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Abstract. For a system of distributed processes, correctness cansheeeinby
statically checking whether their composition satisfiesghoperties of interest.
However, web services are distributed processegiramicallydiscover prop-
erties of other web services. Since the overall system mapeaavailable stati-
cally and since each business process is supposed to healglaimple, we pro-
pose to use runtime monitoring of conversations betweetm@ar as a means of
checking behavioral correctness of the entire web seryistes). Specifically, we
identify a subset of UML 2.0 Sequence Diagrams (SD) as a piypppecification
language. We show how our language can be used to specifypfigation
Property System (SPS) [1]. By formalizing this subset usingpmata, we can
check finite execution traces of web services against veuigomplex properties.
Finally, we discuss our experience using our language fuime monitoring of
an existing application, and conclude with a descriptiomas$ting tool support.

1 Introduction

Web services are collections of components which discoverend to other compo-
nents using published interfaces, with support of Ser@ciented Architectures (SOA).
The goal of SOA is to increase the flexibility of businessiiattions. Each web service
component can be written in a traditional compiled langusggh as Java, or in an
XML-centric language such as BPEL [2].

Consider, for example, a web-based Loan Application sy$tek, distributed as a
sample application with the IBM Websphere Integration Deper v6.0.2. Users enter
loan application information (name, taxpayer id, loan antpthrough a web page, and
are eventually informed of the status of their applicatidree LA workflow first checks
the user’s credit score and declines a loan if the user had erbdit score, i.e., less than
750. If the credit score is good, the workflow then checks tiza lamount: loans for
$50,000 or less are automatically approved; loans for taag®unts are earmarked for
manual approval.

The workflow diagram in Fig. 1(a) shows high level steps thatxecuted in a loan
application system. Specifically, this figure shows the BRRé&cification of the main
LA component together with interaction between its panér order to accomplish
its goal, the LA system needs to invoke ftartners such a<Cr edi t Check (imple-
mented in Java), rule grougsdanLi mi t ), or humantask€ol | owUpDecl i nedApp,
Conpl et eTheLoan andPr ocessTheAppl i cati on). These partners are shown
in Fig. 1(b) and implement the following functionSheckCr edi t uses the taxpayer
id to retrieve the corresponding credit score; thmanLi m t rule group checks the
credit score and the loan amount. The human tasks représefaiiowing application
results: declined, approved and manual approval, respécti



T Sequence

| Receive
= Copylnput
& CheckCredit

@ ScoreEvaluation

GoodCreditScore Otherwise

= AcknowledgeReceipt = Declined
& Checkdutodpproval = HumanFallowlip

@ putospprovalTest <9 Followlp

AutoApproved Otheruiise

= Approved = Manualapproval

= HumanCampletion = HumanAppraval ® Eloartmit L1 ® %’.Creditcheck

& CompleteTheloan & Processépplication
- 4t 6] '-f;FoHowUpDeclinedApp

= v
(@ 2 mainProcess
it

- @ i3 ProcessTheApplication

| Reply

@ (@© @2 CompleteTheLoan

(a) (b)

Fig. 1: LA system: (a) workflow; (b) assembly diagram.

Since the LA system is a composition of several distributesiriess processes,
its correctness depends on correctness of its partnergxaanple, the system should
guarantee that every request is eventually acknowledgéchane are lost or blocked
indefinitely, or that loans are only given to customers witload credit score. How-
ever, in the provided LA application, tigheck Cr edi t module assigns a credit score
at random, without using the customer id, thus preventiegtrerall system from sat-
isfying this property.

Since each web service is a relatively simple process, sisatgn concentrate on
the message exchange between partners —aheirersationsWhile static techniques
for checking partner composition against properties adrest, such as [3—7], are ap-
pealing, they have a number of limitations: the problem isidible only under certain
conditions [8], since the partners communicate via infisited channels, and existing
techniques are unable to deal with complex message ini@nacnd heterogeneity of
partners.

