the list of the states belonging to that block.

In the next preprocessing step, we remove cycles consisting of only internal transitions

in the blocks of the initial division set P0. This can be done by a standard depth first

search algorithm (cf. e.g. [AHU74]).

Example 4.24 In block Bs1
of the Kripke Structures in Figure 4.3, there exists a cycle

consisting of states t1 and t3. We collapse this cycle into a state t1′ . Therefore, we get

Bs1
= {t1′ = (t1, t3), t2, t4} and Bs2

= {t1, t4, t5}.

Next, we run the procedure divide-bottom-nonbottom, given in Figure 4.9, to sepa-

rate non-bottom states from bottom states in every block. After executing

divide-bottom-nonbottom, each block Bsi
points to the list of bottom states and the

list of non-bottom states in Bsi
. Moreover, each non-bottom state points to the list of

internal transitions emanating from that state. Since we assumed there is no cycle of

internal transitions in the initial blocks, we can order the list of non-bottom states in
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1: proc divide-bottom-nonbottom

2: for si ∈ Σ1 do

3: for tj ∈ Bsi
do

4: bottom = >

5: for tk ∈ succ(tj) do

6: if tk.block-trace[i] then

7: add tj → tk to the list of internal transitions of tj

8: bottom = ⊥

9: end if

10: end for

11: if bottom then

12: add tj to the list of bottom states of Bsi

13: end if

14: end for

15: end for

Figure 4.9: Procedure for partitioning the set of states into bottom and non-bottom

each block in such a way that whenever t→ t′ for non-bottom states t, t′ ∈ Bsi
, t′ comes

after t in the list of Bsi
’s non-bottom states.

Example 4.25 Figure 4.11 illustrates the blocks of the Kripke Structures in Figure 4.3

after preprocessing steps. In Bs1
= {t1′ = (t1, t3), t2, t4}, states t2 and t4 are the bottom

states as they do not have any successor states in Bs1
; and transitions t3 → t2 and

t3 → t4 are the internal transitions of Bs1
. Since t1 and t3 have collapsed to t1′ , the

transition from t3 to t2 (resp. t4) is represented as a transition from t1′ to t2 (resp. t4).

In Bs2
= {t1, t5, t4}, states t1 and t4 are the bottom states; and the transition from t5 to

t1 is the only internal transition.

In the last preprocessing step, we determine the external transitions that end in Bsi
.
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1: proc external-transitions

2: for sj ∈ Σ1 do

3: for si ∈ pre(sj) do

4: for tk ∈ Bsi
do

5: for tl ∈ succ(tk) do

6: if tl.block-trace[j] then

7: add tk → tl to the list of external transitions of Bsj
.

8: end if

9: end for

10: end for

11: end for

12: end for

Figure 4.10: Procedure for finding external transitions

This can be done by executing the procedure given in Figure 4.10. Notice that when

executed on a block Bsj
, external-transition adds a transition tk → tl to the list of

the external transitions of Bsj
if tk ∈ Bsi

, tl ∈ Bsj
, and si → sj. This is because, we do

not have to consider the external transitions from the states of Bsi
to the states of Bsj

unless si → sj. Thus, we can restrict the list of the external transitions of each block to

only those external transitions required for the computation of the relation Rdbs . This

helps reduce the running time of our algorithm.

Example 4.26 In the Kripke Structures shown in Figure 4.3, there are two external

transitions that end in Bs1
: one from t5 to t1, and the other from t1 (in Bs2

) to t3. Since

t1 and t3 have collapsed to t1′ , the external transitions of Bs1
are represented as t5 → t1′

and t1 → t1′ . Similarly, there are two external transitions in Bs2
: one from t2 to t5, and

the other from t3 to t4 shown as a transition from t1′ to t4.

After doing the preprocessing steps, we will have a linked list of blocks as illustrated
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t2
t1′

(5, 1)
(1): external transitions
(2): bottom states
(3): non-bottom states and internal transitions

t5

t1

t4

t4Bs2

Bs1

(3)

(2)

(1)

(3)

(2)

(1)

(2, 5)

(1, 1′) (5, 1′)

(1′, 4)

(1′, 4)

(1′, 2)

Figure 4.11: Blocks after preprocessing steps

B1

B2

Bn1

external transitions

bottom states

non-bottom states

internal transitions

Figure 4.12: Data structure for blocks
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in Figure 4.12. Each block Bsi
points to:

1. a list of the external transitions that end in Bsi
,

2. a list of bottom states in Bsi
, and

3. a list of non-bottom states in Bsi
.

