
An Eclipse-Based Tool Framework for Software Model
Management

Rick Salay Marsha Chechik Steve Easterbrook Zinovy Diskin Pete McCormick
Shiva Nejati Mehrdad Sabetzadeh Petcharat Viriyakattiyaporn

Department of Computer Science, University of Toronto
Toronto, ON M5S 3G4, Canada.

Email: {rsalay, chechik, sme, zdiskin, pete, shiva, mehrdad, apple}@cs.toronto.edu

ABSTRACT
Software development involves the use of many models and
Eclipse provides an ideal infrastructure for building tools to
support the use of models. While there is a large selection of tools
available for working with individual models, there is less support
for working with collections of models, as for example, when a
collection of models from different sources must be merged. We
have identified the problem of working with collections of related
models in software development as the Software Model
Management (SMM) problem - a close cousin of the Model
Management problem in the area of metadata management. In the
course of building SMM tools to address particular scenarios, we
have observed that they share common foundations both at the
theoretical and implementation levels. In this paper, we describe
the vision and initial development of a framework that implements
these common foundations in order to facilitate and accelerate the
development of Eclipse-based SMM tools.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Management, Design, Human Factors, Standardization,
Languages, Theory.

Keywords
Model Management, Metamodeling, Multi-view Modeling,
Model integration, Modeling Tools.

1. INTRODUCTION
1.1 Motivation
Software development has traditionally involved the use of many
models and this is particularly the case with model-driven
approaches. Thus, models are a fundamental type of artifact
created and manipulated within Eclipse. To support this, core
Eclipse provides an infrastructure for integrating multiple editors
and tools within a single IDE as well as the GMF (Graphical
Modeling Framework) as a model-driven approach to define
editors for particular modeling languages. However, despite the
strong support for individual models, Eclipse does not have an
infrastructure for dealing with collections of related models.

Working with collections of models introduces special
complexities because models are related and the integrity of these
relations must be preserved. For example, in a distributed
software development scenario, different teams may be
responsible for different parts of a UML model but in order to

specify the whole system, the relations between these parts must
be expressed and then the parts must be merged into a single
UML model in a way that correctly reflects these relations.

The area of metadata management has similar challenges due to
the need to relate many schemas (i.e., models) in scenarios such as
database integration, message mapping, data migration, etc.
There, the field of Model Management [3] has emerged as a way
to address these complexities by proposing that model relations be
expressed as first class objects called model mappings and that
generic operators be defined that could be used to manipulate
models and mappings in a sound way to achieve various modeling
goals. A key strength of this approach is a solid mathematical
foundation [5].

Our research vision is to apply a similar approach to software
modeling to support software development with many models. In
particular, we are interested in investigating formally grounded
approaches for expressing the relations between models (model
mappings), defining operators such as match and merge to
provide useful algebraic manipulations of models and mappings,
defining methods for reasoning across multiple models and
mappings, exploring ways to facilitate the comprehension of
collections of related models, etc. We term this set of concerns
Software Model Management (SMM) and distinguish it from but
consider it complementary to MDE in that the former addresses
issues in model-based development even within traditional
software development paradigms, while the latter is primarily
concerned with automating the process of model refinement
toward the generation of code.

There have been various efforts to develop SMM tools, both
within our group and elsewhere [13, 15, 8, 12], in order to address
specific model management tasks and scenarios. Based on these
experiences, we have observed that while building an SMM tool
is difficult, there are common principles and infrastructure that
underlie any such tool. These observations are the basis for
initiating the Model Management Tool Framework (MMTF)
project with the objective of extracting these common elements
and providing a framework implementing them in order to
simplify and accelerate the development of an Eclipse-based
SMM tool. Specifically, the MMTF is intended to minimally
address the following requirements:

o Support arbitrary model and model mapping types and
operators over them.

o Support easy integration of existing independently developed
model-related components including editors and operators.

o Provide the capability to import/create/modify/view
particular collections of models and mappings.

o Provide the capability to interactively apply relevant
operators to sets of models and mappings to derive new
(resultant) models and mappings.

o Provide the capability to define new operators

Over time, we expect that this list will grow, and the MMTF will
correspondingly be extended.