Instead, we concentrate on the dynamic analysis via runtimaeitoring. Unlike
the work of [9-11], our approach is to create an industridrgyth (with partnership
with the IBM Toronto Lab) monitoring framework that is nomtiusive, supports the
dynamic discovery of web services, deals with synchronaasasynchronous com-
munication and partners implemented in different langsagkows for specifying and
efficient monitoring of a variety of temporal behaviour, aadisable by practitioners.

Looking for a visual language that allows specification oére¢, has an explicit
emphasis on components, and is able to deal with positivenagdtive scenarios of
interaction as well as global properties, we have, in [1Bsen a subset of UML 2.0
Sequence Diagrams [13] as our specification language. We staawn that this sub-



P, |The loan amount must be always greater than zero.
P»|The credit score should eventually be checked if the loaruaiis greater than zer.
Ps|Aloan cannot be granted if the loan amount is less than orléguaro.
Py|After checking that the applicant has a good credit scor@ah lcannot be granted
if the loan amount is less than or equal to zero.
No one can get a loan without first going through a credit check
Table 1: Some properties of the LA system.

>

set is sufficiently expressive for capturisgfety(nothing bad can ever happen) and
livenesgsomething good will eventually happen) properties. Famegle, for the LA
system described earlier, possible safety and livenegepies are”, and P», respec-
tively (see Table 1). While liveness properties are not ooable in general, they can
be effectively checked for web services with finitely terating behaviours. For exam-
ple, we can check whether the LA process terminates withivutgyfeedback to the
customer.

To enable monitoring, [12] formalized the chosen subsetegfugnce Diagrams
using finite-state automata. These automata are then udeel implementation of our
non-intrusive monitoring framework which runs in parailiéth the system being moni-
tored, intercepting events from web service conversatibims resulting system enables
conformance checking of finite execution traces against specifications expressed
in our subset of Sequence Diagrams.

In [12], we showed that the chosen specification languagesiale of captur-
ing simple safety and liveness properties, in particutaratiants, e.g.P; in Table 1,
and request-response properties, €2in Table 1. However, we need a more expres-
sive language to conveniently specify and verify varioustem properties that arise in
practice, e.g.P, andPs in Table 1. In this paper, we extend the specification languag
of [12] by enriching this language with several operatoda@ed from UML 2.0 [13]
and other scenario-based languages [14]. Examples of tpmators includeriti-
cal, ref (which allows to reuse portions of sequence diagrams inrattagrams) and
message complementation. Furthermore, in contrast torewrqus work [12], we al-
low arbitrary nested applications afsertandnegateoperators. We then show that the
resulting language can not only be converted into finiteestatomata for monitoring,
but is also sufficiently expressive to capture a wide vaéfyequently used properties,
captured and catalogued in the Specification Pattern SYS&8) [1]. This approach
also gives basis for tool support to enable usable spedificaf runtime conversations.

The rest of this paper is organized as follows. We describéagyof the subset of
UML 2.0 sequence diagrams used for expressing propertigsebgervice conversa-
tions in Section 2. Such properties are then converted imitoring automata using
the techniques discussed in Section 3. We then show how ewifig@ation language
can be used to specify the complete set of temporal logicgrtppatterns in Section 4.
We describe the implementation of the runtime monitoriagfework and report on the
result of applying our framework to the LA system in Sectior-hally, we conclude
the paper in Section 6 with a summary of the paper, compavighrrelated work, and
an outline of future research directions.

2 A Language for Specifying Conversations
We choose a subset of UML 2.0 Sequence Diagrams as our landoragpecifying
web service conversations. Sequence Diagrams [13] is dgadjpumalism for model-
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Fig. 2: (a) An SD describing a scenario of the LA example; d)dHe NFA corresponding to the
first argument of thalt operator in Fig 2(a).
ing behavioural scenarios by describing sequences of messammunicated between
different objects over time. Sequence Diagrams have twedgions: vertical, repre-
senting time, and horizontal, representing objects. Edphcois illustrated by a rect-
angle with a vertical dashed line, calledifaline. Lifelines are connected by horizontal
arrows denoting messages that are sent from one object theansynchronously or
asynchronously.

