Modeling and Analysis of Personal Web Applications:
A Vision

Marsha Chechik, Jocelyn Simmonds, Shoham Ben-David, $teyati, Mehrdad
Sabetzadeh, and Rick Salay

Shiva and Mehrdad are with Simula Research Lab, Norway.rQilhors are with Department
of Computer Science, University of Toronto

1 Introduction and Assumptions

In this paper, we attempt to identify our vision of what peralonveb is. We then provide
a challenge problem for such a vision and discuss our assomspif how other fields
of computer science can contribute to executing this visita then discuss where
the “traditional” software engineering tasks of specifimat modeling, monitoring and
verification fit into the vision.

What is Web 3.0? We share the vision of the workshop orgasitteat it is fo-
cused on an individual user (well, consumer) and is tryinglioit and execute this
person’s goals, through preferred information collectiewices and with cooperation
with trusted individuals. For example, traditional web Bgations such as commerce
and banking offer a particular interaction with the userhis¢her data. Data is stored in
the database on a particular application (e.g., shopphgtiwish list), and the user is
being offered a particular workflow that determines theraat&on of the user with the
system (e.g., on amazon.com, such things include lookingdimething, doing a price
comparison, determining a particular vendor to go with,asiog the type of shipment
and the payment method).

Instead, as users, we find those parts of the different agjaits which are useful to
us, and then combine them in ad-hoc ways. For example, whgndaelectronics, we
(a group of Toronto-based academics) first check amazortatook at the models and
reviews. Amazon.ca has a much smaller product selectiahveny likely will not carry
the desired product. Instead, we look for the equivalenteteooin other Canadian retail
sites. After comparing prices and shipping options, we nagierchase. In other words,
we have an informal workflow for buying electronics onliner ®good day (no paper
deadlines, no screaming children, no advisors interrgptiith urgent requests), we
have time to do each step of this process meticulously andipmdmpletely satisfied
with the end result. But when pressed for time, we start skigppteps (since nothing is
automated), e.g., we will order directly from amazon.cord pay extra shipping and
customs charges, or shop our favorite Canadian retailézadsof comparing prices,
and sometimes miss out on a sale.

Our vision of personal web is that it allows users to defineraadipulate personal
workflows, populated by their favorite vendors and inforioratsites. For example,
users would download the “web for a Canadian shopper” woskfthat implements
the above workflow for shopping for electronics (clearlysitight about the same no

matter what is being purchased) and then modify it to suit taals. Other clear work-
flows are for organizing a dinner and a movie outing (choosimgnteresting movie -
and checking appropriate sites to determine what is goodmeathat works and at a
location which is reasonable to get to and that has a restaciase by that the person
executing the workflow would like to visit - coordination Withe person’s date and the
restaurant review sites).

Thus, our definition of a personal webSsipport for identifying and executing (and
monitoring and fixing) “mental” orchestrations, or workfl@wfor incorporating multi-
ple services in order to accomplish complex personal goals.

The problem is clearly non-trivial and its solution reqsir@ collaboration from
various areas of computer science. Here is a very partiasldisf the issues:

Data storage Personal web needs an ability to store the state of eachwitbén their
workflow as well as the associated collected data, since nibisonger done at the
vendor’s site. We think that cloud computing can readilyvide a solution for this
challenge.

Turning the web into services.The workflow-based vision means the ability to invoke
services rather than browse the web. That is, the web sheularbed into a collection
of such services.

Services specificationlt is essential to have some notion of specification for sewj
at least to determine whether a particular service can lukat/at a particular step of
the workflow but of course to also discover services (doniktyant to know that a local
computer shop is having a sale and it might be cheaper to getataer than continuing
the on-line shopping experience?). Personal web is nouenigthis challenge - it is
essential for creating quality web service applicationdaurexisting technologies. We
think that the semantic web research community has a loffiéo of this topic.

Architectural support. Given that users define these personalized workflows, where
are they being executed? How are services being “strungthag? Again, there seems
to be a lot of success in existing technologies for creatiaghups, yahoo pipes, etc.

Modeling and analysis.This is the purpose of this paper - trying to identify chaflea
in this category, as well as some approaches towards salvémgy.

Usability and User Experience.This challenge is truly cross-cutting. The proposal
would simply be infeasible if users are unable to specifykflows, provide rankings
of various sites, etc. While we touch on this subject a lititelater in the paper, it is
mostly orthogonal to our proposal, but, of course, essentia

In the rest of this paper, we will describe a challenge exarfqi providing user-
controllable workflows (Section 2) and then use it to descsibme modeling and anal-
ysis challenges we as a community face before the Persortsidéa becomes a reality
(Section 3). We also discuss how to begin solving these ehgdls (Section 4). We
conclude in Section 5.

