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Abstract. For a system of distributed processes, correctness can be ensured by
statically checking whether their composition satisfies the properties of interest.
However, web services are distributed processes thatdynamicallydiscover prop-
erties of other web services. Since the overall system may not be available stati-
cally and since each business process is supposed to be relatively simple, we pro-
pose to use runtime monitoring of conversations between partners as a means of
checking behavioral correctness of the entire web service system. Specifically, we
identify a subset of UML 2.0 Sequence Diagrams (SD) as a property specification
language. We show how our language can be used to specify the Specification
Property System (SPS) [1]. By formalizing this subset usingautomata, we can
check finite execution traces of web services against various complex properties.
Finally, we discuss our experience using our language for runtime monitoring of
an existing application, and conclude with a description ofexisting tool support.

1 Introduction

Web services are collections of components which discover and bind to other compo-
nents using published interfaces, with support of Service-Oriented Architectures (SOA).
The goal of SOA is to increase the flexibility of business interactions. Each web service
component can be written in a traditional compiled languagesuch as Java, or in an
XML-centric language such as BPEL [2].

Consider, for example, a web-based Loan Application system(LA), distributed as a
sample application with the IBM Websphere Integration Developer v6.0.2. Users enter
loan application information (name, taxpayer id, loan amount) through a web page, and
are eventually informed of the status of their applications. The LA workflow first checks
the user’s credit score and declines a loan if the user has a bad credit score, i.e., less than
750. If the credit score is good, the workflow then checks the loan amount: loans for
$50,000 or less are automatically approved; loans for larger amounts are earmarked for
manual approval.

The workflow diagram in Fig. 1(a) shows high level steps that are executed in a loan
application system. Specifically, this figure shows the BPELspecification of the main
LA component together with interaction between its partners. In order to accomplish
its goal, the LA system needs to invoke itspartners: such asCreditCheck (imple-
mented in Java), rule groups (LoanLimit), or human tasks (FollowUpDeclinedApp,
CompleteTheLoan andProcessTheApplication). These partners are shown
in Fig. 1(b) and implement the following functions:CheckCredit uses the taxpayer
id to retrieve the corresponding credit score; theLoanLimit rule group checks the
credit score and the loan amount. The human tasks represent the following application
results: declined, approved and manual approval, respectively.



(a) (b)

Fig. 1: LA system: (a) workflow; (b) assembly diagram.

Since the LA system is a composition of several distributed business processes,
its correctness depends on correctness of its partners. Forexample, the system should
guarantee that every request is eventually acknowledged and none are lost or blocked
indefinitely, or that loans are only given to customers with agood credit score. How-
ever, in the provided LA application, theCheckCreditmodule assigns a credit score
at random, without using the customer id, thus preventing the overall system from sat-
isfying this property.

Since each web service is a relatively simple process, analysis can concentrate on
the message exchange between partners – theirconversations. While static techniques
for checking partner composition against properties of interest, such as [3–7], are ap-
pealing, they have a number of limitations: the problem is decidable only under certain
conditions [8], since the partners communicate via infinite-sized channels, and existing
techniques are unable to deal with complex message interactions and heterogeneity of
partners.

Instead, we concentrate on the dynamic analysis via runtimemonitoring. Unlike
the work of [9–11], our approach is to create an industrial-strength (with partnership
with the IBM Toronto Lab) monitoring framework that is non-intrusive, supports the
dynamic discovery of web services, deals with synchronous and asynchronous com-
munication and partners implemented in different languages, allows for specifying and
efficient monitoring of a variety of temporal behaviour, andis usable by practitioners.

Looking for a visual language that allows specification of events, has an explicit
emphasis on components, and is able to deal with positive andnegative scenarios of
interaction as well as global properties, we have, in [12], chosen a subset of UML 2.0
Sequence Diagrams [13] as our specification language. We have shown that this sub-
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P1 The loan amount must be always greater than zero.
P2 The credit score should eventually be checked if the loan amount is greater than zero.
P3 A loan cannot be granted if the loan amount is less than or equal to zero.
P4 After checking that the applicant has a good credit score, A loan cannot be granted

if the loan amount is less than or equal to zero.
P5 No one can get a loan without first going through a credit check.