An example sequence diagram describing a scenario of theyktemm is shown
in Fig. 2(a). The diagram contains three objeectaPs, Ct Ck, andLnLt . Object
mmPs corresponds to the main workflow of the LA system, &k andLnLt cor-
respond to componen@heckCr edi t andLoanLi m t, respectively. The diagram
in Fig. 2(a) shows two alternative scenarios: In the firgralative, mPs first sends a
check credit score request, i.ekCt Se, to Ct Ck and then a check loan amount re-
quest, i.e.ckLnAt, to LnLt . In the second alternativénlLt receives a check loan
amount request frommPs. Since the credit score has not yet been checkadlt
sends a check credit score requesti@k.

In UML 2.0, Sequence Diagrams can be augmented by a largeenwhbperators
to capture various complex scenarios. We use the operatsided below in our
property specification language. We refer to our languagins
Compositional operators: Operatorgparallel (par), alternatives (alt) strict sequenc-

ing (strict seq) andweak sequencing (weak seafe used to combine two SDs

based on standard notions of compositions. The opel@ipiis used for repeating
the scenario described by an SD multiple tinm#t,— for denoting an optional sce-
nario, equivalent talt with only one argument. Finallgritical is used to ensure
atomicity of the enclosed sequence.

Alphabet changing operators: Operatorgonsiderandignoreare used for modifying
the communicating alphabet of SDs.

Assertion and negation operators: Operatorsassertand negateallow users to ex-
press mandatory and forbidden system scenarios, resplgctiv

Interaction use operator: SDs can be shared by reference, usingdfi@perator. This
is a shorthand for copying the contents of the referred SDrevtieeref operator

occurs, and is a new feature in UML 2.0.

To describe system scenarios, we often need to express eoraplation of individ-
ual or a group of messages. Since arbitrary and nested use négateoperator is
inconvenient, we use an operatoessage complementatjariginally introduced in
the Property Sequence Charts (PSC) language [14], to niegiatelual or sets of mes-
sages. We denote the complement of a messagg —m and define it as the set of all
messages that are potentially exchanged between objetis sfstem except fon.

4
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Fig. 3: (a) A basic SD enclosed bycaitical operator; and its corresponding NFAs: (b) before
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Fig. 4: (2) An SD with message complementation; (b) the sahefter eliminating theeomple-
mentoperator; and (c) its corresponding NFA.

3 From SDs to Automata

We define the formal semantics of SD by translating it intsm-deterministic finite
automata (NFAs)ollowing the approach of [15]. This translation allowstasiot only
formalize our language but also to study its expressivergsscifically, in [12], we
have shown that certain scenarios in SD can be captured kgidar forms of NFAs
known asSafeand Live automata [16], indicating that SD is capable of expressing
safety and liveness properties. In what follows, we brieflyiew the translation of basic
sequence diagrams and the operators described in Sectibm I2FA. We then discuss
that thenegateandassertoperators allow us to express safety and liveness propgrtie
respectively.

Basic sequence diagrams, i.e, diagrams describing a segjoéavents without any
additional operator, can be translated into NFAs using tieegqrure in [15]. Consider
the scenario in the first argument of thié operator in Fig 2(a). This basic sequence di-
agram shows thatnPs first sends evertkCt Se to Ct Ck and then eventkLnAt to
LnLt . We denote the sending of a messagé&t Se by !ckCt Se and its receiving by
2ckCt Se. Thus, the set of events of the sequence diagram in Fig. 2¢&3kCt Se,
ckCt Se, 'ckLnAt, ckLnAt }. Intuitively, lifelines and message arrows in a se-
guence diagram define a partial order on the set of eventatdifgram. Given a basic
sequence diagrarfi, an NFA Ag is equivalent taS iff Ag accepts exactly the set of
traces that respect the partial ordetSof~or example, the automatety corresponding
to the scenario in the first argument of thieoperator in Fig 2(a) is shown in Fig 2(b).

The semantics of the compositional operators can be givéerins of the stan-
dard operations defined on NFAs (e.g., see [17]). For exagnajileorresponds to the
union operatorstrict seqcorresponds to the sequential composition operator}com
corresponds to the Kleene star operator.

Operatorgonsiderand its dualignore, are used to change the set of communicating
alphabets of an SD. Both of them receive an.S@nd a set of events as input, but
consideradds the elements if to the set of events &f, whereasgnoreremoves the
elements ink from the set of events .



