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Abstract—For a system of distributed processes, correctness can be ensured by (statically) checking whether their composition

satisfies properties of interest. However, Web services are distributed processes that dynamically discover properties of other Web

services. Since the overall system may not be available statically and since each business process is supposed to be relatively simple,

we propose to use runtime monitoring of conversations between partners as a means of checking behavioral correctness of the entire

Web service system. Specifically, we identify a subset of UML 2.0 Sequence Diagrams as a property specification language and show

that it is sufficiently expressive for capturing safety and liveness properties. By transforming these diagrams to automata, we enable

conformance checking of finite execution traces against the specification. We show how our language can be used to specify the

Specification Property System (SPS) [1]. We describe an implementation of our approach as part of an industrial system. Finally, we

discuss our experience of specifying and monitoring a number of properties from three existing applications.

Index Terms—Nondeterministic finite automata, runtime monitoring, sequence diagrams, temporal logic patterns, Web service

conversations.

Ç

1 INTRODUCTION

RECENT years have seen an emergence of the field of Web
services, which use Service-Oriented Architectures

(SOAs) to dynamically discover and bind to services in
order to increase the flexibility of business interactions.
Each service consists of components and can discover other
components using published interfaces. An SOA compo-
nent can be written in a traditional compiled language such
as JavaTM, or in an XML-centric language such as BPEL [2].
An SOA module is made up of multiple SOA components,
which are commonly referred to as Web services.

Since each Web service is a relatively simple process,
analysis can concentrate on the message exchange between
partners—their conversations. For a classical system of
distributed processes, correctness can be ensured by statically
checking their composition against properties of interest. The
same approach has been taken by several researchers in the
context of Web services as well, e.g., [3], [4], [5], [6], [7]. While
static analysis is very appealing—errors are discovered ahead
of time and without the need to exercise the system, this
approach has several major limitations as follows:

. Web services typically communicate via infinite-
length channels, so the problem is decidable only
under certain conditions [8].

. Web applications usually interact with Web services
developed by partners. Partners are only required to
make Web service interfaces public, not the code.

. Realistic Web services exchange many types of
messages: some synchronous, some asynchronous,
and some with acknowledgments and priorities.

. Web services are typically heterogeneous, i.e., each
component can be implemented in a different
programming language.

Instead, we concentrate on the dynamic analysis via
runtime monitoring, which tries to ensure the quality of an
application through the analysis of runtime events. These
events can be analyzed online—during the execution of the
application, or offline—after the execution has been termi-
nated. The latter can be used to express free-form queries over
all generated events. However, since these queries are not
necessarily known a priori, the runtime data collected might
not be sufficient to answer the relevant questions; or, on the
other extreme, the amount of data collected may become
excessive and hard to manage, leading to intractable analysis.
Online techniques, on the other hand, monitor predefined
properties, collecting just those events that are related to these
properties. While expressing properties beforehand may be
nontrivial, the collected data are guaranteed to be both small
and sufficient to check these properties; they also serve as an
additional, and very valuable, documentation of the desired
behavior of the system. Monitoring as the system runs also
provides a chance of recovery once a problem has been
detected, e.g., by terminating execution or trying to return to a
stable state. For these reasons, we use online monitoring
techniques in this paper.

Our goal is, thus, to create an industrial-strength (in
partnership between the University of Toronto and the IBM
Toronto Lab) online monitoring framework that is nonin-
trusive, supports the dynamic discovery of Web services,
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deals with synchronous and asynchronous communication
and partners implemented in different languages, allows
for specifying and efficient monitoring of a variety of
temporal behavior, permits recovery strategies (this is not
part of the current paper), and is usable by practitioners.

We also aim to create an industrial-strength language for
specifying temporal behavior that captures the distributed,
interactive, and message-driven nature of business pro-
cesses. Our language should enable specifying a variety of
properties and be amenable to efficient runtime monitor-
ing, allowing the analysis of orchestrations involving
multiple partners, from the point of view of the orchestrat-
ing service. We believe that such a language should have
the following characteristics:

1. its notation should be visual;
2. it should allow the specification of desired temporal

behavior, via sequences of events;
3. it should have an explicit emphasis on components

and enable dealing with different types of message
exchange; and

4. it should be able to specify positive and negative
scenarios of interaction as well as global properties.
These characteristics are necessary for the resulting
language to be usable by practitioners.

Having considered a few behavioral graphical languages,
such as GIL [9], Time Line Editor [10], Message Sequence
Charts (MSCs) [11], and Live Sequence Charts (LSCs) [12],
we have chosen UML 2.0 Sequence Diagrams (SDs) [13] as
the basis for our specification language. SDs, used to capture
interactions in the form of message passing between objects,
have been widely adopted by industry as a suitable
language for describing and documenting scenario-based
requirement specifications, with additional constraints ex-
pressed using the Object Constraint Language (OCL) [14].
The other UML 2.0 diagrams did not meet our requirements
for a specification language: no support for multiple parties
(state machines); only allow the specification of simple
sequences of events (communication and interaction over-
view diagrams); too low-level (activity diagrams); cannot be
used to specify behavior (class diagrams).

SDs are a feature-rich language without a formal
semantics. In this paper, we identify a subset of SDs that
is sufficiently expressive for capturing safety and liveness
properties. While liveness properties are not monitorable in
general, they can be effectively checked for Web services
with finitely terminating behaviors. Specifically, we aim to
generate three types of monitors: accepting individual
(existential) negative behaviors that correspond to a viola-
tion of safety properties; their dual, accepting universal
positive behavior that corresponds to finite liveness (once
an event occurs, the rest of the events must occur before
termination); as well as individual positive behaviors that
can easily be specified in SDs. For the latter type, we do not
look for violations (if a given trace does not correspond to a
desired behavior, perhaps others will), but do report when
we were able to observe their satisfaction.

To enable monitoring, we formalize our subset of SDs
using finite-state automata. Similar approaches to formaliz-
ing sequence diagram variants have been previously
proposed by other researchers, e.g., [15], [16], [17]. Since
automata and logic are intimately related, an automata-based

characterization allows us to investigate connections be-
tween SDs and temporal logics, and translate SDs to
automata to enable conformance checking of finite execution
traces against their specifications expressed in SDs. We then
show that this language is sufficiently expressive to capture a
wide variety of frequently used properties, captured and
catalogued in the Specification Pattern System (SPS) [1]. This
approach also gives basis for tool support to enable usable
specification of runtime conversations.

1.1 A Motivating Example

Consider, for example, a Web-based Loan Application (LA)
system, distributed as a sample application with the IBM1

WebSphere1 Integration Developer v6.0.2. Users enter loan
application information (name, taxpayer id, and loan
amount) through a Web page, and are eventually informed
of the status of their applications. The LA workflow first
checks if the user’s credit score is valid, and will decline
their loan request if the user has a bad credit score, i.e., less
than 750. A credit score is considered valid if it is between
300 and 850. If the credit score is good, the workflow then
checks the loan amount: loans for $50,000 or less are
automatically approved; loans for larger amounts are
earmarked for manual approval.

The workflow diagram in Fig. 1a, which is described as a
BPEL specification, shows high-level steps that are executed
in a loan application system, and Fig. 1b shows an assembly
diagram describing how the main process of the LA system
invokes its partners, such as CreditCheck (implemented in
Java), rule groups (LoanLimit), or human tasks (Follow-
UpDeclinedApp, CompleteTheLoan, and Process-
TheApplication). Specifically, the CheckCredit activ-
ity in Fig. 1a invokes the CreditCheck partner in Fig. 1b,
and the conditional activities ScoreEvaluation and
AutoApprovalTest invoke the LoanLimit partner. The
partners in Fig. 1b implement the following functions:
CreditCheck uses the taxpayer id to retrieve the
corresponding credit score; the LoanLimit rule group
checks the credit score and the loan amount. The human
tasks CompleteTheLoan, ProcessApplication, and
FollowUp follow the application results Approved,
ManualApproval, and Declined, respectively.

Since the LA system is a composition of several
distributed business processes, its correctness depends on
the correctness of its partners and their interactions. For
example, the system should guarantee that every request is
eventually acknowledged and none are lost or blocked
indefinitely, or that loans are only given to customers with a
good credit score. However, in the provided LA applica-
tion, the CreditCheck module assigns a credit score at
random, without using the customer id, thus, preventing
the overall system from satisfying this property. Table 1
shows some properties of the LA system that can be
expressed using our SD subset. For example, P1 and P2 are
possible safety and liveness properties, respectively.

1.2 Organization of the Paper

The rest of this paper is organized as follows: We describe
syntax of the subset of UML 2.0 sequence diagrams used for
expressing properties of Web service conversations in
Section 2. We describe the semantics of our chosen subset
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of SDs and show how to translate it into automata for

runtime monitoring in Section 3. We then show how our

specification language can be used to specify the complete

set of temporal logic property patterns in Section 4. We

describe the implementation of the runtime monitoring

framework in Section 5 and report on the experience using

this framework for three existing Web service systems in

Section 6. After comparing our approach with related work

in Section 7, we conclude the paper in Section 8 with a

summary and an outline of the future research directions.

2 A LANGUAGE FOR SPECIFYING CONVERSATIONS

We choose a subset of UML 2.0 Sequence Diagrams as the
language for specifying Web service conversations. This
subset satisfies the requirements set forth in the previous
section. We formalize this subset in Section 3 and discuss its
expressive power in Section 4.