Table 1: Some properties of the LA system.

set is sufficiently expressive for capturingsafety(nothing bad can ever happen) and
liveness(something good will eventually happen) properties. For example, for the LA
system described earlier, possible safety and liveness properties areP1 andP2, respec-
tively (see Table 1). While liveness properties are not monitorable in general, they can
be effectively checked for web services with finitely terminating behaviours. For exam-
ple, we can check whether the LA process terminates without giving feedback to the
customer.

To enable monitoring, [12] formalized the chosen subset of Sequence Diagrams
using finite-state automata. These automata are then used inthe implementation of our
non-intrusive monitoring framework which runs in parallelwith the system being moni-
tored, intercepting events from web service conversations. The resulting system enables
conformance checking of finite execution traces against their specifications expressed
in our subset of Sequence Diagrams.

In [12], we showed that the chosen specification language is capable of captur-
ing simple safety and liveness properties, in particular, invariants, e.g.,P1 in Table 1,
and request-response properties, e.g.,P2 in Table 1. However, we need a more expres-
sive language to conveniently specify and verify various system properties that arise in
practice, e.g.,P4 andP5 in Table 1. In this paper, we extend the specification language
of [12] by enriching this language with several operators, adopted from UML 2.0 [13]
and other scenario-based languages [14]. Examples of theseoperators includecriti-
cal, ref (which allows to reuse portions of sequence diagrams in other diagrams) and
message complementation. Furthermore, in contrast to our previous work [12], we al-
low arbitrary nested applications ofassertandnegateoperators. We then show that the
resulting language can not only be converted into finite-state automata for monitoring,
but is also sufficiently expressive to capture a wide varietyof frequently used properties,
captured and catalogued in the Specification Pattern System(SPS) [1]. This approach
also gives basis for tool support to enable usable specification of runtime conversations.

The rest of this paper is organized as follows. We describe syntax of the subset of
UML 2.0 sequence diagrams used for expressing properties ofwebservice conversa-
tions in Section 2. Such properties are then converted into monitoring automata using
the techniques discussed in Section 3. We then show how our specification language
can be used to specify the complete set of temporal logic property patterns in Section 4.
We describe the implementation of the runtime monitoring framework and report on the
result of applying our framework to the LA system in Section 5. Finally, we conclude
the paper in Section 6 with a summary of the paper, comparisonwith related work, and
an outline of future research directions.

2 A Language for Specifying Conversations
We choose a subset of UML 2.0 Sequence Diagrams as our language for specifying
web service conversations. Sequence Diagrams [13] is a popular formalism for model-
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Fig. 2: (a) An SD describing a scenario of the LA example; and (b) the NFA corresponding to the
first argument of thealt operator in Fig 2(a).

ing behavioural scenarios by describing sequences of messages communicated between
different objects over time. Sequence Diagrams have two dimensions: vertical, repre-
senting time, and horizontal, representing objects. Each object is illustrated by a rect-
angle with a vertical dashed line, called alifeline. Lifelines are connected by horizontal
arrows denoting messages that are sent from one object to another, synchronously or
asynchronously.

An example sequence diagram describing a scenario of the LA system is shown
in Fig. 2(a). The diagram contains three objects,mnPs, CtCk, andLnLt. Object
mnPs corresponds to the main workflow of the LA system, andCtCk andLnLt cor-
respond to componentsCheckCredit andLoanLimit, respectively. The diagram
in Fig. 2(a) shows two alternative scenarios: In the first alternative,mnPs first sends a
check credit score request, i.e.,ckCtSe, to CtCk and then a check loan amount re-
quest, i.e.,ckLnAt, to LnLt. In the second alternative,LnLt receives a check loan
amount request frommnPs. Since the credit score has not yet been checked,LnLt
sends a check credit score request toCtCk.

In UML 2.0, Sequence Diagrams can be augmented by a large number of operators
to capture various complex scenarios. We use the operators described below in our
property specification language. We refer to our language asSD.
Compositional operators: Operatorsparallel (par), alternatives (alt), strict sequenc-

ing (strict seq), andweak sequencing (weak seq)are used to combine two SDs
based on standard notions of compositions. The operatorloop is used for repeating
the scenario described by an SD multiple times,opt– for denoting an optional sce-
nario, equivalent toalt with only one argument. Finally,critical is used to ensure
atomicity of the enclosed sequence.