Each non-bottom state t points to the list of the internal transitions emanating from t.

Each external transition contains two pointers: on pointing to its starting state and the

other to its target state. Each state t, irrespective of being bottom or non-bottom, points

to both its corresponding state in the linked list M2 (Figure 4.7) and the block to which

it belongs. Each state s in the linked list M1 (Figure 4.7) contains a pointer to its block.

In each block, each state t has an auxiliary boolean flag which is initially set to zero.

We now describe how to perform the main part of the algorithm, i.e. the for-loop

(lines 4-9, Figure 4.5), in O(m1×m2) time. Let Bsj
be the first block in the linked list of

the blocks. As noted earlier, Bsj
has a pointer to the list of all external transitions that

end in Bsj
. We start by scanning the list of external transitions that end in Bsj

. When an

external transition is visited, the flag of the starting state is raised. After having scanned

all the external transitions ending in Bsj
, we consider the list of all the predecessors of

state sj, which we earlier denoted pre(sj ). Let si be the head record in the linked list

pre(sj ). We scan the list of bottom states in Bsi
. If there is some state t ∈ bottom(Bsi )

whose flag has not been raised, then we check t.block-trace[j]. If t.block-trace[j] = ⊥,

then, by Lemma 4.22, t /∈ pos(Bsi ,Bsj ). Thus, we remove t from Bsi
.

Once scanning the list of bottom states in Bsi
is completed, we check to see if any

bottom states have been removed. If some bottom state has been removed, then we scan

the list of non-bottom states in Bsi
, and perform the following: if for some non-bottom

state t ∈ Bsi
, the flag has not been raised and if none of the internal transitions of t lead

to an existing state in Bsi
, then we distinguish two cases:

1. t.block-trace[j] = ⊥: we remove t from Bsi
.
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2. t.block-trace[j] = >: we remove t from the list of non-bottom states in Bsi
and

add it to the list of bottom states in Bsi
.

After carrying out all the activities described above for Bsi
, we consider the next

block referred to by the next state in the list pre(sj ) and repeat the above steps again.

When we have dealt with all the elements of the list pre(sj ), we apply the same procedure

to the next block in the list of blocks.

Example 4.27 We explain how to compute Rdbs for the Kripke Structures in Fig-

ure 4.3. We first scan the list of all external transitions in Bs1
, i.e. (1, 1′) and (5, 1′)

(see Figure 4.11), and raise the flags of t1 and t5 (in Bs2
). Then, we consider block Bs2

(because s2 is the predecessor of s1) and scan the list of its bottom states. The flag of t1

has been raised, but not that of t4. However, t4.block-trace[1] = > meaning that t4 is

present in Bs1
. Therefore, pos(Bs2

, Bs1
) is equal to Bs2

.

We follow the same procedure for Bs2
. Since there is an external transition from t2

(in Bs1
) to t5 (in Bs2

), and t4 is present in Bs2
, we do not remove any states from Bs1

either. Since no changes have occurred in this iteration of the algorithm, the blocks are

stable. Thus, the algorithm terminates and yields the following relation:

Rdbs = {(s1, t1), (s1, t2), (s1, t3), (s1, t4), (s2, t1), (s2, t4), (s2, t5)}

Definition 4.28 Let s̄ be an infinite path in a Kripke Structure M , let R ⊆ Rdbs , and

let t be a state in a Kripke Structure M ′ such that ∀si ∈ s̄ · siRt. Then, we refer to t as

an infinite stuttering state.

To compute Rstut , we should add an extra step for detecting the infinite stuttering

states to the algorithm. To achieve this, during the execution of the main part of the

algorithm, i.e. the for-loop (lines 4-9, Figure 4.5), when we are scanning the states of

some block Bsi
such that si ∈ pre(sj), if for some t ∈ Bsi

:

1. the flag of t has not been raised,
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2. none of its internal transitions lead to an existing state in Bsi
, and

3. t.block-trace[j] = >;

we add a tuple (i, j, t) to a linked list named infinite-stuttering. Clearly, for a state t that

satisfies the above-mentioned conditions, we have t ∈ bottom(Bsi ) and t ∈ bottom(Bsj ).