Sequence Diagrams are a popular formalism for model-
ing behavioral scenarios by describing sequences of
messages communicated between different objects over
time. An example Sequence Diagram describing a scenario
of the LA system is shown in Fig. 2a. Sequence Diagrams
have two dimensions: vertical, which represents time, and
horizontal, which represents objects. Each object is illu-
strated by a rectangle with a vertical dashed line, called a
lifeline. Lifelines are connected by horizontal arrows
denoting messages that are sent from one object to another,
synchronously (solid arrowhead) or asynchronously (open
arrowhead). We refer to Sequence Diagrams with these
features as basic. Basic Sequence Diagrams can be aug-
mented by a number of operators to capture more
sophisticated scenarios. We use the operators described
below in our property specification language and refer to
our language as SD.

. Compositional operators: Operators parallel (par)
and alternatives (alt) are used to compute the
intersection and union of two SDs, respectively.
The operator loop is used for repeating the scenario
described by an SD multiple times, and opt—for
denoting an optional scenario, equivalent to alt with
only one argument.

. Alphabet changing operators: Operators consider
and ignore are used for modifying the communicat-
ing alphabet of SDs.

. Critical operator: The critical operator is used to
ensure atomicity of the enclosed sequence.

. Assertion and negation operators: Operators assert
and negate allow users to express mandatory and
forbidden system scenarios, respectively.

. Interaction use operator: SDs can be shared by
reference, using the ref operator. This is a short-
hand for copying the contents of the referred SD,
where the ref operator occurs, and is a new feature
in UML 2.0.

To describe system scenarios, we often need to express
complementation of an individual message or a set of
messages appearing on the same arrow. The negate operator
is unsuitable for complementing sets because it captures
negative sequences of messages rather than set comple-
mentation. Instead, we use the message complementation
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Several Properties of the LA System

Fig. 1. The LA system: (a) workflow describing the high-level steps of the
LA system; (b) an assembly diagram describing how the main process of
the LA system interacts with its partners.
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operator, originally introduced in the Property Sequence
Charts (PSCs) language [18]. We denote the complement of
a message m by :m and define it as the set of all messages
that is potentially exchanged between objects of the system
except for m.

An example of sequence diagram describing a scenario
of the LA system is shown in Fig. 2a. The diagram contains
three objects, MnPs, CtCk, and LnLt. Object MnPs

corresponds to the main workflow of the LA system, and
CtCk and LnLt correspond to components CheckCredit
and LoanLimit, respectively. The diagram in Fig. 2a
shows two alternative scenarios: First, MnPs sends a check
credit score request, i.e., ckCtSe, to CtCk, and then a check
loan amount request, i.e., ckLnAt, to LnLt. Second, LnLt
receives a check loan amount request from MnPs. Since the
credit score has not yet been checked, LnLt sends a check
credit score request to CtCk.

Basic Sequence Diagrams, denoted by BasicSDs, are the
building blocks of our language. The critical, alphabet
changing, interaction use, assert, and compositional opera-
tors, except for par, can be intermixed and applied any
number of times to BasicSDs. The use of negate and par
operators, however, is restricted to sequence diagrams that

do not use an assert operator. We discuss this assumption
and the rationale behind it in Section 3.6.2 and show in
Section 4 that even with this restriction, the resulting
language remains very expressive.

The grammar for our language, SD, is given in Fig. 3,
where BasicSD, par, alt, loop, critical, opt, negate, assert,
consider, ignore, and ref are terminal symbols, and E is a
set of SD messages. Since operators consider and ignore
change the communicating alphabet of SDs, they take a
set E of messages as an input argument.

In what follows, we denote by SD the set of Sequence
Diagrams generated by the grammar in Fig. 3.

3 FORMALIZING SEQUENCE DIAGRAMS

In this section, we provide a formal description of semantics
of Basic SDs as well as the operators described in Section 2
by adopting the automata-theoretic approach of Alur and
Yannakakis [15].

3.1 Nondeterministic Finite Automata

Let � be an alphabet. We define a trace � over � to be a finite
sequence �0�1 . . .�n, where 8i � 0 � i � n; �i 2 �. We denote
by �� the set of all finite traces over �.
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Fig. 2. (a) An SD describing a scenario of the LA example; (b) the NFA corresponding to the first argument of the alt operator in Fig. 2a; (c) the NFA

corresponding to the complete scenario in Fig. 2a; and (d) the resulting runtime monitor.

Fig. 3. Grammar of the SD language.
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Definition 1 (Projection “# ”). Let �0 � � be an alphabet and
� ¼ �0 . . .�n be a trace over �. The projection of � to �0,
denoted � #�0 , is obtained by replacing every �i (0 � i � n)
by the silent symbol � iff �i 62 �0.

Definition 2 (NFA [19]). A Nondeterministic Finite Auto-
maton (NFA) A is a tuple ð�; Q; �;Q0; F Þ, where � is a set of
input alphabet, Q is a finite set of states, � � Q� ��Q is a
transition relation, Q0 � Q is a set of initial states, and F �
Q is a set of accepting states.

A trace � ¼ �0�1 . . .�n is accepted by A iff there is a

sequence q0q1:::qnþ1 of states s.t. q0 2 Q0; qnþ1 2 F , and for

every 0 � i � n; ðqi; �i; qiþ1Þ 2 �. The language of A;LðAÞ, is

the set of all traces accepted by A.

An example of NFA over the alphabet f!ckCtSe;
?ckCtSe; !ckLnAt; ?ckLnAtg is shown in Fig. 2b. In cases
where states do not have outgoing transitions for some
symbols in �, e.g., state q1 on ?ckLnAt in Fig. 2b, it is
assumed that this symbol causes a transition to a (non-
accepting) dead-end state, which is usually not shown.

Let ðq; a; q0Þ be a transition in an NFA A. We often refer to
a as the label of the transition from q to q0. For an NFA A
with � transitions, let LðAÞ be the set of traces of A with the
occurrences of � removed.

States in NFAs may have several outgoing transitions on
the same input symbol, or may have transitions labeled �,
indicating a silent move. Deterministic finite automata
(DFAs) are NFAs, where each state has at most one
outgoing transition on each nonsilent symbol. Every NFA
can be converted into a DFA using the subset construction
algorithm [19].

3.2 Basic SDs

We define Basic SDs as follows:

Definition 3 (Basic SDs [15]). A Basic SD S is a tuple
(I ; E; f;O), where

. I is a finite set of objects.

. E is a finite set of event occurrences that is partitioned
into send events, denoted by !E, and receive events,
denoted by ?E. The set of events sent and received by
an object i 2 I is denoted by Ei.

. f : !E ! ?E is a bijective mapping that associates each
send event e with a unique receive event fðeÞ, and each
receive event e0 with a unique send event f�1ðe0Þ.

. O is a set of total order relations <i defined over the
events Ei for every object i. It corresponds to the order
in which the events are physically displayed along the
lifeline of an object i.

Definition 4 (Partial order [15]). Let S ¼ ðI ; E; f;OÞ be a
Basic SD. We define a partial order relation< overE as follows:

< ¼ ½ð[i2I <iÞ [ ðfðs; fðsÞÞ j s 2 !EgÞ�:�

The scenario in the first argument of the alt operator,
shown in Fig. 2a, is a Basic SD. Here, the set of objects is

I ¼ fMnPs; CtCk; LnLtg;

the set of events is

E ¼ f!ckCtSe; ?ckCtSe; !ckLnAt; ?ckLnAtg;

the total order <MnPs for the object MnPs is

!ckCtSe <MnPs !ckLnAt;

and the partial order< associated with the entire diagram is

!ckCtSe < !ckLnAt;

!ckCtSe < ?ckCtSe;

!ckLnAt < ?ckLnAt:

This partial order assumes that messages are communicated
asynchronously. Partial order for synchronous communica-
tion is a subset of the above because of synchronization. In
the rest of this paper, we assume that messages are passed
asynchronously. Also, without loss of generality, we
assume that all event labels are unique.

We define the semantics of Basic SDs by translating them
into their equivalent NFAs. Intuitively, an NFA AS is
equivalent to a Basic SD S iff AS accepts exactly the set of
traces that can be generated by S, i.e., those traces that
respect the partial order of S. Therefore, translation of S to
AS reduces to the translation of the underlying partial order
of S to AS . The algorithm for translating partial orders to
NFAs, proposed in [15], is as follows: Given a partial order
< over E, let cut c be a subset E that is closed with respect
to < , i.e., if e 2 c and e0 < e, then e0 2 c. Since all the events
of a single process are linearly ordered, a cut can be
specified by a tuple that gives the maximal event of each
process. The set of all possible cuts associated with the
partial order of a Basic SD generates the state space of its
corresponding NFA. The empty cut is the initial state and
cuts with all the events is the final state. There is a transition
labeled e from cut c to cut d, if the cut d equals the cut c plus
the single event e.

Theorem 1. A Basic SD S ¼ ðI ; E;M;OÞ is semantically
equivalent to an NFA AS ¼ ð�; Q; �;Q0; F Þ, where � is equal

to E;Q is the set of all cuts, Q0 is the empty cut, F is the
maximal cut including all of the events, and � allows a

transition from a cut d to a cut c on an event e 2 E iff

d ¼ c [ feg.