Alphabet changing operators: Operatorsconsiderandignoreare used for modifying
the communicating alphabet of SDs.

Assertion and negation operators:Operatorsassertand negateallow users to ex-
press mandatory and forbidden system scenarios, respectively.

Interaction use operator: SDs can be shared by reference, using theref operator. This
is a shorthand for copying the contents of the referred SD where theref operator
occurs, and is a new feature in UML 2.0.

To describe system scenarios, we often need to express complementation of individ-
ual or a group of messages. Since arbitrary and nested use of the negateoperator is
inconvenient, we use an operatormessage complementation, originally introduced in
the Property Sequence Charts (PSC) language [14], to negateindividual or sets of mes-
sages. We denote the complement of a messagem by¬m and define it as the set of all
messages that are potentially exchanged between objects ofthe system except form.
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Fig. 3: (a) A basic SD enclosed by acritical operator; and its corresponding NFAs: (b) before
applyingcritical; (c) after applyingcritical.
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Fig. 4: (a) An SD with message complementation; (b) the same SD after eliminating thecomple-
mentoperator; and (c) its corresponding NFA.

3 From SDs to Automata

We define the formal semantics of SD by translating it intonon-deterministic finite
automata (NFAs), following the approach of [15]. This translation allows usto not only
formalize our language but also to study its expressiveness. Specifically, in [12], we
have shown that certain scenarios in SD can be captured by particular forms of NFAs
known asSafeand Live automata [16], indicating that SD is capable of expressing
safety and liveness properties. In what follows, we briefly review the translation of basic
sequence diagrams and the operators described in Section 2 into NFA. We then discuss
that thenegateandassertoperators allow us to express safety and liveness properties,
respectively.

Basic sequence diagrams, i.e, diagrams describing a sequence of events without any
additional operator, can be translated into NFAs using the procedure in [15]. Consider
the scenario in the first argument of thealt operator in Fig 2(a). This basic sequence di-
agram shows thatmnPs first sends eventckCtSe to CtCk and then eventckLnAt to
LnLt. We denote the sending of a messageckCtSe by !ckCtSe and its receiving by
?ckCtSe. Thus, the set of events of the sequence diagram in Fig. 2(a) is {!ckCtSe,
?ckCtSe, !ckLnAt, ?ckLnAt}. Intuitively, lifelines and message arrows in a se-
quence diagram define a partial order on the set of events of that diagram. Given a basic
sequence diagramS, an NFAAS is equivalent toS iff AS accepts exactly the set of
traces that respect the partial order ofS. For example, the automatonAS corresponding
to the scenario in the first argument of thealt operator in Fig 2(a) is shown in Fig 2(b).

The semantics of the compositional operators can be given interms of the stan-
dard operations defined on NFAs (e.g., see [17]). For example, alt corresponds to the
union operator;strict seqcorresponds to the sequential composition operator; andloop
corresponds to the Kleene star operator.

Operatorsconsiderand its dual,ignore, are used to change the set of communicating
alphabets of an SD. Both of them receive an SDS and a set of eventsE as input, but
consideradds the elements inE to the set of events ofS, whereasignoreremoves the
elements inE from the set of events ofS.
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Fig. 5: (a) An SD with references SDC; (b) SDC; (c) SDex after copying the content of SDC;
and (d) its corresponding NFA.

We can specify a critical region in a sequence diagram using thecritical operator.
A critical region means that the traces of the region cannot be interleaved by other
messages and thus should be treated atomically. We treat this operator to mean that if
the first message of the critical region is observed, then therest of the behavior must be
observed as well.

Let S be an SD enclosed within acritical operator, and letAS be the automaton for
S. The automaton forcritical S is obtained by adding a self-loop at the initial state,q0,
of AS labelled byΣ \ {e | q0 has an outgoing transition one}. This self-loop transition
at the initial state allows the automaton to wait for a satisfying run to begin. The initial
state also becomes final. For example, Fig. 3(a) shows a sequence diagram with a critical
operator, and Fig. 3(c) – its corresponding automaton.