2 Motivating Example: Online Crib Shopping

We begin by proposing a (real-life!) challenge problem ferd®nal Web.

Consider the following scenario. Our (Canadian) user isvsinths pregnant and
wants to purchase a baby crib. Quality cribs are durableXpérsive, and take a while
to get once ordered. So, she wants to try to buy a second-h#mnd ke easiest way to
getone is through a local online classified ads, such asstistigrg, since she can go to
the vendor in person and inspect it before making a decislenparents live in the US
and frequently travel back and forth, so they can also lookoimal deals on used cribs,
including their local craigslist.org, garage sales, etar Gser also knows that quality
cribs take 6 weeks to arrive when ordered, so she can onlylke&mg at used cribs
for another 1.5 months. If that (soft) deadline passes, $kewill have no choice but to
go to a retailer that has cribs in stock and buy whatever tlag k clearly not a good
choice but might be the only option for meeting the hard dead} having a crib once
the baby arrives.

Here the goal is clear — to have a crib by a due date. But iniaddthere is a set of
preferences: (a) the user prefers a used crib but if nonevailakble within 1.5 months,
she will purchase a new one (although what if a perfect usikdbecomes available
within days of placing an order for a new crib. Can that orderchnceled?); (b) the
user wants to avoid shipping from the US in order to avoidaustdelays as well as
extra taxes. This means that if she buys the crib on a US veglséie must remember
to ship it to her parents’ house (context-based prefer@nces

To accomplish this scenario, the user needs to interactuaitious services/sites:

— Research: product databases, review sites, user groupsrants.

— Purchase: auction sites, online classified ads, onlindeetgand of course the
related payment processing).

— Shipping: shipping estimator, shipping, truck rental.

— Utilities: currency converter, online spreadsheet, encalendar, task lists.

She also needs to keep her parents up-to-date on the crinseeorder to avoid buying
two cribs and coordinate travel dates in case her parents fomith first.

To make this scenario into a Personal Web application requéffectively, produc-
ing an orchestration for the above services, which allovsriizing, context aware
information, concurrency, and even undoing a finished taskh as attempting to can-
cel an order for a new crib if a used crib is found soon aftelng @rchestration should
satisfy a number of properties, among them (a) a crib musteaipefore the due date;
and (2) at most one crib should arrive. For example, the lagigaty is violated in the
scenario where both the user and her parents independemntla fjood local deal on
the same day and both decide to buy the crib on the spot to kst the deal.

3 Challenges

As we mentioned earlier, we envision that many workflows @fpbebuilt” or community-
shared — much like iPhone applets. However, there shoulagesovhen a user may
want to build their own customized and complex workflow, like@ur example in Sec-
tion 2. In this section, we describe specification and amabfsallenges associated for
providing support for automating complex user-createtiestrations.

1. The first obvious challenge $pecification- specification of the desired outcome
of the orchestration, available services, properties efdtchestrations, preferences,
context, etc. The outcome of such specification should Hemiftly precise, so as to
enable creation and reasoning about non-trivial servicbeastrations, without the user
knowing the technical details of service configuration aqusmcing. And of course
such specifications should be “average” user readableputittesorting to the use of
formal logic.

2. Monitoring and statically analyzing correctness of esthations. Personal work-
flows are operationalized through orchestrations of usestservices. These orchestra-
tions might be modified or recreated at runtime as servicesrhe unsuitable because
of changes in user preferences and constraints (i.e., wlimgfto secure the crib in
time, the user may want to apply a completely different sgatsuch as borrowing a
bassinet from a friend or deciding to do without a crib for finst few months of the
baby’s life).

1. Assuming it is possible to use the cloud or the user’s ownhim& to check the
workflow against the goals, how do we go about doing it witheonrtajor slowdown
in workflow execution. What sorts of analyses are appropratd how to make
them scale? (the “compositionality” challenge)

2. Another set of questions for this challenge involves figmout when a particular
service can be substituted for another, whether it can lebing#ace of a collection
of services in an orchestration, and suggesting which coatioins are feasible. To
enable personalized workflows, it is important to be ableggregate services,
resources, and content from multiple web services cemennthe user, her tasks
and context. In the crib purchasing workflow, the user majuiie several online
retailers in her bookmarks in the search for a usable angaresive crib. Each of
these retailers has their own specific shipping policiesaethods. To achieve this
simple workflow, several activities need to be performedfdbent services and
resources need to be identified. The compatibility of therfiates of these services
has to be verified. The services might need to be substitutedmdically when
the user preferences or context change. For example, ifdberealizes that her
parents have bought a crib, the services in her workflowedltd crib purchasing
should be replaced with proper services enabling and coatidg crib shipping
or the parents’ travel schedule from US. Finally, the sasimust be composed
periodically. (the “compatibility” challenge)