The above theorem follows from [15].
Since both the empty and maximal cuts are unique, Q0

and F consist of only one state each. The set of cuts obtained
by unwinding the underlying partial order in the Basic SD
in Fig. 2a is

fhi; h!ckCtSei; h!ckCtSe; ?ckCtSei;
h!ckCtSe; !ckLnAti; h!ckCtSe; ?ckCtSe; !ckLnAti;

h!ckCtSe; !ckLnAt; ?ckLnAti; h!ckCtSe; !ckLnAt; ?ckCtSei;
h!ckCtSe; ?ckCtSe; !ckLnAt; ?ckLnAtig:

Note that the number of states of the corresponding
automaton in Fig. 2b is less than the number of the above
cuts because we reduced the states with the identical
outgoing transitions to a single state.

3.3 Compositional Operators

The semantics of the compositional operators can be given
in terms of the standard operations defined on NFAs (e.g.,
see [19]). In particular,
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. par corresponds to the parallel composition operator
or the intersection operator over NFA;

. alt corresponds to the union operator;

. loop corresponds to the Kleene star operator.

The theorem below, which follows from Theorem 1 and
[19], shows that the set of NFAs associated with SDs is
closed under the compositional operators.

Theorem 2. Let S; S1, and S2 be SDs, and let S ¼ S1opS2, where
op is a compositional operator. Then, AS ¼ AS1

opAS2
.

For example, the automaton in Fig. 2c corresponds to the
sequence diagram in Fig. 2a. As shown in the figure, the
automaton is obtained by computing the union of the two
Basic SDs corresponding to the two alternative scenarios of
the SD in Fig. 2a. We have also added a self-loop to the
initial state of the automaton in Fig. 2c labeled with the
underlying alphabet of the SD in Fig. 2a. The self-loop
allows the automaton to guess when the scenario specified
by the SD begins.

3.4 Alphabet Changing Operators

Operators consider and ignore are used to change the set of
communicating alphabet of an SD. Both of them receive an
SD S and a set of events E as input, but consider adds the
elements in E to the set of events of S, whereas ignore
removes the elements in E from the set of events of S.
Formally, let S and S0 be SDs, E be a set of events, and
AS ¼ ð�; Q; �; fq0g; F Þ be the automaton associated with S.
For S0 ¼ considerES, AS0 ¼ ð� [E;Q; �; fq0g; F Þ, and for
S0 ¼ ignoreES, AS0 ¼ ð� n E;Q; �0; fq0g; F Þ, where

�0 ¼
�
� \ ðQ� ð� n EÞ �QÞ

�
[

fðq; �; q0Þ j 9� 2 E � ðq; �; q0Þ 2 �g:

It is easy to see that the set of NFAs associated with SDs is
closed under the operators consider and ignore as well.

Recall that any missing transition at a state leads to an
error state. Increasing the input alphabet � of AS without
changing the transition relation � means that more execu-
tion traces end up in the error state, while shrinking the
input alphabet without changing the transition relation
means that more execution traces are accepted. For
example, the consider operator in Fig. 2a extends the
underlying alphabet � of the automaton in Fig. 2c from
f!ckCtSe; ?ckCtSe; !ckLnAt; ?ckLnAtg to f!ckCtSe; ?ckCtSe;
!ckLnAt; ?ckLnAt; !ckTrID; ?ckTrIDg.

3.5 Critical Operator

A critical region in a sequence diagram can be specified
using the critical operator. A critical region means that the
scenarios of the region cannot be interleaved by other

messages, and thus, should be treated atomically. We
formalize the semantics of this operator as follows: If the
first message of the critical region is observed, then the rest
of the behavior must be observed as well, without seeing
any intermediate message.

LetS be an SD enclosed within a critical operator andAS be
the automaton for S. The automaton for critical S is obtained
by adding a self-loop to every initial state of AS labeled by
�nfe j9q0 2 Q0 � q0 has an outgoing transition oneg. This self-
loop transition at the initial state allows the automaton to
wait for a satisfying run to begin. The initial state also
becomes final.

Definition 5. Let AS ¼ ð�; Q; �; fq0g; F Þ be an NFA associated
with an SD S and Scrit be an SD obtained by enclosing S with
a critical operator. The automaton corresponding to Scrit is
Acrit
S ¼ ð�; Q; �0; fq0g; F [ fq0gÞ, where

�0 ¼ � [ fðq0; e; q0Þ j e 2 � ^ 6 9q 2 Q � q 6¼ q0

^ ðq0; e; qÞ 2 �g:

For a sequence enclosed by a critical operator, once the
first symbol of the sequence has been seen, the entire
sequence should be seen as well. For this reason, the self-
loop at the initial state of an automaton corresponding to a
critical region is labeled by � minus the initial symbols of the
expected sequences. For example, Fig. 4a shows a sequence
diagram with a critical operator, and Fig. 4c—its corre-
sponding automaton. Similar to the automaton in Fig. 2c, we
have added a self-loop to the initial state of the automaton in
Fig. 4c to allow this automaton to guess when the scenario of
interest begins.

3.6 Assertion and Negation Operators

The negate operator provides a mechanism for specifying
undesirable (negative) scenarios and the assert operator
allows us to specify desirable (positive) scenarios. The former
operator can be used to express safety properties, e.g., P1 in
Table 1, and the latter—finitary liveness properties, e.g., P2.

Various formal treatments of the semantics of the assert
and negate operators are given in the literature, e.g., [16],
[17], [20]. These operators have a rich expressive power, and
yet, their arbitrary combinations are not well understood. In
particular, it is unclear whether negating an asserted
scenario should mean that this scenario is not required to
occur or that its negation has to occur. In this section, we
define the semantics of assert and negate operators in terms
of NFAs. Our formalization allows us to arbitrarily combine
these operators as long as we never attempt to apply a
negate operator to a sequence diagram containing an
asserted fragment.
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Fig. 4. (a) A basic SD enclosed by a critical operator and its corresponding NFAs: (b) before applying critical; (c) after applying critical.
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3.6.1 The Negate Operator

As mentioned above, negate allows us to express safety
properties. By applying negate to an SD S, we indicate
that the scenario represented by S is forbidden, and
therefore, a safe system should never produce it [17]. For
example, consider Fig. 5a, which shows an SD corre-
sponding to the safety property P1 in Table 1. MnPs sends
a check credit score request, i.e., ckCtSe, to CtCk. In
response, CtCk sends the actual credit score (ctSe) to
MnPs. A creditScoreNotValid (ctSeNV) message is
sent if the value is not in the correct range. This property
is expressed in SD by applying a negate operator to the
sequence !ckCtSe:?ckCtSe:!ctSe:?ctSe:!ctSeNV:?ctSeNV.

The negate operator over SDs is equivalent to the
complementation operator of NFA. Given an SD S and its
corresponding automaton AS , we first add a self-loop
transition labeled �, i.e., the underlying alphabet of S, to the
initial state of AS in order to enable AS to guess when a
satisfying run begins. Note that after adding this self-loop,
AS becomes nondeterministic. To obtain the automaton for
the negated SD, we need to first determinize AS and then
complement the result.

For example, an automaton corresponding to the SD in
Fig. 5a, after adding the self-loop and before complementa-
tion, is shown in Fig. 5b. Fig. 5c shows the final,
complemented, automaton.

Note that since the sequence S is nonempty, the initial
state of the complement ofAS is always accepting, and hence,
the empty string is always in the language of the complement
of AS . This is expected because the negate operator holds
1) when the negative scenario S does not completely occur
and 2) when no messages at all are exchanged.

3.6.2 The Assert Operator

The meaning of the assert operator is given by the UML
standard as follows [13]: “the sequences of the operand are the
only valid continuations. All other continuations result in invalid

behavior.” This interpretation has been formalized in
different ways [16], [17]. The one that we have adopted is
that of [16], which is described as follows: Given an asserted
behavior � ¼ �0 . . .�n and a system behavior �0, every
occurrence of �0 in �0 should be followed by the rest of �.
Thus, an SD with an assert is interpreted universally: “for
every run, once it satisfies the start of the sequence, it must
complete the sequence before termination.” Note that the
difference between assert and critical is that the former
checks all possible suffixes of the input run to probe the
sequence, whereas the latter only checks the first occurrence
of its sequence.

In [16], alternating automata with universal initial states
are used to capture this meaning of assert. Such automata
accept a trace if all of the runs emanating from their initial
states are accepting. NFA, however, accepts a trace when
there exists an accepting run emanating from the initial state.
Rather than moving outside NFA (and thus, complicating
the monitoring framework), we chose to reinterpret the
acceptance for the assert operator instead: An NFA for an
asserted trace � checks all suffixes of the system traces, and
if one is not accepted, a failure is reported. This “universal”
treatment is given to the entire sequence diagram, not just
the part containing assert. This works correctly as long as
such NFAs are not complemented or composed (in
parallel)—the negation and parallel composition operators
over automata with universally interpreted acceptance are
different from those operators of NFA. While negation and
parallel composition operators for NFA are computed via
subset construction and cross-product, respectively, these
operators for the alternating automata simply convert
universal states into existential or add an additional
universal state, respectively [21]. Thus, we restrict the
application of negate and par to SDs that do not contain an
assert, as described in Section 2.

Since alternating automata can be converted into NFA
with a possibly exponential blowup in size, we could have
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Fig. 5. (a) An SD describing P1 in Table 1 and its corresponding NFAs: (b) before applying negate; (c) automaton after determinization and

complementation; (d) the resulting monitor.
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translated the assert operator directly into NFA. However,
we chose not to do it to preserve the succinctness and
relatively small size of our monitoring automata.