SD ng
o0
ref: c i
Lot 3 LS i
(a) (b) (d)

Fig. 5: (a) An SD with references SO; (b) SDC; (c) SDex after copying the content of SO;
and (d) its corresponding NFA.

We can specify a critical region in a sequence diagram usiagritical operator.
A critical region means that the traces of the region caneointerleaved by other
messages and thus should be treated atomically. We treatfikrator to mean that if
the first message of the critical region is observed, themnesteof the behavior must be
observed as well.

Let S be an SD enclosed withinaitical operator, and lel s be the automaton for
S. The automaton focritical S is obtained by adding a self-loop at the initial staig,
of Ag labelled byX'\ {e | g0 has an outgoing transition ar}. This self-loop transition
at the initial state allows the automaton to wait for a sgigf run to begin. The initial
state also becomes final. For example, Fig. 3(a) shows asegdeagram with a critical
operator, and Fig. 3(c) — its corresponding automaton.

The operatoref is used for sharing portions of SDs between several othars. O
treatment ofef is to inline the SD being referenced, applying the necedsamglation
rules to the result in order to obtain the corresponding N&sAlustrated in Fig. 5.

To deal with the message complement operator, we note thatif the set of
messages exchanged in an SD, and= X, then—m is X'\ {m}. For a set{m,n}
of messages;{m,n} = X'\ {m,n}. For example, lef = {p,q,s,t}. Then,—p =
{q,s,t} and—{p,q} = {s, t}. Given an SD with a message complement operator
we first eliminate this operator by applying aft operator to the complement of the
set of negated messages. Formally,dJeC X' be a set of messages. We replace
by an SD fragment in which operatalt is applied to single messagesin)\ S. For
example, consider the SD in Fig. 4(a) with messag, q}, and letY = {s, t,p, q}.
This SD is equivalent to that in Fig. 4(b) wherép, q} is replaced by aalt fragmentin
which s andt are two alternative messages. The NFA for the sequenceatimgithout
message complement operators can be generated in a stpigint way following the
translation for thelt operator (see Fig. 4 (c)).

Representing safety propertiesTo describe a safety property, we enclose an$D
within a negateoperator to indicate that the scenario represented sya forbidden
one, and therefore, a safe system should never produceériargo [16]. For example,
the SD in Fig. 6(a) describes the safety propéttyn Table 1. To obtain the automaton
for negateS, we first derive an NFAAg for SD S and add a self-loop to its initial
state to let the automaton guess the beginning of the accepdice (see Fig. 6(b)). We
then determinize and complemefi to obtain an automaton faregateS. We have
not shown the final automton here because the determinzstépnincreases the size
of Ag considerably. The resulting complement automaton acesety trace that does
not contain the sequencekLnAt 2ckLnAt !l nAt No? nAt No.

Representing liveness propertieslo describe a liveness property, we enclose arbSD
within anassertoperator to indicate that the scenario representesi isythe only valid
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Fig. 7: (a) A Live SD describing™ in Table 1, and (b) its corresponding NFA

continuation of any system behavior [13]. For example, thérS-ig. 7(a) describes the
liveness property> in Table 1. After deriving the NFA s for SD S, the automaton for
assertS is obtained by adding a self-loop to its initial state, aliogvAs to wait for a
satisfying run to begin. Intuitively4 s is a liveness automaton if every trace recognized
by it includes the live part completely. Fig. 7(b) shows tlioaaton corresponding to
the SD in Fig. 7(a). The resulting automaton accepts evacgtthat contains the entire
sequencedkLnAt ?2ckLnAt Ir et LnAt St at ?r et LnAt St at .

Complexity of the Translation. The size of an automatotis corresponding to a basic
sequence diagraisiis O(n*) wheren is the number of events aridis the number of
processes [15]. Applying the sequence diagram operat@s dat cause a significant
increase in the size of the resulting automata except farégateoperator that involves
a determinzation step which can be exponential in the nuoitstates ofd . However,
we note that in practice, the automata we have generateélat&ely small, less than
9 states and 30 transitions [12]. Obviously, it remains ted®n whether the approach
remains feasible for larger web service systems and mor@lexrproperties.