The operatorref is used for sharing portions of SDs between several others. Our
treatment ofref is to inline the SD being referenced, applying the necessarytranslation
rules to the result in order to obtain the corresponding NFA,as illustrated in Fig. 5.

To deal with the message complement operator, we note that ifΣ is the set of
messages exchanged in an SD, andm ∈ Σ, then¬m is Σ \ {m}. For a set{m, n}
of messages,¬{m, n} = Σ \ {m, n}. For example, letΣ = {p, q, s, t}. Then,¬p =
{q, s, t} and¬{p, q} = {s, t}. Given an SD with a message complement operator¬,
we first eliminate this operator by applying analt operator to the complement of the
set of negated messages. Formally, letS ⊆ Σ be a set of messages. We replace¬S

by an SD fragment in which operatoralt is applied to single messages inΣ \ S. For
example, consider the SD in Fig. 4(a) with message,¬{p, q}, and letΣ = {s, t, p, q}.
This SD is equivalent to that in Fig. 4(b) where¬{p, q} is replaced by analt fragment in
whichs andt are two alternative messages. The NFA for the sequence diagram without
message complement operators can be generated in a straightforward way following the
translation for thealt operator (see Fig. 4 (c)).

Representing safety properties.To describe a safety property, we enclose an SDS

within a negateoperator to indicate that the scenario represented byS is a forbidden
one, and therefore, a safe system should never produce this scenario [16]. For example,
the SD in Fig. 6(a) describes the safety propertyP1 in Table 1. To obtain the automaton
for negateS, we first derive an NFAAS for SD S and add a self-loop to its initial
state to let the automaton guess the beginning of the accepting trace (see Fig. 6(b)). We
then determinize and complementAS to obtain an automaton fornegateS. We have
not shown the final automton here because the determinzationstep increases the size
of AS considerably. The resulting complement automaton acceptsevery trace that does
not contain the sequence !ckLnAt?ckLnAt!lnAtNo?lnAtNo.

Representing liveness properties.To describe a liveness property, we enclose an SDS

within anassertoperator to indicate that the scenario represented byS is the only valid
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Fig. 6: (a) A Safe SD describingP1 in Table 1 and (b) its corresponding NFA (before applying
negate)
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Fig. 7: (a) A Live SD describingP2 in Table 1, and (b) its corresponding NFA
.
continuation of any system behavior [13]. For example, the SD in Fig. 7(a) describes the
liveness propertyP2 in Table 1. After deriving the NFAAS for SDS, the automaton for
assertS is obtained by adding a self-loop to its initial state, allowing AS to wait for a
satisfying run to begin. Intuitively,AS is a liveness automaton if every trace recognized
by it includes the live part completely. Fig. 7(b) shows the automaton corresponding to
the SD in Fig. 7(a). The resulting automaton accepts every trace that contains the entire
sequence !ckLnAt?ckLnAt!retLnAtStat?retLnAtStat.

Complexity of the Translation. The size of an automatonAS corresponding to a basic
sequence diagramS is O(nk) wheren is the number of events andk is the number of
processes [15]. Applying the sequence diagram operators does not cause a significant
increase in the size of the resulting automata except for thenegateoperator that involves
a determinzation step which can be exponential in the numberof states ofAS . However,
we note that in practice, the automata we have generated are relatively small, less than
9 states and 30 transitions [12]. Obviously, it remains to beseen whether the approach
remains feasible for larger web service systems and more complex properties.

4 SD Templates for Temporal Logic Property Patterns

In this section, we introduce several templates expressed in the SD language for describ-
ing temporal logic property patterns [1]. We first provide anoverview of these patterns
in Section 4.1. We then describe our templates in the SD language in Section 4.2 and
show how they can encode the property patterns.

4.1 Temporal Logic Property Patterns

The Specification Pattern System(SPS), proposed by Dwyer et al. [18], is a pattern-
based approach to the presentation, codification, and reuseof property specifications.
The system allows patterns like “eventP is absent between eventsQ andS” or “ S pre-
cedesP betweenQ andR” to be easily expressed in and translated between linear-time
temporal logic (LTL) [19], computational tree logic (CTL) [19] and other state-based
and event-based formalisms. SPS has been advocated as a standard tool for measuring
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the practical usefulness and expressive power of specification languages, e.g., [14] and
[20].