Given the above discussion, the translation of assert
operator is straightforward: After deriving the NFA AS for
SD S and adding a self-loop labeled � at its initial state, the
automaton for assert S is obtained by interpreting the initial
state as universal (we follow the notation of [16], denoting
this state with a “^”) and making it accepting. For
example, the SD in Fig. 6a describes the liveness property
P2 in Table 1—the desirable scenario is enclosed in the
scope of an assert operator. Fig. 6b shows the automaton
corresponding to this SD.

3.7 Interaction Use Operator

The ref operator is used for referring to an SD fragment
from within another SD. Our treatment of ref is to inline the
SD being referenced, as illustrated in Fig. 7.

3.8 Message Complementation

The message complement operator has been adopted
from [18]. If � is the set of messages exchanged in an SD,
andm 2 �, then,:m is � n fmg. For a set fm;ng of messages,
:fm;ng ¼ � n fm;ng. For example, let � ¼ fp; q; s; tg. Then,
:p ¼ fq; s; tg and :fp; qg ¼ fs; tg.

This operator, although not being part of UML 2.0, can be
expressed in terms of UML operators as follows: Let S � �
be a set of messages. We replace :S by an SD fragment in
which the operator alt is applied to individual messages in
� n S. For example, consider the SD in Fig. 8a with a
message :fp; qg, and let � ¼ fs; t; p; qg. This SD is
equivalent to the one in Fig. 8b, where :fp; qg is replaced
by an alt fragment in which s and t are two alternative
messages. The NFA for the sequence diagram without

message complement operators can be generated in a

straightforward way following the translation for the alt

operator (see Fig. 8c).

3.9 Generating Monitors from NFA

To be able to use an automaton AS obtained from an SD S

for runtime monitoring, we need to extend the language of

AS to handle system behaviors over alphabets larger than S.

We do so by adding stuttering self-loops to the automaton’s

states. Semantically, this means that AS does not change its

state when the input symbol is outside the alphabet of S.

Definition 6 (Stuttering). Let �sys be the set of system events

and A ¼ ð�; Q; �;Q0; F Þ be an NFA s.t. � � �sys. The

automaton A0 ¼ ð�sys; Q; �
0; Q0; F Þ is the stutter-closed

form of A w.r.t. �sys if �0 ¼ � [ fðq;�sysn�; qÞ j 8q 2 Qg.

The transformation of Definition 6 is language preserving.

Theorem 3. Let A ¼ ð�; Q; �;Q0; F Þ be an NFA and �sys s.t.

� � �sys be given. Let A0 be the stutter-closed form of A

w.r.t. �sys (see Definition 6). Then, for every trace � 2 �sys,

� 2 LðA0Þ iff � #�2 LðAÞ (see Definition 1).
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Fig. 6. (a) An SD describing P2 in Table 1 and its corresponding NFAs: (b) after applying assert; (c) the resulting monitor.

Fig. 7. (a) An SD with references SD C; (b) SD C; (c) SD ex after copying the content of SD C; and (d) its corresponding NFA.

Fig. 8. (a) An SD with message complementation; (b) the same SD after
eliminating the complement operator if its underlying alphabet � is
fp; q; s; tg; and (c) its corresponding NFA.
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Proof. The proof follows from the fact that the construction
of Definition 6 does not change the state space of A:

� 2 LðA0Þ

, ðBy definition of language acceptance in A0Þ

9q0; . . . ; qnþ1 2 Q � q0 2 Q0 ^ qnþ1 2 F^

8�i 2 � � �0ðqi; �i; qiþ1Þ

, ðBy definition of �0Þ

9q0; qnþ1 2 Q � q0 2 Q0 ^ qnþ1 2 F^

8�i 2 � #� ��ðqi; �i; qiþ1Þ

, ðBy definition of language acceptance in AÞ

� #�2 LðAÞ:
ut

For example, the monitor corresponding to the SD in
Fig. 5a is shown in Fig. 5d. The language accepted by this
monitor is

��sys n
�
��sys � !ckCtSe � ð��sys n �Þ� � ?ckCtSe�
ð��sys n �Þ� � !ctSe � ð��sys n �Þ� � ?ctSe�
ð��sys n �Þ� � !ctSeNV � ð��sys n �Þ� � ?ctSeNV � ��sys

�
:

That is, the monitor rejects a trace that begins with a check
credit score request (ckCtSe), which gets received (perhaps
with some events not in the vocabulary of this SD in the
middle), followed by receiving the credit score (ctSe) and
sending a message indicating that it is invalid (ctSeNV),
followed by arbitrary events in the system. Thus, the
behaviors during which the check credit score requests are
made and results in an invalid credit score are rejected;
these correspond to violations of property P1.

The monitor for the SD in Fig. 6a is shown in Fig. 6c. Its
language is

�
ð�sys n !lnAtOkÞ� � ð!lnAtOk � ð�sys n �Þ�

� ?lnAtOk � ð�sys n �Þ�

� !ckCtSe � ð�sys n �Þ�

� ?ckCtSeÞ�
��
:

This monitor accepts traces that either do not exhibit
!lnAtOk at all, or, if !lnAtOk has been seen, exhibit the entire
sequence ?lnAtOk � !ckCtSe � ?ckCtSe. Traces not accepted
by this monitor violate property P2 of the LA system.

Note that we do not add stuttering self-loops to the
critical regions because behavior specified in critical regions
cannot be interleaved by other messages.

3.10 Complexity of the Translation

The size of an automaton AS corresponding to a basic SD S,
i.e., the number of states inAS , isOðnkÞ, wheren is the number
of events and k is the number of objects [15]. Applying the SD
operators does not cause a significant increase in the size of
the resulting automata except for the cases where we need to
determinize these automata, which can exponentially in-
crease their state spaces. However, in our experience, the
generated automata have been very small (see Section 6).
Obviously, it remains to see whether the approach scales to
larger Web service systems and more complex properties.

3.11 Discussion

3.11.1 On Using Our Language in MDA Tools

In this paper, we formalized the syntax of the SD language
using a context-free grammar (see Fig. 3). As discussed in
Section 5.1, we used the Rational Software Architect (RSA)
[22] plug-in for WebSphere to generate an editor for SD
diagrams. To do so, we have identified a fragment of the
UML metamodel that captures the SD operators described
in Fig. 3 and specified logical properties constraining the
nesting and ordering of these operators. We have imple-
mented a separate Java module to check these constraints
over the generated SD diagrams in our tool. In the future,
we plan to encode these constraints as part of the
metamodel by expressing them in the OCL [14]. This would
make our editor reusable in other UML environments.

3.11.2 On the Expressive Power of Our Language

In this section, we provided a transformation from our
language SD to NFA, showing that SD can capture safety
and finitary liveness properties. Our transformation further
shows that SD is not more expressive than regular
expressions, i.e., the language that NFA recognizes.

The main restriction in SD is that we do not allow the
nesting of asserts within the scope of negates. For example,
sequence diagrams such as the one shown in Fig. 20a are not
included in SD (we discuss these diagrams in more detail in
Section 6.2). However, this restriction is mainly syntactic
because we can always push the negate operator down to the
atomic level and reformulate the sequence diagram into a
semantically equivalent one in which negate is not applied
within the scope of assert. For example, Fig. 20b shows a
sequence diagram, which is semantically equivalent to the
one in Fig. 20a and is within the SD language.

Note that after removing the negate operator, the resulting
sequence diagram may have brand new scenarios: to do the
removal, we need to elicit the set of all possible scenarios
complementary to the scenario enclosed by the negate. For
example, the scenario negate(reserveHotel; hotelReserved)
in Fig. 20a is replaced by two new scenarios, reserveHotel;
timeout and reserveHotel; hotelNotReserved, in Fig. 20b.
The process of enumeration and analysis of all possible
alternative scenarios obviously require domain knowledge,
and thus, cannot be automated in general. However, the
online nature of our monitoring framework allows us to
register for and collect the alternative scenarios with ease.

4 SD TEMPLATES FOR TEMPORAL LOGIC

PROPERTY PATTERNS

In this section, we study the expressive power of our SD
language by using it to express temporal logic property
patterns [1]. Property patterns have been shown to capture
a wide variety of commonly used properties, and being able
to express property patterns is a good indication of an
expressive power of a new language.

We first provide an overview of property patterns in
the following section and then introduce several SD
templates and show how they can encode the property
patterns in Section 4.2.
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4.1 Temporal Logic Property Patterns

The Specification Pattern System (SPS), proposed by Dwyer
et al. [23], is a pattern-based approach to the presentation,
codification, and reuse of property specifications. The
system allows patterns like “event P is absent between
events Q and S” or “S precedes P between Q and R” to be
easily expressed in and translated between linear-time
temporal logic (LTL), computational tree logic (CTL) [24]
and other state-based and event-based formalisms. SPS has
been advocated as a standard tool for measuring the
practical usefulness and expressive power of specification
languages, e.g., [18] and [25].

The property patterns are organized into a hierarchy
based on the kinds of system behaviors they describe (see
Fig. 9a): Occurrence patterns talk about the occurrence of a
given event/state during system execution and Order
patterns specify relative order in which multiple events/
states occur during system execution. The patterns are
described in Table 2.

Each pattern is associated with scopes—the regions of
interest over which the pattern must hold. There are five
basic kinds of scopes: Global, Before, After, Between, and
After-Until. Definitions of these scopes are given in Table 3
and pictorially described in Fig. 9b.