Thus, an element (i, j, t) in the infinite-stuttering list indicates that there exist si, sj ∈ Σ1

and t ∈ Σ2 such that si → sj ∧ siRt ∧ sjRt, but there exists no state t′ such that

t→ t′ ∧ (siRt
′ ∨ sjRt

′).

In each iteration of the while-loop (lines 3-14, in Figure 4.5), we look for cycles

si1 → si2 → · · · → sim (si1 = sim) such that (ij, ij+1, t) ∈ infinite-stuttering for some

t ∈ Σ2 and for every 1 ≤ j < m. If such a cycle exists, then t is an infinite stuttering

state because there exists an infinite path s̄cycle such that ∀si ∈ s̄cycle · siRt. Moreover,

t is a bottom state in every block Bsi
such that si ∈ s̄cycle . Thus, t does not have any

successor t′ such that s′Rt′ for some s′ ∈ s̄cycle . Therefore, we remove t from every block

Bsi
when si ∈ s̄cycle .

Example 4.29 We show how to compute Rstut for the Kripke Structures in Figure 4.3.

As mentioned in Example 4.27, after scanning the external transitions in Bs1
, the flag

of t4 will not have been raised. But since t4 is present in Bs1
, we do not remove it from

Bs2
. Moreover, t4 is a bottom state in both Bs1

and Bs2
. Therefore, we add a tuple

(1, 2, t4) to the infinite-stuttering list. Similarly, after scanning the external transitions

in Bs2
, we add another tuple (2, 1, t4) to the infinite-stuttering list. Since states s1 and

s2 are located on a cycle, we have to remove state t4 from both Bs1
and Bs2

. Figure 4.13

illustrates blocks Bs1
and Bs2

after removing t4. Finally, we obtain

Rstut = {(s1, t1), (s1, t2), (s1, t3), (s2, t1), (s2, t5)}

In the rest of this section, we prove that the running time of the algorithm shown in

Figure 4.5 is O(n1 ×m1 ×m2), and that its space complexity is O(m1 ×m2). Assume
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t2
t1′

(5, 1)
(1): external transitions
(2): bottom states
(3): non-bottom states and internal transitions

t5

t1Bs2

Bs1

(3)

(2)

(1)

(3)

(2)

(1)

(2, 5)

(1, 1′) (5, 1′)

(1′, 2)

Figure 4.13: Blocks after computing Rstut

that |Σ1| = n1, |Σ2| = n2, the number of transitions in M1 is m1, and the number of

transitions in M2 is m2. We compute the running time and the space complexity of the

algorithm step by step.

For the preprocessing steps, we have:

1. the complexity of construct-P0 is O(n1 × n2);

2. the complexity of divide-bottom-nonbottom is O(m2 × n1);

3. the complexity of external-transition is O(m1 ×m2); and

4. the complexity of finding cycles by a depth first search algorithm in the blocks of

the initial devision set is O(m2) per block, and therefore, O(n1×m2) for all blocks.

The next step is computing the main part of the algorithm, i.e. the for-loop (lines

4-9, in Figure 4.5). In the main part of the algorithm, for each block Bsj
, we scan the list

of external transitions that end in Bsj
. Remember that for each block, we consider only

those external transitions whose starting states are in some block Bsi
such that si → sj.
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Thus, the number of external transitions ending in Bsj
is bounded by m2 × dsj

where dsj

is the fan-in of sj.

Then, we scan the list of bottom states in all blocks Bsi
such that si → sj. In some

cases, we also have to scan the list of non-bottom states in Bsi
. Since there are no

cycles of internal transitions in any block, and the list of non-bottom states in each block

is ordered, the complexity of scanning and removing non-bottom states for every Bsi
is

O(m2). Thus, the complexity of scanning bottom and non-bottom states in {Bsi
|si → sj}

is O(m2 × dsj
). Therefore, the running time of performing this procedure for every block

Bsj
is O(n1 × dsj

×m2) = O(m1 × m2). Hence, the running time of the algorithm for

computing Rdbs (Figure 4.5) is O(n1 ×m1 ×m2).

The computation of Rstut has an extra step which is finding the cycles in M1 and

removing infinite stuttering states. Here, we give an upper-band for this step, but we

conjecture that this upper bound can be improved significantly. The complexity of finding

cycles in M1 is O(m1). In the worst case, for every state t ∈ Σ2, we have to find cycles

of states s ∈ Σ1. This can be done in O(m1 × n2). Since for every state s, we have at

most n2 stuttering states, the running time of finding cycles and removing the infinite-

stuttering states is bounded by O(m1×n2
2). Thus, the running time of the algorithm for

computing Rstut is bounded by O(m1×n2
2 +n1×m1×m2) = O(max (n1, n2)×m1×m2).