The property patterns are organized into a hierarchy based on the kinds of system
behaviors they describe (see Fig. 8):Occurrencepatterns talk about the occurrence of a
given event/state during system execution, andOrder patterns specify relative order in
which multiple events/states occur during system execution. The patterns are described
below in detail:
Absence An event does not occur within a given scope;
Existence An event must occur within a given scope;
Bounded Existence An event can occur at most a certain number of times within a

given scope;
Universality An event must occur throughout a given scope;
Response An event must always be followed by another within a scope;
Response Chain A chain of events must always be followed by another chain of

events within a scope;
Precedence An event must always be preceded by another within a scope;
Precedence Chain A chain of events must always be preceded by another chain of

events within a scope.

Each pattern is associated withscopes– the regions of interest over which the pat-
tern must hold. There are five basic kinds of scopes (depictedin Fig. 9):

Global The entire program execution;
BeforeR The execution up to eventR;
After Q The execution after eventQ;
BetweenQ and R All parts of the execution between eventsQ andR;
After Q until R Similar tobetween, except that the designated part of the ex-

ecution continues even if the second event does not occur.

For example, consider a property that says between everyenqueueandemptymes-
sages, there must be adequeuemessage. This property falls into the “Existence” pattern
group because it indicates the occurrence of an event withina scope. The scope of this
property is that of “Between” shown in Fig 9. Using the property pattern catalogue,
the LTL formalization of the above property is as follows:2((enqueue ∧ ¬empty) ⇒
(¬emptyW (dequeue ∧ ¬empty))).

4.2 Mapping Property Patterns to SDs

In this section, we provide several SD templates for the SPS patterns (see Fig 11), and
show how these templates are mapped to the SPS pattern hierarchy. Selected mappings
are described below; the remainder can be found in Appendix A.
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Fig. 10: Scope mapping for sequence diagrams: (a)Before R; (b) After Q; (c) BetweenQ and
R; and (d)After Q until R.
Absence: messagep cannot occur in a given scope. This can be expressed using a

simple Safe SD, as shown in Fig. 11(a).
Existence: messagep must occur in a given scope. This can be expressed using a

simple Live SD, as shown in Fig. 11(b).
Until: a sequencep∗ of messages occurs until the first occurrence of messageq, in a

given scope (see Fig. 11 (h)). This pattern is not part of the SPS; however, it is used
to specify the precedence patterns. To express this patternin the SD language, we
note that this pattern, which can be formalized using a single until property [19],
can be refuted in two ways only: a)p never occurs, or b) after seeing a finite number
of p messages (expressed usingloop 1, nin Fig 11(h)), neither ap nor aq message
occurs (expressed as¬{p, q} in Fig 11(h)).

Precedence:messages (cause) precedes messagep (effect), as shown in Fig. 11 (i).
Note that this pattern allows the cause part to occur withoutthe effect part. We
describe this pattern in SD by expressing the two possible cases that this pattern
specifies: a)p never occurs, or b)p never occurs befores. The first case corresponds
to checkingabsenceof p; the second – to checking¬p U s, since we want to be
sure thatnop messages are sent before the firsts message.

In the SDs in Fig. 11, symbolsp, q, s, andt can denote more complex SDs, not
just individual messages. In this case, we treat these symbols as place holders and use a
ref operator to the SDs that should be inserted in place of these symbols. Also, in these
cases, message complementation is replaced by negation. InSection 4.4, we provide
detailed examples of how these patterns are used to specify properties of the LA system.

4.3 Mapping Property Scopes
We now show how to express property patterns involving scopes. Scopes are used to
define the traces over which a property will be monitored. Scopes can be simple mes-
sages or more complex scenarios in our specification language. Theref operator is used
to introduce scope delimiters in the corresponding locations. For example, to apply
the Before R scope to a property, the scope delimiterR is inserted after the property
we wish to verify (see Fig. 10(a)). In the case ofAfter Q scope, the delimiter is in-
serted before the property (see Fig. 10(b)). Finally, both theBetween(see Fig. 10(c))
andAfter-until (see Fig. 10(d)) scopes add before/after delimiters. In theAfter-until
scope, the property is valid even if the until part does not occur. Therefore, the second
delimiter in this scope is optional.