For example, consider a property of a queue that says
that there should be a dequeue event between every
enqueue and empty. This is the Existence pattern, with the

Between scope. Looking up the LTL formalization of this
pattern/scope combination from the catalogue and sub-
stituting our event names, we obtain the formula

utððenqueue ^ :emptyÞ
) ð:empty W ðdequeue ^ :emptyÞÞÞ:

4.2 Mapping Property Patterns to SDs

In this section, we provide several SD templates for the SPS
patterns (see Fig. 11) and show how these templates are
used to express patterns in the SPS hierarchy. Selected
mappings are described below; the remainder can be found
in the Appendix. Note that the actual direction of the
arrows is determined when a template is instantiated.

Absence: message p cannot occur in a given scope. This
can be expressed as shown in Fig. 11a.

Existence: a message p must occur in a given scope. This
can be expressed as shown in Fig. 11b.

Until: This pattern is not part of the SPS; however, it is
used to specify the Precedence patterns. A sequence p� of
messages occurs until the first occurrence of message q, in a
given scope (see Fig. 11h). This pattern, formalized using a
single “until” temporal operator [24], can be refuted in one
of the two ways: either p never occurs, or after seeing a
finite number of p messages (expressed using loop 1, n),
neither a p nor a q message occurs (expressed as :fp; qg).
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TABLE 2
SPS Patterns

TABLE 3
SPS Scopes

Fig. 9. Specification property system: (a) a pattern hierarchy and (b) pattern scopes.
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Precedence: a message s (cause) precedes a message p

(effect), as shown in Fig. 11i. This pattern allows the cause
part to occur without the effect. We describe this pattern
in SD by expressing the two possible cases that this
pattern specifies: 1) p never occurs or 2) p never occurs
before s. The first case corresponds to checking absence of
p; the second—to checking :p U s (the “until” template),
since we want to be sure that no p messages are sent
before the first s message.

In the SDs in Fig. 11, symbols p, q, s, and t can denote
complex SDs rather than just the individual messages. In
this case, we treat these symbols as placeholders, use a ref
operator for the SDs that should be inserted in their place,
and replace message complementation by negation.

4.3 Mapping Property Scopes

We now show how to express property patterns involving
scopes that are used to define the traces over which a

property will be monitored. Scopes can be simple messages

or more complex scenarios in our specification language.

The ref operator is used to introduce scope delimiters in the

corresponding locations. For example, to apply the Before

R scope to a property, the scope delimiter R is inserted

after the property we wish to verify (see Fig. 10a). In the

case of the After Q scope, the delimiter is inserted before

the property (see Fig. 10b). Finally, both the Between (see

Fig. 10c) and After-until (see Fig. 10d) scopes add before/

after delimiters. In the After-until scope, the property is

valid even if the “until” part does not occur. Therefore, the

second delimiter in this scope is optional. Thus, there is an

implicit opt operator in each scope delimiter.

4.4 Specifying Properties of the Loan Application

We now show how property patterns can be used to express

properties of the LA system given in Table 1. Properties P1

SIMMONDS ET AL.: RUNTIME MONITORING OF WEB SERVICE CONVERSATIONS 233

Fig. 10. Scope mapping for sequence diagrams: (a) Before R; (b) After Q; (c) Between Q and R; and (d) After Q until R.

Fig. 11. Property pattern mappings for SDs: ðs; tÞ means message s followed by message t. (a) Absence. (b) Existence. (c) Bounded Existence.
(d) Universality. (e) Response. (f) Response Chain: 2 stimulus - 1 response. (g) Response Chain: 1 stimulus - 2 response. (h) Until.
(i) Precedence. (j) Precedence Chain: 2 cause - 1 effect.
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and P2 are described in Figs. 5 and 6, respectively. The rest

are discussed below.
Property P3: “A loan cannot be granted if the loan

amount is less than or equal to zero.”
We express this property using the Absence pattern

(see Fig. 11a): our property holds if there are no scenarios,

where a loan is granted after the system has been warned

that the loan amount is less than or equal to zero. In the

LA system, the LnLt component checks the predicate

“loan amount is >0,” sending a loanAmountOkay (lnAtOK)

message if the condition holds, and a loanAmountNotOkay

(lnAtNO) message otherwise. A loan is considered granted

if it is manually or automatically approved, which can be

monitored by checking if the main workflow MnPs sends

a completeTheLoan (ceLn) or processTheApplication

(psAn) message. See Fig. 12a for the corresponding SD;

the resulting monitor is shown in Fig. 12b.
Property P4: (an example of a scoped property) “After

checking that the applicant has a good credit score, a loan

cannot be granted if the loan amount is less than or equal

to zero.”
This property is equivalent to the property P3 with the

After Q scope, where Q is “checking for a good credit

score.” To express it, we introduce the scope delimiter Q

before the property P3, as seen in Fig. 10b. The SD

corresponding to P4 is shown in Fig. 13a and consists of

two parts: 1) scope Q and 2) property P3, i.e., the fragment

specified by a ref operator which should be replaced by the

SD for P3. The resulting monitor is shown in Fig. 13b.
Property P5: “No one can get a loan without first going

through a credit check.”
At this point, we have identified common scenarios that

occur in the LA system: SDs creditCheck (Fig. 14a) and

loanGranted (Fig. 14b). We can now express property P5

using the Precedence pattern: SD creditCheck must precede

SD loanGranted. Note that the SD creditCheck is not optional

and must occur for the property to hold. The SD for P5 is

shown in Fig. 14c.
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Fig. 12. P3: Absence pattern. (a) SD describing the LA property P3 and (b) the resulting monitor.

Fig. 13. P4: Absence pattern, Scope After. (a) SD describing the LA property P4 and (b) the resulting monitor, obtained by concatenating the NFAs

for the scope and P3.

Fig. 14. P5: The Precedence pattern. (a) SD for checkCredit; (b) SD for loanGranted; and (c) SD showing application of the Precedence pattern.
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5 ARCHITECTURE AND IMPLEMENTATION

We have implemented our runtime framework within the
IBM WebSphere business integration products [26]. In what
follows, we describe the architecture of our solution and
discuss some of the more challenging parts of the
implementation.

5.1 Architecture

Our solution uses the WebSphere Process Server [27] and
the WebSphere Integration Developer [28]. The former
provides a BPEL-compliant process engine for executing
BPEL processes and a built-in Service Component Archi-
tecture (SCA), which is a particular instantiation of SOA.
The latter provides a development environment for build-
ing Web service applications and a graphical package for
creating UML Sequence Diagrams.

The architecture of our framework is shown in Fig. 15.
With the help of the PropertyManager (PM), users create
UML SD specifications for their Web service applications.
This component also checks if the user-specified properties
belong to our SD subset and generates the corresponding
NFA as a by-product of this check. If monitoring is enabled,
the MonitoringManager (MonM) translates these NFAs into
monitor automata using the techniques described in
Section 3. During the execution of the Web service,
MessageManager (MM) obtains interaction events from the
SCAMessageHandler (MH) and directs the relevant events to
MonM, which, in turn, updates the state of every active
monitor automaton, until an error has been found or all
partners terminate. The intercepted events are never stored,
neither by the MH nor by the MM. We describe these
components below.

PropertyManager consists of a graphical tool for specify-
ing interaction properties as UML SDs. Once users create an
SD and enable monitoring, the PM loads the XML model of
the SD, checks that it uses the language subset described in
Section 3, unwinds the partial order of the diagram into an
NFA using the algorithm introduced in Section 3, and
passes the NFA to MonM. In the case of a property failure,
the PM is also responsible for displaying errors to the user.

SCAMessageHandler is deployed on the process server
and establishes a bridge through which our runtime
monitoring framework communicates with the server to

obtain information about Web service execution. On the
process server, the SCA is responsible for the invocation of
native SCA service components and for the binding and
interaction with external services. SCAMessageHandler
monitors interactions within the SCA application server
runtime environment and is responsible for observing and
routing these invocation requests and responses to the
correct components.

MessageManager is responsible for obtaining service
request/response messages exchanged between business
components from the SCA layer. MM, registered as a
listener to SCAMessageHandler, intercepts events for opera-
tion invocation and filters out irrelevant messages such as
locating a service. For the “interesting” events, MM extracts
key information related to the operation invocation: what
are the sender and receiver of the given message, whether
the invocation is synchronous or asynchronous, what type
of message is being exchanged, whether priorities are being
used, etc. MM then packs all these information together
with the time stamp of when the events were intercepted
and sends them to the message queue associated with
MonM via a TCP/IP communication channel.

MonitoringManager is the main component of our frame-
work, as it constructs monitoring automata, processes
events, and keeps track of the acceptance status of all
monitors. Upon receiving a monitoring request together
with the NFA representation of an SD from PM, MonM
converts the NFA to a DFA and further to a monitor using
the algorithms described in Section 3. To facilitate checking
multiple properties for a single Web service system, MonM
can manage a number of monitors simultaneously. Upon
receiving an event from its message queue, MonM identifies
those monitors that include this event as part of their
communicating alphabets and changes their states accord-
ing to their transition functions. All other monitors do not
receive this event at all, which means that they stay in the
same state. Note that this filtering mechanism used in our
implementation differs from the one described in Section 3.9
(the stuttering step). The two are equivalent, and we used
the stuttering construction in order to study the expressive
power of our language. When updating the state of a
monitor, MonM checks whether it is in a valid state;
otherwise, it marks the corresponding property as being
violated and records the erroneous event so that the PM is
able to replay the error to the user.