4 SD Templates for Temporal Logic Property Patterns

In this section, we introduce several templates expressibe iSD language for describ-
ing temporal logic property patterns [1]. We first provideauerview of these patterns
in Section 4.1. We then describe our templates in the SD kgein Section 4.2 and
show how they can encode the property patterns.

4.1 Temporal Logic Property Patterns

The Specification Pattern Systef8PS), proposed by Dwyer et al. [18], is a pattern-
based approach to the presentation, codification, and wys®perty specifications.
The system allows patterns like “eveitis absent between everfgsandS” or “ S pre-
cedesP between) andR" to be easily expressed in and translated between lineag-ti
temporal logic (LTL) [19], computational tree logic (CTL)9] and other state-based
and event-based formalisms. SPS has been advocated asardttol for measuring
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the practical usefulness and expressive power of spedificEnguages, e.g., [14] and
[20].

The property patterns are organized into a hierarchy baseteokinds of system
behaviors they describe (see Fig. ®tcurrencepatterns talk about the occurrence of a
given event/state during system execution, @nder patterns specify relative order in
which multiple events/states occur during system exenufibe patterns are described
below in detail:

Absence An event does not occur within a given scope;

Existence An event must occur within a given scope;

Bounded Existence An event can occur at most a certain number of times within a
given scope;

Universality An event must occur throughout a given scope;

Response An event must always be followed by another within a scope;

Response Chain A chain of events must always be followed by another chain of
events within a scope;

Precedence An event must always be preceded by another within a scope;

Precedence Chain A chain of events must always be preceded by another chain of
events within a scope.

Each pattern is associated wibopes- the regions of interest over which the pat-
tern must hold. There are five basic kinds of scopes (depictEi). 9):

Global The entire program execution;

Before R The execution up to eveiRt;

After Q The execution after everi};

Between@ and R All parts of the execution between evedsand R;

After Q until R Similar tobetweenexcept that the designated part of the ex-

ecution continues even if the second event does not occur.

For example, consider a property that says between ergyeuandemptymes-
sages, there must belaqueuenessage. This property falls into the “Existence” pattern
group because it indicates the occurrence of an event watktope. The scope of this
property is that of “Between” shown in Fig 9. Using the prdpegrattern catalogue,
the LTL formalization of the above property is as follow&;( enqueue A —empty) =
(memptyW (dequeue N ~empty))).

4.2 Mapping Property Patterns to SDs

In this section, we provide several SD templates for the SRems (see Fig 11), and
show how these templates are mapped to the SPS patterrchierdelected mappings
are described below; the remainder can be found in Appendix A
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Absence: message cannot occur in a given scope. This can be expressed using a

simple Safe SD, as shown in Fig. 11(a).

Existence: message must occur in a given scope. This can be expressed using a
simple Live SD, as shown in Fig. 11(b).

Until: a sequence* of messages occurs until the first occurrence of messamea
given scope (see Fig. 11 (h)). This pattern is not part of #8;$iowever, it is used
to specify the precedence patterns. To express this patténe SD language, we
note that this pattern, which can be formalized using a singtil property [19],
can be refuted in two ways only: phever occurs, or b) after seeing a finite number
of p messages (expressed usiogp 1, nin Fig 11(h)), neither @ nor aq message
occurs (expressed agp, q} in Fig 11(h)).

Precedence:message (cause) precedes messagéeffect), as shown in Fig. 11 (i).
Note that this pattern allows the cause part to occur withloeiteffect part. We
describe this pattern in SD by expressing the two possitdescthat this pattern
specifies: ap never occurs, or Iy never occurs before The first case corresponds
to checkingabsenceof p; the second — to checkingp U s, since we want to be
sure thahop messages are sent before the frgtessage.

In the SDs in Fig. 11, symbols, q, s, andt can denote more complex SDs, not
just individual messages. In this case, we treat these sgrabglace holders and use a
ref operator to the SDs that should be inserted in place of thesbals. Also, in these
cases, message complementation is replaced by negati&ection 4.4, we provide
detailed examples of how these patterns are used to specjfgrties of the LA system.