4.4 Specifying Properties of the Loan Application
The following examples show how property patterns can be used to specify example
properties of the LA system given in Table 1. PropertiesP1 andP2 in that table corre-
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spond to simple safe and live SDs and are described in Figs 6 and 7, respectively. The
rest of the properties in that table are discussed below.
Property P3: A loan is considered granted if the outcome is eitherCompleteTheLoan

(CeLn), orProcessTheApplication(PsAn). We express this property us-
ing the absence pattern (see Fig 11(a)): our property holds if there are no traces
where a loan is granted after objectLoanLimit(LnLt) warns that the loan
amount is not okay. See Fig. 12 (a) for the corresponding SD; the monitor is shown
in Fig. 12 (e). The remaining automata in Fig. 12 show intermediate steps in the
contruction of the monitor.

neg
ckLnAt

lnAtNO

alt
CeLn

PsAn

SD P3

mnPs LnLt CtCk CeLn PsAn

(a)

q0

q1

q2

q3

q4

!PsAn

!CeLn

?PsAn

?CeLn

(b)

q0

q1

q2

q3

q4

!ckLnAt ?ckLnAt

!lnAtNO

?lnAtNO

(c)

q0

q1

q2

q3 q4

q5

q6

q7

q8

!ckLnAt ?ckLnAt

!lnAtNO

?lnAtNO

!PsAn

!CeLn

?PsAn

?CeLn

(d)

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

!ckLnAt

?ckLnAt !lnAtNO

?lnAtNO

!PsAn

!CeLn

?PsAn

?CeLn

Σ\!ckLnAt

Σ\?ckLnAt

Σ\!lnAtNO

Σ\?lnAtNO
Σ\{!PsAn, !CeLn}

Σ\?PsAn

Σ\?CeLn

(e)

Fig. 12:P3 : Absence pattern. (a) SD describing the LA propertyP3 and its corresponding NFAs:
(b) NFA for alt operator; (c) NFA for the first two messages; (d) NFA for first two messages,
followed by thealt operator; (e) the resulting monitor (after applyingnegate).

Property P4: This property is a scoped version ofP3, i.e.,P4 is equivalent to the prop-
erty P3 scoped by the expressionAfter QwhereQ is “checking for a good credit
score”. So we only need to monitor the propertyP3 on traces where a good credit
score is already detected. To do this, we introduce the scopedelimiterQ before the
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Fig. 13:P4: Scoped absence pattern. (a) SD describing the LA propertyP4 and its corresponding
NFAs: (b) NFA for scopeQ; (c) the resulting monitor, obtained by concatenating the NFAs for
the scope andP3.

SD checkCredit

mnPs

ckCtSe
ctSeOk

LnLt CtCk

(a)

PsAn
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alt

CeLn PsAnmnPs
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ref
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alt
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absence

SD P5
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mnPs LnLt CtCk CeLn PsAn

(c)

Fig. 14:P5: Precedence pattern. (a) SD forcheckCredit; (b) SD forloanGranted; (c) SD showing
application of precedence pattern.

propertyP3, as seen in Fig 10(b). The SD corresponding toP4 is shown in Fig 13(a)
and consists of two parts: (1) scopeQ and (2) propertyP3, i.e., the fragment spec-
ified by aref operator which should be replaced by the SD forP3. The monitor for
the whole propertyP4 is shown in Fig. 13(b).

Property P5: We can express propertyP5 using the precedence pattern by indicating
that the scenariocreditCheckmust precede the scenarioloanGranted. Note that in
this pattern,creditCheckis not optional and it must occur for the property to hold.
Figs. 14 (a) and (b) show the SDs forcreditCheckand loanGranted, respectively.
The SD forP5 is shown in Fig. 14 (c) which is an instantiation of the Precedence
pattern in Fig 11(i) wherep is replaced byloanGranted, ands – by creditCheck.
In this pattern, messagep is replaced by a scenario, and hence, scenario negation is
used instead of message complementation.