5.2 Implementation

Since the WebSphere business integration tools are based on
Eclipse, the functional components of our framework have
been implemented as Eclipse plug-ins as well. Based on the
architecture described in the previous section, we imple-
mented four plug-ins. Fig. 16 depicts the interactions and
dependencies among these, using double-arrowed lines.

Monitoring.Core Plug-in is the component corresponding to
the MonitoringManager in the architecture. It consists of four
packages: the MonitorCore package, which acts as an entry
point to MonitorCore plug-in; the Monitor package, respon-
sible for receiving expanded SDs and translating them into
monitor automata; the EventAnalysis package, which handles
events received from MessageManager Plug-in and forwards
relevant events to monitors; and the Utilities package, which
provides automata-related manipulation functions.
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Fig. 15. Architecture of the framework.
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MessageManager Plug-in implements the MessageManager
functionality in the architecture. It contains two packages:
EventAdaptor and EventForwarder. The EventAdaptor package
registers itself as a listener to the SCAMessageHandler built
into the WebSphere Process Server infrastructure, observing
all invocation events flowing in the server SCA layer. To be
effective, the EventAdaptor needs to be deployed into the
server. Thus, when the server runs, the change made by the
package is picked up by the WebSphere Process Server. The
EventForwarder package simply acts as a bridge between the
EventAdaptor package and the MonitorCore package to
transfer events from the former to the latter. Since the
EventAdaptor and EventForwarder run in the different address
spaces, the communication between them is established
through a TCP/IP socket. Specifically, the EventForwarder
acts as the server role in a socket while the EventAdaptor
takes the client side. Whenever it observes an event in the
SCA layer, the EventAdaptor sends it to the socket port.

PropertyManager Plug-in corresponds to PropertyManager
functionality in the architecture. It contains all Sequence
Diagram-related functionalities, which are grouped into
two packages. The SDCreation package adopts an existing
graphical UML package provided by WebSphere as the
Sequence Diagram editor. This existing graphical UML
package, which acts as the front-end of the SDCreation,
stores SDs in XML format and further provides the data
structure along with APIs to manipulate SDs in memory.
The back-end of the SDCreation is responsible for checking
whether specified objects and messages are valid in a Web
service composition when users use them to create a
property for monitoring. The SDAnalysis package is where
user-specified SD properties get translated into NFAs. It
recursively traverses the data structure passed in from the
front end to extract all SD constructs and unfold the partial
order. The current implementation supports all operations
introduced in Section 2. In our framework, we adopted the
implementation of compositional operations over automata
from the Charmy project [29].

Monitoring.UI Plug-in serves as an extension point to the
framework and provides various graphical interfaces that

users need to interact with the runtime monitoring tool. For
example, CreateSDAction and EnableMonitorAction provide
action icons in Eclipse for users to create an SD and then
enable it for monitoring. The satisfaction of monitored
properties and the system execution history can be seen in
the ActiveMonitors and EventHistory windows, respectively.

Fig. 17 shows the screenshot of the user interface of our
runtime monitoring framework. The BusinessIntegration
view (panel in the top-left corner) shows the individual
files of the LA system implementation. The panel in the
middle of the window is the editor for creating SDs and
viewing the monitoring results. The bottom two panels
belong to the runtime monitoring framework. The tab on
the left is the ActiveMonitors view, which lists all monitor-
enabled properties. The view also shows the acceptance
status of the monitored properties. The tab on the right is
the MonitorHistory view from which users can trace the
execution of Web services.

5.3 Other Implementation Issues

As mentioned in Section 3, in order to apply the negate
operator, NFAs should be determinized. However, the
determinization algorithm may result in an exponential
blowup of the number of states. To keep the size of the
automata small, we have used several optimization techni-
ques such as reduction and minimization [19], adopting the
implementation of these techniques from the BRICS
package [30].

Although all generated automata are stored in memory
and users do not need to use them directly, it is helpful to
have an interface to allow viewing and debugging these
automata. In our framework, we can store the generated
automata in XML, and thus, enable displaying them in
graphical automata editing tools such as JFLAP [31].

While Web services are terminating processes, they are
meant to be repeatedly executed by different customers. In
order to reuse the monitor for checking subsequent execu-
tions of the same Web service, we have implemented a
resetting mechanism: As one execution terminates, an
additional transition labeled terminate, added to all accept-
ing states of the monitor, brings it back to the initial state.

BPEL supports the notion of process instance, so all
messages include a process identifier as part of message
header. Messages labeled with an existing process identifier
are routed to the corresponding process; otherwise, a new
process instance is started. By associating these process
identifiers to our monitors, we can easily monitor multiple
instances of the same process.

Because Web services are distributed and allow asyn-
chronous message communication, messages may get
delivered and received out of order. To handle out-of-order
events, we annotate each event with two time stamps: one at
invocation and the another at reception. When events arrive
at the message queue of MonM, these time stamps are used
to check if the invocation ordering is consistent with the
reception ordering. If the orderings are not consistent,
detected errors may be caused by network delays rather
than incorrect conversations. Currently, all time stamps are
generated by the same WebSphere Process Server.

We report monitoring results by displaying the status
of each monitor in the ActiveMonitors view, tagging each
property as satisfied, violated, or not yet conclusive.
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Clicking on satisfied or violated results displays a reason
for the decision, in the Sequence Diagram editor. Table 4
gives a summary of the feedback provided by our
framework as follows:

. For monitors for individual positive scenarios, if a
given trace is accepted, the Sequence Diagram Editor
shows the appropriate SD, with the observed trace
highlighted. If the given trace is not satisfied by such
a monitor, the answer to whether the system can
exhibit such behaviors is inconclusive.

. Acceptance by a monitor for negative scenarios
indicates that the appropriate safety property is
violated, which is depicted by highlighting the
appropriate trace (see Fig. 18a). Certainly, a failure
to observe the violation on a given trace does not
mean that every trace will satisfy the property; thus,
in this case, the property is marked inconclusive.

. A monitor for a universal positive property, repre-
senting finitary liveness, is violated if the desired
sequence has been started but has not been finished

before the process terminated. This is indicated by
the red line labeled “TERMINATE.” If the sequence
has been observed to completion, or if the process
failed to terminate, no information about the
satisfaction of this monitor can be given, deeming
it inconclusive.

We also display the termination point in the case of
individual positive scenarios, showing that the given trace
is a prefix of an acceptable scenario.

6 EXPERIENCE

We have applied our framework to several Web services

and report on results of monitoring them by running our
tool on the WebSphere Process Server V6.0 (WPS) and
WebSphere Integration Developer V6.0.1 (WID). Table 5

shows the details of the properties we specified and
checked. In the table, column “Id” contains a unique
identifier for each property; “Property” is the actual

property to be checked; “# Part.” corresponds to the
number of partners involved in the corresponding SD;
“# Events” is the number of events sent between partners in

the SD; “# States” corresponds to the number of states in the
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TABLE 4
Summary (Answer/Feedback) of the

Results from the Monitoring Framework

Empty cells indicate inconclusive results.
Fig. 18. Reporting errors: (a) A complete (negative) trace. (b) An
incomplete sequence: violation of a liveness property.

Fig. 17. Screenshot of the framework’s user interface.
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corresponding automaton; and “# Trans.” is the number of

transitions in the automaton. Note that all of the constructed

automata have fever than 100 transitions. While the system

generates a large number of messages, our monitors receive

just those within the scope of the automata; the rest are

filtered. Furthermore, the intercepted events are never

stored. Thus, enabling monitoring does not produce a

significant performance overhead.

6.1 Monitoring the LA System

The LA system, introduced in Section 1.1, consists of six

partners and six invocation-type activities, with the work-

flow shown in Fig. 1a. This application comes as part of the

WebSphere Integration Developer v6.0.2. As it is a sample

application, the original developers of the application have

simplified some of the business logic, e.g., the CreditCheck

component generates random credit scores rather than

access the credit bureau.
We began by testing the system to see if the application

was correctly deployed. To do this, we ran it on two

different taxpayer ids and three different loan amounts,

with the following specific input configurations:

c1 ¼ < taxpayer id ¼ 1;234; loan amount ¼ $10;000 >;

c2 ¼ < taxpayer id ¼ 1;234; loan amount ¼ $60;000 >;

c3 ¼ < taxpayer id ¼ 1;888; loan amount ¼ �$1;000 >:

As the system is supposed to generate random valid credit

scores, we ran the system 10 times with each configuration.

For configuration c1, we expected to see some automatic

approvals of the loan and some declines, based on whether

the good or the bad score is generated. For c2, we expected

some manual approvals of the loan (the loan amount is

above the automatic approval limit) and some declines.