4.3 Mapping Property Scopes

We now show how to express property patterns involving ssofeopes are used to
define the traces over which a property will be monitored.p@sacan be simple mes-
sages or more complex scenarios in our specification lareggédugref operator is used
to introduce scope delimiters in the corresponding locatid-or example, to apply
the Before R scope to a property, the scope delimiieis inserted after the property
we wish to verify (see Fig. 10(a)). In the caseAfter @ scope, the delimiter is in-
serted before the property (see Fig. 10(b)). Finally, bb&Between(see Fig. 10(c))
andAfter-until (see Fig. 10(d)) scopes add before/after delimiters. InAtiter-until
scope, the property is valid even if the until part does nauacTherefore, the second
delimiter in this scope is optional.

4.4 Specifying Properties of the Loan Application
The following examples show how property patterns can be tsepecify example
properties of the LA system given in Table 1. Properfigsand P, in that table corre-
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spond to simple safe and live SDs and are described in Figd & amespectively. The

rest of the properties in that table are discussed below.

Property Ps: Aloanis considered granted if the outcome is eitb@npl et eTheLoan
(CeLn), orPr ocessTheAppl i cati on( PsAn) . We express this property us-
ing the absence pattern (see Fig 11(a)): our property hbliieie are no traces
where a loan is granted after objdobanLi ni t (LnLt) warns that the loan
amount is not okay. See Fig. 12 (a) for the corresponding E®rrtonitor is shown
in Fig. 12 (e). The remaining automata in Fig. 12 show intetfiate steps in the
contruction of the monitor.

[SD P3J
\qus\ \Lth\ \Ct(;k\ \CgLn | \PgAn |
negd, | ! " '
69" inat | i i i
I 1 INAINO | | ICeLn
I [—— I I
wt: | Celn | | 3 @;A<
'S s N
| . PsAn | | | o ?PSA”@
I [ [ [ I

IckLnAt o 2ckLnAt o ?InAtNO IckLnAt 2ckLnAt
INAtNO

(d)

IckLnAt

3\ ?ckLnAt

©
2\ lckLnAt

2\ ?InAtNO
2\{!PsAn, ICeLr}

X\?CelLn

Fig. 12: P;: Absence pattern. (a) SD describing the LA propéryand its corresponding NFAs:
(b) NFA for alt operator; (c) NFA for the first two messages; (d) NFA for firgbtmessages,
followed by thealt operator; (e) the resulting monitor (after applyimggate.

Property P,: This property is a scoped versionBf, i.e., P, is equivalent to the prop-
erty P; scoped by the expressidster Qwhere( is “checking for a good credit
score”. So we only need to monitor the propefyon traces where a good credit
score is already detected. To do this, we introduce the sdelpeiter() before the

11
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Fig. 14: P5s: Precedence pattern. (a) SD fidreckCredit(b) SD forloanGranted (c) SD showing
application of precedence pattern.

propertyPs, as seen in Fig 10(b). The SD correspondinéptas shown in Fig 13(a)
and consists of two parts: (1) sco@eand (2) propertyPs, i.e., the fragment spec-
ified by aref operator which should be replaced by the SD#gr The monitor for
the whole property’, is shown in Fig. 13(b).

Property Ps: We can express properfys using the precedence pattern by indicating
that the scenarioreditCheckmust precede the scenat@anGranted Note that in
this patterncreditCheclis not optional and it must occur for the property to hold.
Figs. 14 (a) and (b) show the SDs faeditCheckandloanGranted respectively.
The SD forPs is shown in Fig. 14 (c) which is an instantiation of the Presemk
pattern in Fig 11(i) where is replaced byoanGranted ands — by creditCheck
In this pattern, messagds replaced by a scenario, and hence, scenario negation is
used instead of message complementation.
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5 Experience and Tool Support

We have implemented our runtime monitoring framework witthie IBMWebSpher@
business integration products [21]. In what follows, weatie® the architecture of our
solution and its intended use. We also report on prelimimamerience of using this
framework to check correctness of web services. For impheation details, see [12].