12



5 Experience and Tool Support

We have implemented our runtime monitoring framework within the IBMWebSphereR©

business integration products [21]. In what follows, we describe the architecture of our
solution and its intended use. We also report on preliminaryexperience of using this
framework to check correctness of web services. For implementation details, see [12].

Our solution uses the WebSphere Process Server (WPS) [22] and the WebSphere
Integration Developer (WID) [23]. The former provides a BPEL-compliant process
engine for executing BPEL processes and a built-in Service Component Architecture
(SCA), which is a particular instantiation of SOA. The latter provides a development
environment for building web service applications and a graphical package for creating
UML Sequence Diagrams.

During and after application development, users can createUML SD specifications
for their web service applications within the WID environment. If monitoring is en-
abled, our framework translates these diagrams into monitor automata using the tech-
niques in Section 3. During the execution of the web service,interaction events from
the WPS are sent to our framework. These events are used to update the state of every
active monitor automaton, until an error has been found or all partners terminate.

Our patterns are available as editable UML sequence diagrams (.dnx files). Users
must first add these files to the WID project of the applicationthey wish to monitor.
These patterns can now be modified to create actual system properties, using our Se-
quence Diagram editor.

We applied our framework to the Loan Application system, with the goal of speci-
fying and checking the properties mentioned in Table 1. On normal execution traces of
this system, these properties should never fail, as this application implements the work-
flow shown in Fig 1(a). As it is asampleapplication, some details have been simplified.
For example, theCreditCheck component generates random credit scores.

Testing the system, we realized that propertiesP1, P3, andP4 fail on a trace in
which taxpayer id is 1888 and loan amount is -1000. This execution trace is as follows:
ckCtSe, ctSeOK, ckLnAt lnAtNO, CeLn. It can be seen that: (1)P1 fails because
of eventlnAtNo that indicates that the loan amount is not greater than zero;(2) P3

is violated because a forbidden behaviorckLnAt,lnAtNO,CeLn, meaning that an in-
valid loan is accepted, appears in the above trace; (3)P4 fails for the same reason that
P3 fails becauseP4 is a scoped version ofP3. Note that propertiesP2 andP5 in Table 1
are not violated by the above trace.

After examining the LA system source code, we realized that the application was
distributed with some hard-coded logic, presumably to facilitate testing purposes. An
applicant with a taxpayer id that ends with “888” is always trusted and given a good
credit score (instead of a random score). Since the loan amount is less than $50,001,
this loan is automatically approved because of the good credit score assigned. We also
realized that the application is not validating its input.

To report monitoring results, we display the cause of the violations in the Sequence
Diagram editor. This will either be due to the occurrence of an unexpected event, or
the existence of an incomplete sequence. Unexpected eventsare highlighted in the cor-
responding SDs (see Fig 15 (a)). In the case of incomplete sequences, we mark the
termination location (see Fig 15 (b)).
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(a) (b)

Fig. 15: Reporting errors: (a) unexpected event, (b) incomplete sequence

6 Conclusion
In this paper, we described our framework for runtime monitoring of web service con-
versations developed as part of an industrial-strength system. The framework is an ag-
gregation of existing runtime verification techniques and is a continuation of [12]. It is
non-intrusive, running in parallel with the monitored system and intercepting interac-
tion events during run time. Thus, it does not require any code instrumentation, does
not significantly affect the performance of the monitored system, and enables reason-
ing about partners expressed in different languages. Furthermore, the use of a subset
of UML 2.0 SDs as a specification language ensures that the framework is usable by
practitioners to specify a wide range of properties. By formalizing this subset using au-
tomata, we can check finite execution traces of web services against these properties.
Liveness becomes finitary, where user-specified time limitsor the process termination
act as the stopping conditions.

We have successfully mapped all the Specification Property System patterns into
our SD subset. The availability of customizable patterns should improve the usability of
our specification language. More complex conversations canbe checked, as it is easy to
build properties through SD composition. Using SD references, our properties are also
easier to read, since details can be hidden. Finally, we havecreated a library of such
sequence diagram patterns and showed how patterns can be used to specify monitors
which lead to discovery of bugs in real webservice applications.