Finally, since the loan amount in c3 is invalid, we expected

to see only loan rejections.
For configurations c1 and c2, the behavior we observed was

as expected: P1; P2; P5 always held and P3; P4 held when the

loan was granted. However, for all executions of c3, the

system automatically approved the loan, meaning that

properties P3 and P4 were violated. For all executions of c3,

the system produced the following faulty execution trace:

FT ¼ ðMnPs; ckCtSe; LnLtÞ; ðLnLt; ctSeOK; CtCkÞ;
ðMnPs; ckLnAt; LnLtÞ; ðLnLt; lnAtNO; CtCkÞ;
ðMnPs; ceLn; CeLnÞ;

where each triple ðSender;m;ReceiverÞ denotes partner

Sender sending a message m to partner Receiver. The

ðLnLt; lnAtNO; CtCkÞ triple in this trace indicates that the loan

amount is less than or equal to zero. In other words, the LnLt

component checked the predicate “loan amount is >0,” and

sent a loanAmountNotOkay (lnAtNO) message because the

predicate did not hold. Therefore, this trace depicts a failure
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of P3 because it includes an invalid behavior, the acceptance
of the invalid loan, indicated by the subtrace

ðMnPs; ckLnAt; LnLtÞ;ðLnLt; lnAtNO; CtCkÞ;ðMnPs; ceLn; CeLnÞ:

As P4 is a scoped version of P3, it also fails on this trace.
To identify the cause of the violations, we examined the

BPEL diagram in Fig. 1a to see that the trace FT is produced
if the LA system obtains the taxpayer’s credit score, checks
if the credit score is greater than 750 (ScoreEvaluation),
checks if the loan amount is greater than zero (input
validation), and checks if the loan amount is less than
$50,001 (AutoApprovalTest). The ScoreEvaluation should
only occasionally be true, as the CreditCheck component
generates random credit scores. However, we obtained
trace FT every time the system was run with the taxpayer id
1888, i.e., the system always approved a negative loan.

We traced this behavior to two problems. The first,
identified after looking at the BPEL code of the LA system,
was that the application did not use the results of the input
validation, allowing requests for negative loans to go
through. The second problem was only identified after
examining the source code for the CreditCheck partner.
Instead of ignoring the taxpayer id and generating a
random credit score, this component always returns a good
credit score when the taxpayer id ends with “888.”
Combined, these two problems yielded the approval of
the loan for configuration c3 every single time.

Overall, our experience showed that the system can
handle simultaneous failure of several monitors and
allowed us to specify interesting properties, which led to
the discovery of two real faults in the LA system.

6.2 Monitoring Other Applications

Additionally, we modeled and checked two other applica-
tions: the travel booking (TB) system and the Online
Shopping (OS) System.

6.2.1 The Travel Booking System

TB acts as a broker offering its customers the ability to book
all aspects of a trip. The workflow of TB system includes

credit validation, flight/hotel/car reservation, and commu-
nication with the client. Customers can submit data about
their desired travel plans and receive either a confirmation
number or a failure message depending on whether the
travel arrangements have been made successfully. The
activity diagram in Fig. 19 shows high-level steps that are
executed during the travel booking process.

To fulfill its business goal, the TB system needs to
interact with several partners: CreditCardChecking service,
which validates the customer’s credit card data;
FlightReservation service, which books a flight;
HotelReservation service, which reserves a hotel room;
and CarReservation service, which makes a car reserva-
tion. In a typical scenario, an Internet customer begins an
interaction with the TB system by entering data for his/her
travel arrangements. The system then invokes the
CreditCardChecking service, and if the credit card is valid,
it tries to make hotel, flight, and car reservations. If all of the
reservations are completed successfully, a confirmation
number is generated and returned to the customer.

Table 5 lists properties we checked on this system (P6-
P15). For example, P6 includes six events among three
partners and is represented by an automaton with six states
and 23 transitions. Five properties, P6, P7, P12, P13, and P14,
are monitorable using patterns in the Occurrence hierarchy
(see Fig. 9b). Four properties, P8, P9, P10, and P11, are
monitorable using patterns in the Order hierarchy.

Property P15 can be expressed in UML 2.0 Sequence
Diagram language but not in our specification language SD.
The reason for this limitation is the chosen set of events of
the TB system: Hotel reservations are handled only by two
events: reserveHotel (the request) and hotelReserved

(confirmation of the success). Thus, failure to reserve the
hotel means that we were unable to receive the confirmation
message. Since it is not clear how long the service should
wait before declaring a failure, we have to express the
property using an assert inside a negate, as shown in Fig. 20a,
which is not allowed in our language (see Section 3.6.2). The
problem can be fixed by adding two additional events to the
TB system that give a reason why the hotel reservation fails:
timeout (produced if a confirmation is not received by a
certain time) and hotelNotReserved (produced if the
reservation could not be obtained). With these, property
P15 can be expressed as shown in Fig. 20b, which is within
the SD language.

We checked properties P6-P14 on two versions of the TB
system: the complete system shown in Fig. 19 and a version
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Fig. 19. The activity diagram of the TB system.

Fig. 20. Expressing property P15: (a) using the existing alphabet of the

TB system; (b) with additional events.
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where we removed the error handler for invalid credit cards
(dashed links in Fig. 19). We did not detect any errors when
running the complete system against these properties.
When running the modified version of the system, the
monitoring framework was able to detect a violation of the
property P7 when the user submitted a travel request with
an invalid card, and reported this violation by showing that
the event displayResult is missing. We believe that this
feedback would have been useful for debugging of the
Travel Booking System.

6.2.2 The Online Shopping System

This system implements a typical online shopping service
and consists of four partners and 20 invocation-type
activities. These activities are invoked via asynchronous or
synchronous message passing. For a complete description
of the system, see [32].

The first two properties, P16 and P17 in Table 5, are
expressed using the Absence pattern. The remaining
property, P18, is expressed using the Existence pattern.
We did not detect errors in the OS system when running it
against these properties.

6.2.3 Summary

Overall, our experience showed that SD is a language
expressive enough to capture a variety of properties of
existing Web service applications, and all of the properties
except one could be expressed using the pattern system.
Expressing the remaining property required enriching the
set of events in the corresponding system. Despite a
potential exponential increase in the size of monitoring
automata, we did not encounter it in examples we have
tried, and thus, monitoring always yielded negligible
overhead. Finally, the experience of encountering an error
in an existing application, which resulted in a simultaneous
failure of several monitors, allowed us to conclude that our
framework can be used to facilitate effective debugging.

7 RELATED WORK

The main contributions of our work are the definition of a
runtime monitoring language and the creation of a dynamic
runtime monitoring framework based on this language.
Thus, we first summarize some work studying UML 2.0
Sequence Diagrams as a specification language. Afterward,
we survey the research on runtime monitoring in the
context of Web services.

7.1 Sequence Diagrams as a Specification
Language

Like other partial-order scenario-based formalisms such as
MSCs [11] and LSCs [12], UML Sequence Diagrams are
enjoying an increasing usage as a specification language.

Lettrari and Klose [33] show how UML 1.3 Sequence
Diagrams can be used to check properties of UML models.
UML 1.3 SDs allow only simple event sequences, so the
language formalized in [33] is a small subset of our
specification language.

Ameedeen and Bordbar [34] show how a subset of
UML 2.0 SDs can be transformed into Free Choice Petri
nets, enabling the use of the corresponding analysis

techniques. This SD subset is only used to specify possible
system behaviors, and thus, does not include the negate and
assert operators. This work also assumes that sending and
receiving an event happen simultaneously. While this
assumption works well for synchronous systems, it does
not hold for most Web applications that rely on message
queues for communication.

Autili et al. [18] propose a PSC language, which is an
extended notation of a subset of UML 2.0 SDs. PSC enables
expressing safety and liveness properties by assigning
attributes fail and required to messages. This is equivalent
to applying operators negate and assert to individual SD
message, respectively. The semantics of PSC is given using
Büchi Automata, designed to operate on infinite execution
traces. Since we consider only finite executions of Web
services, automata over finite words are sufficient and
significantly easier to implement.

STAIRS [35] is a trace-based requirement specification
methodology that also uses extended UML 2.0 SDs. Trace
scenarios are classified into positive (mandatory and
potential), negative, and inconclusive. Negative traces are
captured using the negate operator. STAIRS does not use
assert and instead defines a new mandatory choice
operator, xalt, to express the requirement that both
alternatives be present in a choice. In our work, we enable
expression of mandatory and forbidden behaviors without
extending the language.

Grosu and Smolka [17] interpret positive and negative
UML 2.0 Sequence Diagrams as safety and liveness proper-
ties and give formal semantics for such diagrams using
Safety and Liveness automata, respectively. Their approach
does not use the assert operator and defines automata over
infinite traces.

Harel and Maoz [16] define Modal Sequence Diagrams
(MSD), an extension of UML 2.0 Sequence Diagrams. The
semantics of negate and assert operators in MSD is given via
the universal/existential distinction made by the LSCs [12].
In this formalism, diagrams, messages, and constraints can
be defined as either hot (universal) or cold (existential), and
the semantics of MSDs is given via alternating weak word
automata (AFA). This formalism includes not only non-
deterministic choices of NFA (the language into which we
translated SDs) but universal choices as well [16]. Given
that any AFA can be translated to an (exponentially larger)
NFA [21], we believe that SDs and LSCs have the same
expressive power. These languages, however, differ in their
syntactic and usability properties. Specifically, LSCs are
more succinct because they can freely combine nondeter-
ministic and universal choices. However, SDs are easier to
implement and use in a monitoring framework because of
the existence of several efficient packages for manipulating
NFAs. Moreover, unlike LSCs, the syntax of SDs conforms
to UML 2.0, and hence, many existing UML tools can be
used to capture and display these diagrams.

The same authors discuss how LSC specifications can be
used to monitor the execution of the program using aspects
[36] (a method used by several runtime monitoring frame-
works described in the literature, e.g., [37]), but the exact
translation from alternating automata into AspectJ and the
resulting complexity of the approach are unclear. Finally, an
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existential, constant, subset of LSCs has been expressed in
terms of NFA [38]. It is a strict subset of SDs, not allowing
universal traces.