In the end, the space complexity of the algorithm is O(m1 ×m2) because:

1. the space complexity of M1 is O(m1);

2. the space complexity of M2 is O(m2 + n1 × n2) because each state has an array

block -trace of length n1; and

3. the space complexity of the list of blocks is O(m2 ×m1).
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4.3 Stuttering refinement on Kripke Modal Transi-

tion Systems

In this section, we propose a refinement relation over Kripke Modal Transition Systems

that is insensitive to finite stuttering. We assume every KMTS M = (Mmust ,Mmay) is

total. This means that each state has at least one outgoing must or may-transition.

However, Mmust is not necessarily total.

Definition 4.30 (Stuttering refinement) Let M = (Σ,→must ,→may , Imay , Imust ,Ap)

be a KMTS. We define a binary relation �⊆ Σ×Σ such that ∀s, t ∈ Σ · t � s if and only

if:

1. ∀p ∈ Ap · Imust(s, p) = > ⇒ Imust(t, p) = >

2. ∀p ∈ Ap · Imay(t, p) = > ⇒ Imay(s, p) = >

3. For every s →must s1, there exists t0 = t →must t1 →must t2 →must · · · tm−1 →must

tm such that ∧ ti � s for every i < m and tm � s1

4. For every t →may t1, there exists s0 = s →may s1 →may s2 →may · · · sm−1 →may sm

such that t � si for every i < m and t1 � sm

5. ∃s̄ ∈ must-paths(s) · ∀si ∈ s̄ · t � si ⇒ ∃t′ · (t→must t′ ∧ ∃s′ ∈ s̄ · t′ � s′)

6. ∃t̄ ∈ may-paths(t) · ∀ti ∈ t̄ · ti � s⇒ ∃s′ · (s→may s′ ∧ ∃t′ ∈ t̄ · t′ � s′)

Then, � is a stuttering refinement relation. The largest refinement relation is denoted

�stut .

Example 4.31 Figure 4.14 illustrates two KMTSs M1 and M2. By Definition 4.30, it is

easy to check that t1 �stut s1 and t1 �stut s2.
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Example 4.32 In Figure 4.14, states s1 and s2 form an infinite must-path, and s2 to-

gether with its self-loop transition form an infinite may-path. Since t1 �stut s1 and

t1 �stut s2, by Definition 4.30, there has to be a must transition from t1 to some t′ that

refines either s1 or s2. It is clear from Figure 4.14 that t1 has a must-transition to t3

and that t3 �stut s1. But since the self-loop transition of s2 is not a must-transition, t1’s

successors do not have to refine s2.

May but not Must

 Must and May

q
p

r

p p

r

q
r

¬q
¬r

¬p

¬q
t1

t5

t2 t3

q
s1 s2

(a) M1

(b) M2

p
= mq
= mr

= mp

= mr

Figure 4.14: An example of stuttering refinement

The conditions of Definition 4.30 are similar to those of Definition 4.3. An immediate

result of Definition 4.3, which is given by Lemma 4.7, is that for every infinite path

emanating from state s, there exists a corresponding infinite path emanating from state

t. Definition 4.30 implies that for every infinite must-path emanating from s, there exists

an infinite must-path emanating from t; and for every infinite may-path emanating from t,

there exists an infinite may-path emanating from s; but, an infinite may-path emanating
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from s is not necessarily mapped to an infinite may or must-path emanating from t.

Although Definition 4.30 does not force the infinite may-paths emanating from s to

be simulated by infinite paths emanating from t, we can still prove that the relation

�stut preserves CTL−X properties. The crucial point is that an infinite may-path cannot

be a witness for the truth of an existential property. For example, in Figure 4.14, s2

has an infinite may-path such that all the states on that path are labeled with q; but,

s2 /∈ [[EGq]]>. Moreover, since universal operators range over all may-paths, and may-

paths in M2 are simulated by may-paths in M1, the universal properties that are true in

M1 are true in M2 as well. Therefore, in order to preserve both existential and universal

properties, infinite may-paths in M1 are not required to be simulated by infinite paths

in M2.