3. Repairing orchestrations. Errors occur in most softagg@ications, but they are
unavoidable in web-based applications. They can happesubsecsome partner went
down, connection to the Internet was lost, or the logic gotated. In our example,
the user wants to buy exactly one crib. However, it could leapinat both the user
and her parents buy a crib on the same day, violating thisreggiirement. Repairing
user-created faulty orchestrations is clearly needed.

Of course, the users should be able to specify orchestsatind their properties,
and once an orchestration is deployed, monitor and repaiotbhestration to make
sure that their goals are accomplished. We also envisioe $orm of an “orchestration
dashboard”, where users can create new orchestration$iank state of orchestration
instances.

4 Approaches

In this section, we discuss some ideas to approach the ngaliedentified in Section 3.

1. The Specification challenge. One way to specify workflas iavoid such spec-
ification altogether! Specifically, we may want to synthesibmplex workflows auto-
matically, based on the expression of user intent. Effetjvntent is a declarative
specification which is then turned, by synthesis, into amajmnalized workflow. One
way to approach it is to adapt existing work on configuringspeal software using goal
models [5, 6].

In this work, an i* goal model [11] is used to specify a set ofgible user goals,
how they interact and how they decompose into simpler g&alsh low level service
configuration setting contributes, to different degreasjfferent higher level goals. For
example, in our scenario, the user has a goal “Minimize casthis case, each product
provider service can specify how much its configuratiorirsgstsupport this goal (e.qg.,
selecting “used” rather than “new” items will contribute rado this goal). Thus, by
allowing the users to identify their goals, the optimal seg\configuration settings can
be determined automatically. Furthermore, this can be tesitbntify when user goals
are unsatisfiable (since no settings exist to satisfy thénamadl hence require the user
to modify their goals.

The goal model also supports AND/OR decomposition and #inise used to auto-
matically define a service sequence. An AND decompositiemdefines the set of sub-
goals that must be satisfied to satisfy a goal. This can betosashstrain the possible
service invocations required and the input/output depecids between these services
constrain the possible sequencing of them. An OR deconipositep specifies a set of
alternative subgoals and this leads to an interaction wighuser to refine their intent
by choosing an alternative. For example, the goal “Delivedpct quickly” can have
alternatives “Deliver within 2 weeks”, “Deliver within 6 ve&s”.

2. The Monitoring and Analysis challenge. To address thepmsitionality chal-
lenge, we begin by looking at approaches for verifying weakiise orchestrations. Such
verification can be done statically or dynamically, e.g=319] and can be relatively
easily adapted to user-created orchestrations. Howésedistinction between the two
approaches is that the user-created ones are much more-amilee anything in the
orchestration changes, the whole analysis may have to beeednd the user is forced
to be aware of it as the performance of her system deter®riate example, the verifi-
cation may concern basic functional properties such asciieis eventually bought”
or the more complex ones such as “the crib is usable and hasarrable price”, “only
one crib is bought”, or “the crib has been delivered withireaneptable time period”.
However, periodic application of these techniques in sereompositions that evolve
over time, where services are frequently added, removesvised, is unrealistic. To
ensure correctness, we need to design service compositi@angay that verification
results can be reused across evolutions, i.e., to albgwression verificatiofd].

To achieve this goal, we propose to exploit composition gregiatterns [8] and
orchestration algorithms that make verificat@range-aware

To address the substitutability challenge, we aim to creapgort for compatibility
and substitutability of web services. We propose to do thisnlestigating similarity
measures between behavioural models [7] to identify canteidervices to replace a

service in use when it becomes unavailable or unsuitablea@egolving needs or a
change in the context. Further, we require compositionrtiegtes for combining these
services. This is a non-trivial activity as it requires gri&ing both behaviour and data
assets of services while preserving their desirable pt@seand ensuring that inter-
actions between services within a composition do not leadgnforeseen and highly
undesirable side-effects.

3. Repairing orchestrations. The goal of this activity isis@ semantic information
about services involved to try to fix the problem discoveradan orchestration. For
example, consider the case when two cribs were purchaskd saitme time. The prob-
lem can be fixed if the user sells one of the cribs, as this mstthve orchestration to
a state where the user has just one crib. The user may hawrgneés as to how to
accomplish this, e.g., she may choose to sell the most eixeesréh, or maybe the one
that will arrive last, or the one bought by her parents.