1.2 Related Work
The Eclipse-based Atlas Model Management Architecture
(AMMA) [1] is a platform focused primarily on MDE and model
transformation but has some components that widen this scope.
The Atlas Model Weaver (AMW) provides a way to define model
mappings while Atlas Megamodels (AM3) are metadata registries
that relate resources such as models, metamodels and tools. While
the MMTF provides some similar components, it focuses on the
interactive and exploratory algebraic manipulation of models as
part of model-based development rather than large scale model
transformation infrastructures for MDE. Epsilon [7] provides a
collection of model management task-specific languages and
hence has a different and complementary objective to MMTF.
Domain specific modeling language frameworks such as the
Generic Modeling Environment (GME) [9] and MetaEdit+ [10]
aim to provide a metamodel-configurable environment for
producing model editors and transformation tools. As such, they
can be seen as alternatives to GMF and transformation languages
such as the Atlas Transformation Language (ATL). In contrast,
the MMTF does not produce editors or transformations for
particular modeling languages but instead works at a higher level
of abstraction by integrating existing tools to facilitate the
management of multiple models.

The approach taken by the MMTF is inspired in part by the work
of Bernstein [2] on Model Management in the field of metadata
management and although there are similarities between issues
surrounding data schemas and models of software, there are
significant differences as well. For example, the reason for
expressing relations between two data schemas is typically to
define a translation between their instances. On the other hand,
with software models, the focus is on expressing relations to
support activities like model merge or consistency checking.
Nevertheless, the similarities between these areas is a potential
source of foundational mathematics that we intend to exploit [4].

1.3 Organization of Paper
The paper is structured as follows. In Section 2 we discuss the
functionality offered by MMTF to support the development of
SMM tools. In Section 3, the architectural aspects of the
implementation are described. Finally, in Section 4 we report on
the current status of the project and our directions for the future.

2. FUNCTIONALITY
In [4], we identified and characterized a number of standard types
of software model management operators including:

o Merge: combines two or more models with respect to known
or hypothesized relationships between them.

o Match: finds commonalities between models, often as a
preparation for merging them.

o Diff: identifies the (edit) distance between two models.

o Split: as the inverse to merge, partitions a model into views
that have well-defined relationships between them.

o Slice: generates a partial view of a model, based on a stated
criterion.

o Check_property: establishes whether a given property holds
for a model, typically via model-checking.

o Is_consistent: establishes whether a set of models are
semantically consistent according to the intended
relationships between them.

These operators can be used individually or in combination to
achieve various modeling objectives. For example, consider the
following use case for SMM: In a distributed development
scenario, different teams are developing StateChart models that
address the portion of the system for which they are responsible.
A lead architect is then responsible for integrating these into a
single StateChart model of the system. She intends to use an
SMM tool to help her do so.

An SMM tool for this use case would provide the following
functionality:

o Allow StateChart models from the different teams to be
imported into a common “workspace”.

o Provide a way to define mappings that express the relations
that the architect believes hold among the individual
StateChart models. If she is uncertain about a particular
relation, she may want to express alternative candidate
mappings. Additionally, she may be supported by Match
operators that propose different candidate mappings.

o Provide operators such as Merge that allow the architect to
consider different combinations of the StateCharts models.
Some examples of merge include those that include all
behaviours that have been defined by both of the models, or
those that have been defined by either of the models [11].

In our earlier work, we have built a special-purpose SMM tool
called TReMer that supports this use case [15]. In order to help
put the functionality offered by the MMTF in perspective, note
that only about 30% of the TReMer code (e.g. the
implementations of the Match and Merge operators) provides
unique functionality. The rest can be factored out and is now
provided by the MMTF. In the remainder of the paper, we will
refer to this use case to illustrate how a re-implementation would
proceed given the functionality and architecture of the MMTF.