Related Work.
Like other partial-order scenario-based formalisms such as MSCs [24] and LSCs [25],

UML 2.0 Sequence Diagrams are enjoying an increasing usage as specification lan-
guages. [14] proposes a Property Sequence Chart (PSC) language, which is an extended
notation of a subset of UML 2.0 SDs. PSC enables expressing safety and liveness prop-
erties by assigning attributesfail andrequiredto messages. This is equivalent to apply-
ing operatorsnegateandassertto individual SD message, respectively. The semantics
of PSC is given using Büchi Automata, designed to operate oninfinite execution traces.
Since we consider only finite executions of web services, automata over finite words
are sufficient and significantly easier to implement. Finally, in [26], Stahl maps BPEL
schemas into Petri nets and utilises a verification tool LORA(Low Level Petri net An-
alyzer) to verify CTL properties.

Future Work. While the initial experience using the framework has been positive, we
need to address a number of issues before it becomes fully usable. The first set of issues
deals with increasing the range of properties that can be specified and monitored. In
the examples presented here, all objects were unique, whereas in practice, users may
be interested in verifying interactions between multiple processes of the same type. For
example, a user with a good credit score may concurrently apply for two loans, each
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for less than $50 001, to bypass the manual approval requiredfor a loan for the total
amount. In this case, two bank branches may want to communicate to avoid this kind of
situation. We feel that the problem can be easily solved by encoding process IDs into
the specification, the automata transition relation, and interaction events.

We also plan to begin investigation of techniques to help locate cause of errors from
seeing results of successful and unsuccessful runs of the system. For example, given a
monitor violation, we would like to produce similar conversations that do not cause a
violation, so as to help pinpoint cause of the violation (as the place signaled with the
violation is not necessarily the cause). We will experimentwith the techniques in [27,
28] for this task.

On a side note, our work so far has been built on a basis that allpartners operate
within the same process server and thus a centralized monitor is a viable option. In prac-
tice, most web services are distributed, requiring a distributed monitoring framework.
We plan to investigate techniques used in the DESERT project[29] to turn a centralized
monitor into a set of distributed ones, running in differentprocess servers.
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A Other Property Patterns
k−Bounded Existence:messagep can occur at mostk times in a given scope. We can

check the existence of at mostk messages using theloop operator. After the loop,
we need to check thatp does not occur, which corresponds to the absence pattern
(see Fig. 11 (c)).

Universality: only a sequencep∗ of messages can occur in a given scope. This is equiv-
alent to checking for the absence of complement messages (see Fig. 11 (d)).

Response:messagep (stimulus) must be followed by messages (response), in a given
scope. A response can occur without stimuli, so the stimulusis represented using
a regular message, whereas the response is mandatory. The existence of stimu-
lus/response pairs are checked in an infiniteloop, as there can be many stimu-
lus/response pairs in one execution trace (see Fig. 11 (e)).

Response Chain:a sequencep1, . . . , pn of messages must be followed by the se-
quenceq1, . . . , qm of messages, in a given scope. We show two examples of this
pattern:p responds tos, t (see Fig. 11 (f)), ands, t responds top (see Fig. 11 (g)).
Response chain patterns have the same basic form of the response pattern.

– p responds tos, t: 2 stimulus – 1 response. Thecritical operator is used to
enclose the message sequences, t, to ensure atomicity of this sequence. An
assertcannot be used since the stimulus sequence is optional.

– s, t responds top: 1 stimulus – 2 response. The message sequence now occurs
within theassertoperator, so an additionalcritical operator would be superflu-
ous).

Precedence Chain:a sequencep1, . . . , pn of messages must precede the sequence
q1, . . . , qm of messages, in a given scope. We show an example of this pattern,
2 cause – 1 effect,p is preceded bys, t (see Fig. 11 (j)). This pattern is mapped us-
ing theabsenceanduntil patterns, just like in theprecedencepattern. The implicit
negateoperators in theabsenceanduntil patterns handle the message sequences,
so there is no need to addcritical operators.
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B Framework

Fig. 16: Screenshot of the Framework’s User Interface.

18