In another scenario, imagine that the parents bought a delwand crib, but decided
to ship it instead of transporting it themselves. Due to &lmarat the customs office,
the crib will not arrive by the required date (violating thaé crib has been delivered
within an acceptable time period” property). In this case can repair the orchestration
by suggesting that the user buy a new crib locally (whichdaadhe satisfaction of the
violated property), while selling the other crib when itiaes (to avoid violating the “at
most one crib” property).

In the first scenario, we suggested actions that compensatated actions, leaving
the orchestration in a state that does not violate any usgilirements. In the second
scenario, we also suggested the execution of new actititedead to the satisfaction
of user requirements. We have explored the idea of progpriged recovery in the
context of traditional web applications [9, 10], where btihile orchestration and its
properties are defined by the application developer, buivery plans are computed
for individual execution traces. This framework can be addpo the Personal Web
paradigm. However, as we mentioned earlier, the succesghfan approach depends
on the ability of end users to specify correctness properiiso, in the approach of [9,
10], activity compensation and cost are statically defifredrder to move our approach
to the Personal Web, compensation and its cost should bespseified (e.g., to account
for cases where some users pay smaller fees for a transaetioellation, be that for
a stop payment or for cancelling a flight). This is theorelycaossible, of course, but
so far we are not aware of technology that would allow us syciachic, user-centered
compensation definition and configuration.

5 Summary

In summary, the dream of Personal Web seems achievabledptba number of chal-

lenges are met. Many of these are technological, and we hawdouabt about their

success. Some others need advanced techniques and thius reg@arch. We tried to
argue that problems of modeling and analysis of end-usetedeorchestrations are
important, and solutions to them are possible. Howevergesgof the whole endeavor
depends on several computing fields and, most cruciallyreatiog a good user expe-
rience, especially in support for specifying desired osttaions and their properties.

We look forward to collaborating with others on various adpef problems brought
forth by Personal Web.

References

1. H. Foster, S. Uchitel, J. Magee, and J. Kramer. “Modekbdagerification of Web Service
Compositions”. InASE '03: Proceedings of 18th IEEE International ConferenoeAuto-
mated Software Engineeringages 152-163. IEEE Computer Society, 2003.

2. X. Fu, T. Bultan, and J. Su. “Analysis of Interacting BPEleMServices”. InNWWW '04:
Proceedings of the 13th International Conference on Woiilde\WVeh pages 621-630, May
2004.

3. S. Hallé and R. Villemaire. “Runtime Monitoring of MeggaBased Workflows with Data”.
In ECOC '08: Proceedings of the 12th IEEE Enterprise DistrémiObject Computing Con-
ference pages 63-72, 2008.

4. T. A. Henzinger, R. Jhala, R. Majumdar, , and M. Sanvidoxtf&ne Model Checking”.
In Verification: Theory and Practicevolume 2772 ofLecture Notes in Computer Science
pages 332-358, 2004.

5. S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. Easterkr “Configuring Common
Personal Software: a Requirements-Driven Approach’REn'05: Proceedings of Interna-
tional Conference on Requirements Engineerimages 9-18, 2005.

6. S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulé®n Goal-based Variability
Acquisition and Analysis”. IrRE '06: Proceedings of International Conference on Require
ments Engineeringpages 76-85, 2006.

7. S. Nejati, M. Sabetzadeh, M. Chechik, S. EasterbrookPa@dve. “Matching and Merging
of Statechart Specifications”. IESE '07: Proceedings of the 29th International Conference
on Software Engineeringages 54-64, 2007.

8. S. Nejati, M. Sabetzadeh, M. Chechik, S. Uchitel, and ReZdTowards Compositional
Synthesis of Evolving Systems”. FRSE '08: Proceedings of SIGSOFT International Con-
ference on Foundations of Software Engineeripages 285-296, 2008.

9. J. Simmonds, S. Ben-David, and M. Chechik. “Guided Regofagr Web Service Applica-
tions”. In FSE '10: Proceedings of SIGSOFT International Conferened-aundations of
Software Engineeringpages 1-10, 2010. to appear.

10. J. Simmonds, S. Ben-David, and M. Chechik. “Monitorimgl &ecovery of Web Service
Applications”. InSmart Internetpages 1-40. Springer, 2010. to appear.

11. Eric S. K. Yu. “Towards Modeling and Reasoning SupportBarly-Phase Requirements
Engineering”. INRE '97: Proceedings of IEEE International Symposium on Rements
Engineering pages 226—235, 1997.