While we concentrated on specifying behavioral proper-
ties of interactions between partners, Bultan [39] identified
Collaboration Diagrams (CDs) and Conversation Protocols
(CPs) as more appropriate formalisms for specifying such
properties as realizability and synchronizability, which he
then checks using model-checking. These formalisms are
simpler than UML 2.0 Sequence Diagrams and are appro-
priate for expressing such special-purpose properties.

7.2 Runtime Monitoring of Web Services

In this section, we compare our approach to existing
runtime monitoring techniques. Online (offline) techniques
analyze system events during (after) execution and the
properties to check are determined a priori (a posteriori).
Examples of the online techniques are [40], [41], [42], [43],
[44], [45], and [46], [47], [48] are the offline techniques.

These techniques differ in the types of properties they
can handle. Global properties allow the analysis of orche-
strated obligations. These obligations are expressed from
the point of view of the orchestrating service, but also
include events from the other services involved in the
conversation being monitored. Local properties are restricted
to monitoring the events of a single service. Furthermore,
some techniques concentrate on state properties, whereas
others allow the user to express sequences of events. Like
ours’, the approach introduced by Pistore and Traverso [43]
can be used to check global properties. In [43], properties
are specified in LTL, which is more expressive than our
specification language. However, specifying properties
correctly in LTL can be challenging, especially when trying
to specify sequences of events [1], whereas these are quite
intuitive in our framework.

The frameworks described in [40], [41], [42], [44], [45] are
restricted to local properties. Li et al. [45] specify properties
using Interaction Constraints (ICs) [49]—a language based
on Dwyer et al.’s Specification Pattern System [1]. Unlike
our specification language, IC does not allow pattern
nesting. Thus, new events must be introduced in order to
reason about sequences of events. The rest of the local
property frameworks check state formulas, specified using
simple predicate logic. Specifically, Baresi et al. [41], [42]
and Lohmann et al. [44] check service pre- and postcondi-
tions associated to external service invocations, while
Lazovik et al. [40] check local assertions.

Offline techniques can handle both global and local
properties. In the work of Mahbub and Spanoudakis [46],
[47], properties are expressed using event calculus [50]. van
der Aalst and Pesic [48] introduce DerSecFlow, a graphical
language that can be used to express properties similar to
our patterns, but without pattern nesting.

Various techniques are used for checking properties. The
authors of [40] and [43] rely on planning techniques to
create service compositions. Pistore and Traverso [43]
analyze the application once the composition has been
obtained, by instrumenting the system to include Java code
that checks LTL monitors during runtime. Lazovik et al. [40]
iteratively replace the violated service with another one,

with weaker assertions, continuing the process until there
are no more violations, or the composition is not possible.

In the case of service pre- and postconditions, the
authors of [41], [42] modify the original BPEL diagram,
introducing new BPEL activities that check the contract
during external service calls. The authors of [44] propose a
similar, but more intrusive framework, as JML contracts are
integrated at the source code level. The authors of [46], [47]
use temporal deductive databases to store and reason about
events generated during runtime, while the authors of [48]
analyze low-level event logs using an LTL checker.

Techniques used in the work of Li et al. [45] are the
closest to ours. Like us, they take an automata-based
approach for monitoring communications between partners
and enable graphical display of violations.

As discussed before, the advantage of online techniques
is that it is possible for the system to react once a problem
has been detected. In [41], [42], BPEL exception handlers
can be attached to the properties being checked. If such an
exception handler is not provided, execution terminates
when a violation occurs. As [43], [44] are Java-based, they
can use Java’s exception handling mechanism for recovery
actions; however, this approach is highly intrusive. Li et al.
[49] do not discuss recovery. Offline techniques like [46],
[47], [48] instead suggest corrective actions, which can be
tested during future executions.

8 CONCLUSION AND FUTURE WORK

In this paper, we described our framework for runtime
monitoring of Web service conversations developed as part
of an industrial-strength system. The framework is an
aggregation of existing runtime verification techniques. It is
nonintrusive, running in parallel with the monitored system
and intercepting interaction events during runtime. Thus, it
does not require any code instrumentation, does not
significantly affect the performance of the monitored
system, and enables reasoning about partners expressed
in different languages. Furthermore, the use of a subset of
UML 2.0 SDs as a specification language ensures that the
framework is usable by practitioners to specify safety and
liveness properties. Liveness becomes finitary, where user-
specified time limits or the process termination acts as the
stopping event.

We have successfully mapped all the Specification
Property System patterns into our SD subset. The avail-
ability of customizable patterns should improve the
usability of our specification language. More complex
conversations can be checked, as it is easy to build
properties through SD composition. Using SD references,
our properties are also easier to read, since details can be
hidden. We have also created a library of such sequence
diagram patterns and shown how patterns can be used to
specify monitors for a number of interesting properties of
several Web service applications. Finally, we reported on
the implementation of our framework which allowed us to
find bugs in real Web service applications.

8.1 Future Work

While the initial experience using the framework has been
positive, we need to address a number of issues before it
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becomes fully usable. The first set of issues deals with
increasing the range of properties that can be specified and
monitored. In the examples presented here, all objects were
unique, whereas in practice, users may be interested in
verifying interactions between multiple processes of the
same type. For example, in the LA system, a user with a
good credit score may concurrently apply for two loans,
each for less than $50,001, to bypass the manual approval
required for a loan for the total amount. In this case, two
bank branches may want to communicate to avoid this kind
of situation. BPEL supports the notion of process instances
and encodes a process ID in all message headers so as to
identify which process instance is the intended recipient of
the message. We believe that our framework accommodates
this approach readily, by encoding these process IDs into
the specification, the automata transition relation, and
interaction events.

Currently, our framework permits the definition of
properties that depend only on the order and occurrence
of system events. By monitoring the actual data exchanged
by conversation participants, we could check richer proper-
ties that depend on such data. We cannot use the existing
automata translations for data exchange properties directly
because the resulting automata would be too large to be
useful for monitoring. Instead, we are currently investigat-
ing the use of Parameterized NFA [51] (PNFA) to create
more succinct monitors, as single-PNFA transitions repre-
sent sets of NFA transitions.

Current BPEL recovery mechanisms are not suitable for
developing self-healing Web services, as error handling and
compensation mechanisms must be defined before deploy-
ment. As discussed in Section 1, online runtime monitoring
techniques allow dynamic recovery, since recovery strate-
gies can be applied as soon as errors are detected. Existing
work [52], [53] focuses on the definition of recovery
strategies for local properties, assuming that process defini-
tion is correct and errors are introduced only via interac-
tions with external services. The recovery strategies are
suggested “per message.” Specifically, Baresi et al. [52]
check external service pre- and postconditions to determine
when a partner link should be modified, while Moser et al.
[53] use QoS parameters. Our approach allows us to define
recovery strategies suitable for global properties, i.e., define
them “per conversation.” We also want to study recovery
strategies that dynamically modify the BPEL process
definition [54].

We also plan to investigate techniques to help locate
causes of errors (as opposed to places where a violation was
detected) from observing results of successful and unsuc-
cessful runs of the system. We will experiment with the
techniques in [55], [56] for this task.

Finally, our work so far has assumed that all partners
operate within the same process server, and thus, a
centralized monitor is a viable option. In practice, most
Web services are distributed, requiring a distributed
monitoring framework. We plan to investigate techniques
used in the DESERT project [57] to turn a centralized
monitor into a set of distributed ones, running in different
process servers.

APPENDIX

Below, we continue the discussion of expressing property
patterns in SD, started in Section 4.

k—Bounded Existence: Message p can occur at most
k times in a given scope. We can check the existence of at
most k messages using the loop operator. After the loop, we
need to check that p does not occur, which corresponds to
the Absence pattern (see Fig. 11c).

Universality: Only a sequence p� of messages can occur
in a given scope. This is equivalent to checking for the
absence of complement messages (see Fig. 11d).

Response: Message p (stimulus) must be followed by
message s (response) in a given scope. A response can occur
without stimuli, so the stimulus is represented using a
regular message, whereas the response is mandatory. The
existence of stimulus/response pairs is checked in an
infinite loop, as there can be many stimulus/response pairs
in one execution trace (see Fig. 11e).

Response chain: A sequence p1; . . . ; pn of messages must
be followed by the sequence q1; . . . ; qm of messages in a given
scope. We show two examples of this pattern: p responds to
s; t (see Fig. 11f) and s; t responds to p (see Fig. 11g). This
pattern has the same basic form as Response.

. p responds to s; t: 2 stimulus—1 response. The
critical operator is used to enclose the message
sequence s; t, to ensure atomicity of this sequence.
An assert cannot be used since the stimulus sequence
is optional.

. s; t responds to p: 1 stimulus—2 response. The
message sequence now occurs within the assert
operator, so an additional critical operator would
be superfluous.

Precedence chain: A sequence p1; . . . ; pn of messages
must precede the sequence q1; . . . ; qm of messages in a given
scope. We show an example of this pattern, 2 cause—1
effect, p is preceded by s; t (see Fig. 11j). This pattern is
implemented using the Absence and Until patterns, just
like in the Precedence pattern. The implicit negate operators
in the Absence and Until patterns handle the message
sequences, so there is no need to add critical operators.
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