2.1 Basic Functionality
The MMTF provides an environment into which different model
and mapping types, editors and operators can be plugged in and
integrated. In addition, we introduce a new type of model, called a
Model Interconnection Diagram (MID). MIDs allow collections
of models and mappings to be rendered graphically with nodes
representing models and mappings between models. While a MID
provides value as a useful level of abstraction in which to express
a modeling scenario, the key role it plays is as an interface
through which plugged-in functionality can be accessed. When a
MID is opened using the MMTF MID editor, it provides the user
with the ability to create model/mapping nodes for new or existing
models/mappings, open model/mapping nodes by invoking the
appropriate editor and manipulate models/mappings by invoking
operators on collections of nodes. Figure 1 shows a screen shot of

the MID editor with an example MID from our StateChart
scenario. Here, the user is about to apply a Merge operator to a
selection of StateCharts and their mappings. Note that, for
readability, the package explorer, outline and property panes are
not shown. Also, in future versions of the editor we plan on
rendering binary mappings as edges to simplify the presentation.
We now consider various aspects of the MMTF functionality in
greater detail.

2.2 Mappings
A model type is defined by a metamodel. Thus, instances of this
metamodel are well-formed models of this type. Since the MMTF
is a framework for Eclipse, the assumed default metamodeling
language is Ecore + OCL for constraints; however, we intend to
allow other languages as well (see Section 4).

A mapping is a special kind of model that is used to express the
relationship between two or more models. Like any model,
mappings are typed and are defined by a metamodel. Unlike
simple models, however, they have external references to the
models they relate and the elements within those models. A
mapping type has a signature defining the model types it relates.
For example, the mapping type SCMapping has signature:

 SCMapping(StateChart, StateChart)

Thus, an instance of SCMapping is a mapping between two
StateChart models.

The use of metamodels for mappings allows one to be flexible
about what goes into a mapping. In addition, the semantics of a
mapping can be partially captured, as with model types, by the
well-formedness constraints. In particular, well formed mappings
should be semantically sound relative to the intended semantics
for the mapping. For example, a SCMapping includes state
mapping and transition mapping elements. Furthermore, in a well
formed SCMapping, if a transition t1 in StateChart sc1 is
mapped to a transition t2 in sc2, then it should also map the
corresponding endpoint states of t1 to the endpoint states of t2.

Since mappings have metamodels, they can be used wherever
models are used. Thus, they can be arguments for operators, can
have specialized editors and can be related by mappings as well.

Finally, certain generic mapping types can be defined based on
the metamodels of the model types that they map. The notion of
homomorphism between models of the same type is an example of
this and it is of interest because it can be used to express a
common class of mappings that have good algebraic properties.
The SCMapping described above is, in fact, the homomorphism
mapping type for StateCharts. The MMTF automatically
defines the homomorphism mapping type for any model type and
it provides a generic mapping editor that can be used with any
homomorphism mapping type.

2.3 Operators
Like mapping types, operators are typed by a signature. For
example, the Match and Merge operators described above have
the following signatures:
 SCMapping MatchSC(StateChart, StateChart)

 StateChart MergeSC(StateChart, StateChart,

 SCMapping)

An operator can be introduced either by using an operator plug-in
or by an operator definition. In the latter case, the operator is
defined as a composition of existing operators. For example, a
combination operator MatchAndMergeSC could be defined as:

 StateChart MatchAndMergeSC(

StateChart sc1,

StateChart sc2) {

result = MergeSC(sc1, sc2,

MatchSC(sc1, sc2))

 }

We are currently evaluating whether to define a new language for
operator definitions or to adopt an existing one.

2.4 Diagrams
The MMTF follows the common distinction between diagrams
(concrete syntax) and models (abstract syntax). A model is
changed by modifying its diagram, and this is done using the
editor for that type of diagram. Note that a model may have
multiple diagrams associated with it, and these may be of different
types. Thus, opening a model node requires that one of its
diagrams be selected and the MMTF remembers this choice for
subsequent openings. Furthermore, when an operator is invoked
on a set of models/mappings, the framework provides the operator
with access to the abstract syntactic and concrete syntactic
information (i.e. diagrams) of these since they both may be
relevant to the operator’s behavior.