Theorem 4.33 (Logical characterizaionf of �stut) t �stut s if and only if

∀φ ∈ CTL−X · s ∈ [[φ]]> ⇒ t ∈ [[φ]]> and s ∈ [[φ]]⊥ ⇒ t ∈ [[φ]]⊥

We consider two stuttering simulation relations Rmust
stut and Rmay

stut overMmust andMmay ,

respectively. Clearly, t �stut s implies sRmust
stut t and tRmay

stut s, but not vice versa.

Proof (sketch)

⇒ Let φ be a CTL−X property. Proof by induction.

- φ = p,¬ϕ, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2: Obvious.

- φ = EGϕ or φ = E[ϕUψ]: Suppose s ∈ [[φ]]> in a KMTS M . Then, s ∈ [[φ]]>

in Mmust . Since sRmust
stut t, by Lemma 4.8, t ∈ [[φ]]> in Mmust as well. Thus,

t ∈ [[φ]]> in M . Now, suppose s ∈ [[φ]]⊥ in M . Then, s ∈ [[φ]]⊥ in Mmay . Since

tRmay
stut s, by Lemma 4.8, t ∈ [[φ]]⊥ in Mmay as well. Thus, t ∈ [[φ]]⊥ in M .

⇐ The lemma can be proved in the same way as Lemma 4.9. There is only a slight

difference: in Lemma 4.9, when (s, t) /∈ R′ for states s and t, we conclude that

∃φ ∈ ECTL−X · s ∈ [[φ]]> ∧ t ∈ [[φ]]⊥. But in this lemma, when s �′ t, we conclude
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that ∃ϕ ∈ CTL−X · (s ∈ [[ϕ]]> ∧ t ∈ [[ϕ]]⊥)
∨

(s ∈ [[ϕ]]⊥ ∧ t ∈ [[ϕ]]>). We replace

every formula ϕ ∈ CTL−X with a formula ϕ′ = ¬ϕ if s ∈ [[ϕ]]⊥. The rest of the

proof will be the same as that of Lemma 4.9.

Example 4.34 In Figure 4.14, t1 �stut s1 and s1 ∈ [[AGp ∨ q]]>. By Theorem 4.33, we

conclude that t1 ∈ [[AGp ∨ q]]>.

4.4 An algorithm for stuttering refinement

In this section, let M1 and M2 be Kripke Modal Transition Systems, and let variables s

and t range over Σ1 and Σ2, respectively. We want to find all pairs (s, t) of states such

that t �stut s. We first present a fixpoint characterization of the relation �stut . We define

the functions Fmay ,Fmust : P(Σ1 × Σ2) → P(Σ1 × Σ2) as follows:

Fmust(X) , {(s, t) ∈ X| ∀s′ ∈ Σ1 · s→
must s′ ⇒ ∃t0 = t→must t1, · · · ,→

must tm·

(s, ti) ∈ X for every i < m ∧ (s′, tm) ∈ X}

Fmay(X) , {(s, t) ∈ X| ∀t′ ∈ Σ2 · t→
may t′ ⇒ ∃s0 = s→may s1, · · · ,→

may sm·

(si, t) ∈ X for every i < m ∧ (sm, t
′) ∈ X}

It can be seen from the above definitions that Fmay and Fmust are similar to the function

F defined in Definition 4.19.

We now define a function G : P(Σ1 × Σ2) → P(Σ1 × Σ2) as follows:

G(X) , {(s, t) ∈ X | (s, t) ∈ Fmust(X) ∧ (s, t) ∈ Fmay(X)}

Since Fmust and Fmay are monotonic over the complete lattice (P(Σ1 × Σ2),⊆), the

function G is also monotonic over (P(Σ1 × Σ2),⊆). The relation �stut is the largest

stuttering refinement relation defined over Σ1 ×Σ2; thus, �stut is the greatest fixpoint of

G. Since the number of states in each M1 and M2 is finite, we have:

�stut= Gn(X0) for some n ≥ 0
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1: P ′may = Pmay = Pmay
0