Our solution uses the WebSphere Process Server (WPS) [@2harwWebSphere
Integration Developer (WID) [23]. The former provides a BP&mpliant process
engine for executing BPEL processes and a built-in Servima@bnent Architecture
(SCA), which is a particular instantiation of SOA. The latpeovides a development
environment for building web service applications and gbjieal package for creating
UML Sequence Diagrams.

During and after application development, users can ckdiste SD specifications
for their web service applications within the WID enviromnmelf monitoring is en-
abled, our framework translates these diagrams into moaittomata using the tech-
niques in Section 3. During the execution of the web seniiteraction events from
the WPS are sent to our framework. These events are used &eupé state of every
active monitor automaton, until an error has been foundigraatners terminate.

Our patterns are available as editable UML sequence diagfaimx files). Users
must first add these files to the WID project of the applicatlogy wish to monitor.
These patterns can now be modified to create actual systgmenties, using our Se-
quence Diagram editor.

We applied our framework to the Loan Application systemhwtfte goal of speci-
fying and checking the properties mentioned in Table 1. Om@abexecution traces of
this system, these properties should never fail, as thikcapipn implements the work-
flow shown in Fig 1(a). As it is aampleapplication, some details have been simplified.
For example, th€r edi t Check component generates random credit scores.

Testing the system, we realized that properfigs P;, and P, fail on a trace in
which taxpayer id is 1888 and loan amount is -1000. This eti@ctrace is as follows:
ckCt Se, ct SeCK, ckLnAt | nAt NO, CeLn. It can be seen that: (¥, fails because
of eventl nAt No that indicates that the loan amount is not greater than £2)d?;
is violated because a forbidden behavd&inAt ,| nAt NO,CeLn, meaning that an in-
valid loan is accepted, appears in the above traceP’(3ails for the same reason that
Ps fails becausé’, is a scoped version dfs. Note that properties, and P in Table 1
are not violated by the above trace.

After examining the LA system source code, we realized thatapplication was
distributed with some hard-coded logic, presumably tolifaté testing purposes. An
applicant with a taxpayer id that ends with “888” is alwayssted and given a good
credit score (instead of a random score). Since the loan an®Uess than $50,001,
this loan is automatically approved because of the goodt@edre assigned. We also
realized that the application is not validating its input.

To report monitoring results, we display the cause of théations in the Sequence
Diagram editor. This will either be due to the occurrence fuaexpected event, or
the existence of an incomplete sequence. Unexpected eventtégghlighted in the cor-
responding SDs (see Fig 15 (a)). In the case of incompleteesegs, we mark the
termination location (see Fig 15 (b)).
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mainProcess: LaanLimits: CreditCheck:

mainProcess: LoanLimits:
1: checkLoanAmount

—»
1.1: InanAmountMotOkay 1

1: checkCredit
TERMINATE

«retums «returne «retums
2: checkLoansmount  1.21 IoanAmountiotOkay 2; checkCredit

(@) (b)
Fig. 15: Reporting errors: (a) unexpected event, (b) indetesequence

6 Conclusion

In this paper, we described our framework for runtime maiitpof web service con-
versations developed as part of an industrial-strengttesy.sThe framework is an ag-
gregation of existing runtime verification techniques and continuation of [12]. It is
non-intrusive, running in parallel with the monitored gmstand intercepting interac-
tion events during run time. Thus, it does not require anyedogtrumentation, does
not significantly affect the performance of the monitorestsyn, and enables reason-
ing about partners expressed in different languages. &umtbre, the use of a subset
of UML 2.0 SDs as a specification language ensures that tineefr@rk is usable by
practitioners to specify a wide range of properties. By faliring this subset using au-
tomata, we can check finite execution traces of web servigamst these properties.
Liveness becomes finitary, where user-specified time liniithe process termination
act as the stopping conditions.

We have successfully mapped all the Specification Propersgeth patterns into
our SD subset. The availability of customizable pattermaihimprove the usability of
our specification language. More complex conversationdearhecked, as it is easy to
build properties through SD composition. Using SD refeesnour properties are also
easier to read, since details can be hidden. Finally, we bimaged a library of such
sequence diagram patterns and showed how patterns cand&usgecify monitors
which lead to discovery of bugs in real webservice appliceti

Related Work.