For example, a Merge operator that takes a set of related
StateChart models and produces a single combined StateChart as
the result should, at minimum, generate the abstract syntax of the
result but ideally also one or more diagrams produced through
“visually sensible” merges of diagrams of the component
StateCharts.

2.5 Model Interconnection Diagrams (MID)
A MID captures and displays a collection of models and mappings
between them. The metamodel in Figure 2 shows that a MID

Figure 1. Screen shot of the MID editor.

consists of a set of references to the mappings and models it
represents. When a MID is created or opened using the MID
editor, it provides the user with the following options:

o Create a model node representing a new or existing model
based on the plugged-in model type.

o Create a mapping node (or edge for binary mappings)
representing a new or existing mapping based on the
plugged-in or generic mapping types.

o Open a model node or a mapping edge/node and invoke the
appropriate editor on the corresponding artifact using
plugged-in or generic editors (such as with the
homomorphism mapping type).

o Invoke an operator on a collection of models/mappings in the
MID and view the result as an extension of the MID.
Operators may be plugged-in or be user defined in terms of
other operators.

o View the metadata associated with a model/mapping. This
includes information about the history of operator
applications that produced it or in which it was involved.

Since mappings, operators and editors are strongly typed, the MID
editor constrains their applicability to models of the appropriate
types. As part of future work, we are investigating a richer typing
mechanism that would allow subtyping and type conversion to
allow broader applicability (see Section 4).

3. ARCHITECTURE
Figure 3 depicts the architecture of the MMTF. The primary
mechanism for building an SMM tool using the MMTF is to
provide plug-ins defining model/mapping types, their editors and
operators over them. Each of these types of plugins interact with
the MMTF services via extension points and interfaces published
by the MMTF. Since we are intending to leverage and extend

Eclipse and GMF, we further make the following assumptions.
We assume that Model/Mapping types have an associated Ecore
metamodel and a corresponding EMF plug-in generated from it.
In addition, we assume that Editor plug-ins are GMF-based
editors and hence base their diagrams on the GMF notation
metamodel.

In the MMTF services, the MID editor and the Mapping Editor
are GMF-based editors that implement the functionality described
in Section 2. The MID editor adapts to the set of plug-ins by
providing palette and context menu entries that allow the creation
of nodes for plugged-in model/mapping types, the opening of
nodes using plugged-in editors, and the application of plugged-in
operators.

A basic requirement of the MMTF is that it should act as an
integration point for independently developed components and
content. This requirement is supported by the following
architectural features:

o The metamodels in Model Type plug-ins are independent
and are related only via the metamodels of Mapping Type
plug-ins.

o Editor and Operator plug-ins are dependent only on the plug-
ins of the model/mapping types they address.

o Models and mappings are persisted as independent XMI files
even though they may appear to be “gathered together”
within a particular MID. All references to models or
mappings are via Uniform Resource Identifier (URI).

In the MMTF services, the Registry and the Workspace Access
Layer use the façade pattern to provide integrated access to the
components and content, respectively. Figure 4 depicts the object
model. It provides metadata about components and content and
decouples their use from their implementation details. Thus, for
example, an operator may be implemented as a plug-in or using
our operator definition language and this is transparent to
consumers of operators. Similarly, the use of alternate repositories
for models and mappings can be implemented without affecting
existing mappings or MIDs that reference them. Currently, we do
not support dynamic plug-ins, so Registry contains only static
information about plug-ins that the tool is running; however, the
Workspace Access Layer remains synchronized with the open
workspace and listens for changes in the file system.

* ModelReferenceroleMappingReference *

MID

*
Reference

type

*

Figure 2. The metamodel for a MID.

Eclipse
Services

MMTF
Services

Operator
Manager Registry Workspace

Access Layer

GMF

MID Editor Mapping Editor

 Operator
Plugin

EMF GEF

 Editor
Plugin

 Model/Mapping
 Type Plugin

Figure 3: MMTF Architecture.

Diagram

0..*

1

Mapping

1..*

Model

1

model0..*

diagram

1..*

arg

1..*

1

1..*

MappingTypeMappingSignature

1 signature1

DiagramEditor

ModelType type

1..*
arg

modelType

Operator

OperatorSignature

1..*

arg

1
result

11
signature

Figure 4: Object model of Registry and
Workspace Access Layer.