2: Pmust = P ′must = Pmust
0

3: stable = ⊥

4: while not stable do

5: refine P ′must

6: refine P ′may

7: Pmust = update-P′must -P′may

8: Pmay = update-P′may -P′must

9: if (Pmust = P ′must ∧ Pmay = P ′may) then

10: stable = >

11: end if

12: P ′must = Pmust

13: P ′may = Pmay

14: end while

Figure 4.15: An algorithm for computing �stut

where X0 = {(s, t) | t �0 s}
4. Notice that this time the number of iterations is bounded

by max (|Σ1|, |Σ2|). The algorithm for computing �stut is shown in Figure 4.15. It starts

with the initial division sets Pmust
0 = {Bsi

| si ∈ Σ1;Bsi
6= ∅;∀t ∈ Σ2 · t �0 si ⇔ t ∈ Bsi

}

and Pmay
0 = {Bti | ti ∈ Σ2;Bti 6= ∅;∀s ∈ Σ1 · ti �0 s ⇔ s ∈ Bti}. In each iteration of

the while-loop (lines 4-14, Figure 4.15), the operations in the for-loop (lines 4-9) of the

algorithm in Figure 4.5 is executed two times: first (refine P ′must , on line 5), M1 (resp.

M2) of the algorithm in Figure 4.5 is assumed to be M1,must (resp. M2,must); second

(refine P ′may on line 6), M1 (resp. M2) of the algorithm in Figure 4.5 is assumed to be

M2,may (resp. M1,may). At the end of each iteration (lines 7-8), the resulting division sets

P ′must and P ′may are updated. The procedure for updating the division sets P ′must and

4Recall Definition 2.5
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P ′may is shown in Figure 4.16. The procedure update-P′may -P′must in Figure 4.16 scans

the states si ∈ Σ1 and for every state tj such that si is in block Btj , it checks to see

whether tj is also present in block Bsi
or not. If tj is not in Bsi

, it removes si from Btj .

Conversely, the procedure update-P′must -P′may scans the states in Σ2 and removes ti ∈ Σ2

from block Bsj
if ti is in Bsj

, but sj is not in Bti .

In the previous section, it was shown that the running time of the algorithm for

refining the division sets P ′must and P ′may is O(m1 ×m2). The order of the algorithm for

updating the division sets is O(n1 × n2 ×m2 + n2 × n1 ×m1). Therefore, the running

time of every iteration of the while-loop (lines 4-14) of the algorithm in Figure 4.15 is

O(n1 × n2 × max (m1,m2) +m1 ×m2). Since the number of iterations of the while-loop

is max (n1, n2), the running time of the algorithm for computing �stut is

O (max (n1, n2) × (n1 × n2 × max (m1,m2) +m1 ×m2))
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1: proc update-P′may -P′must

2: for si ∈ Σ1 do

3: if si.block-trace[j] then

4: if not tj.block-trace[i] then

5: remove state si from block Btj

6: end if

7: end if

8: end for

9: proc update-P′must -P′may

10: for ti ∈ Σ2 do

11: if ti.block-trace[j] then

12: if not sj.block-trace[i] then

13: remove state ti from block Bsj

14: end if

15: end if

16: end for

Figure 4.16: Procedure for updating P ′may and P ′must
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Conclusions

Partial modeling formalisms have been advocated for specifying software systems at early

stages of software development mainly because they can describe the uncertainty and

incompleteness involved in initial software specifications. Partial models can also capture

the notion of incremental development of software systems. Recently, partial models have

been successfully used for deriving small-size abstractions from complete and fully defined

models [BG99, BG00]. Since the size of the state-space of a partial model is typically

less than that of its corresponding complete model, partial models are more amenable to

model checking techniques. For this reason, it is important to have a behavioral relation

that can relate a small-size abstract partial model to a fairly large complete model in

such a way that the logical properties of the abstract model are preserved in the complete

model.

In this thesis, we developed a refinement relation over partial models that is insensitive

to stuttering. Comparing to the previously proposed relations for partial models, we

believe that our stuttering refinement relation is considerably better for reducing the

number of states because it can deal with models that are at different levels of abstraction.

Thus, it can map a finite sequence of states to a single state, and more importantly, it

still results in the same logical characterization as those given by the existing refinement

66
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relations.

We also proposed algorithms for computing stuttering simulation and stuttering re-

finement. The idea behind of these two algorithms is essentially the same as that behind

the partition refinement algorithm [GV90]. The running time of our algorithm is poly-

nomial in the size of the state space of the input models.

We plan to continue this work in the following directions:

• Obtaining tighter complexity bounds for the proposed algorithm.

• Investigating other possible techniques for computing stuttering simulation and

stuttering refinement relations.

• Conducting case studies to demonstrate the efficiency and practicality of our re-

finement relations.

• Using stuttering refinement checking to speed up model checking techniques.
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