Like other partial-order scenario-based formalisms ssdi8Cs [24] and LSCs [25],
UML 2.0 Sequence Diagrams are enjoying an increasing usagpecification lan-
guages. [14] proposes a Property Sequence Chart (PSCaigeguhich is an extended
notation of a subset of UML 2.0 SDs. PSC enables expressfatysmd liveness prop-
erties by assigning attributésil andrequiredto messages. This is equivalent to apply-
ing operatorsiegateandassertto individual SD message, respectively. The semantics
of PSC is given using Buichi Automata, designed to operaiaforite execution traces.
Since we consider only finite executions of web servicexraata over finite words
are sufficient and significantly easier to implement. Fipall [26], Stahl maps BPEL
schemas into Petri nets and utilises a verification tool LQRé&w Level Petri net An-
alyzer) to verify CTL properties.

Future Work. While the initial experience using the framework has beesitpe, we
need to address a number of issues before it becomes fubjeuJdne first set of issues
deals with increasing the range of properties that can beifiga and monitored. In
the examples presented here, all objects were unique, afé@reractice, users may
be interested in verifying interactions between multipleqesses of the same type. For
example, a user with a good credit score may concurrentllydpptwo loans, each
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for less than $50 001, to bypass the manual approval reqforeal loan for the total
amount. In this case, two bank branches may want to commtertiwavoid this kind of
situation. We feel that the problem can be easily solved lmpdimg process IDs into
the specification, the automata transition relation, atetattion events.

We also plan to begin investigation of techniques to helpt®cause of errors from
seeing results of successful and unsuccessful runs of HiersyFor example, given a
monitor violation, we would like to produce similar convatisns that do not cause a
violation, so as to help pinpoint cause of the violation (zs place signaled with the
violation is not necessarily the cause). We will experimeith the techniques in [27,
28] for this task.

On a side note, our work so far has been built on a basis thptsihers operate
within the same process server and thus a centralized maséwiable option. In prac-
tice, most web services are distributed, requiring a disteéd monitoring framework.
We plan to investigate techniques used in the DESERT prf$6tto turn a centralized
monitor into a set of distributed ones, running in differpricess servers.
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A Other Property Patterns

k—Bounded Existence:message can occur at most times in a given scope. We can
check the existence of at mosimessages using theop operator. After the loop,
we need to check that does not occur, which corresponds to the absence pattern
(see Fig. 11 (c)).

Universality: only a sequencg® of messages can occurin a given scope. This is equiv-
alent to checking for the absence of complement messageFigell (d)).

Response:message (stimulus) must be followed by messagéesponse), in a given
scope. A response can occur without stimuli, so the stimislugpresented using
a regular message, whereas the response is mandatory. iBteneg of stimu-
lus/response pairs are checked in an infihitep, as there can be many stimu-
lus/response pairs in one execution trace (see Fig. 11 (e)).

Response Chain:a sequence;, .. .,p, Of messages must be followed by the se-
quenceqy, - . ., 9., Of messages, in a given scope. We show two examples of this
pattern:p responds t&, t (see Fig. 11 (f)), and, t responds t® (see Fig. 11 (g)).
Response chain patterns have the same basic form of thensespattern.

— p responds tas, t: 2 stimulus — 1 response. Tlegitical operator is used to
enclose the message sequence, to ensure atomicity of this sequence. An
assertcannot be used since the stimulus sequence is optional.

— s, t responds te: 1 stimulus — 2 response. The message sequence now occurs
within theassertoperator, so an additionatitical operator would be superflu-

ous).
Precedence Chain:a sequences, ..., p, Of messages must precede the sequence
ai,- - -,9m Of messages, in a given scope. We show an example of thigpatte

2 cause — 1 effech is preceded by, t (see Fig. 11 (j)). This pattern is mapped us-
ing theabsencanduntil patterns, just like in thprecedencgattern. The implicit
negateoperators in th@bsenceanduntil patterns handle the message sequences,
so there is no need to addtical operators.
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Fig. 16: Screenshot of the Framework’s User Interface.
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