The Operator Manager is responsible for determining operator
applicability to a given set of models/mappings as described in
Section 2 and for managing the invocation of the operator.
Operator invocation either involves delegation to a plugged-in
operator or the execution of a user-defined operator. In either
case, an operator is treated like a command and uses the GMF
command framework to provide support for capabilities such as
undo/redo and progress monitoring.

4. CURRENT STATUS AND FUTURE
DIRECTIONS
We have completed the first phase of development on the MMTF.
This includes basic support for model, editor and operator plug-
ins as well as first versions of the MID editor, Registry,
Workspace Access Layer and Operator Manager. The second
phase is expected to be complete by the time this paper is
presented and includes support for mapping types, generic
Mapping Editor and operator definitions.

For subsequent phases we are exploring the following
possibilities:

o Alternative Metamodeling Languages: We assume that
model/mapping types are defined using Ecore+OCL
metamodels; however, in the research context we also want
to consider other metamodeling languages. We are exploring
ways to support this.

o Type Hierarchies and Type Conversion: Model/mapping
types can be organized into a type hierarchy. Semantically,
this means that an instance of a more specialized type is also
an instance of a more general type and thus could be used as
an argument to an operator or an argument of a mapping type
defined for the more general type. Another possibility is to
use an editor for the more general type as a viewer (i.e. read-
only) for the more specialized type. We are studying how to
implement these cases by expressing the subtype relationship
between metamodels in a way that correctly relates the well-
formedness conditions and then doing automatic type
inferencing in the MID editor. In addition, since subtyping
could be seen as a special case of type conversion, we are
investigating this more general case as well.

o MID-based Operators: Currently an operator signature
restricts operators to accept a fixed tuple of
models/mappings; however, we may want to allow operators
that could accept arbitrary collections of models and
mappings. For example, a more general MergeSC operator
should be able to accept a set of StateCharts and
SCMappings and produce a single StateChart as the
result. To do this, we need to define typed collections of
models/mappings – i.e. typed MIDs. A MID type is given by
a set of model and mapping types and an instance MID can
only contain models/mappings of these types. Operator
signatures for typed collections can be defined in terms of
MID types.

o Category Theory-Based Engines: Category Theory
provides a formal basis for many concepts within model
management [5]. We are exploring ways to incorporate this
theory into the MMTF in order to provide more generic
services to the tool builder. For example, Category Theory
defines structure composition operations known as limit and
colimit in a very general way and these could be used to

implement a Merge operation for models of any type. We
have already exploited this in other work [14, 6] and seek to
build it into the MMTF as well.

5. ACKNOWLEDGMENTS
This work is supported, in part, by an NSERC grant and an IBM
Eclipse Innovation Grant.

6. REFERENCES

[1] Atlas Model Management Architecture home page:
http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/

[2] Bernstein, P.: Applying Model Management to Classical
Meta Data Problems. In Proc. Conf. on Innovative Database
Research, pp. 209-220, 2003.

[3] Bernstein, P.A., Melnik, S. Model Management 2.0—
Manipulating Richer Mappings, Proc. SIGMOD 2007, pp. 1-
12.

[4] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N.,
Sabetzadeh., M. A Manifesto for Model Merging, In Proc.
1st Int. Workshop on Global Integrated Model Management
(associated with ICSE'06), May 2006.

[5] Diskin, Z. Mathematics of Generic Specifications for Model
Management I and II. In Encyclopedia of Database
Technologies and Applications. Idea Publishing Group, pp.
351-366, 2005.

[6] Diskin, Z., Dingel, J. and Liang, H. Scenario Integration via
Higher-Order Graphs. Technical Report No. 2006-517
School of Computing, Queen’s University, 2006.

[7] Epsilon tool page: http://www.eclipse.org/gmt/epsilon/

[8] Fleurey, F., Baudry, B., France, R., Ghosh, S. A Generic
Approach For Automatic Model Composition. In Proc. AOM
at MoDELS ‘07. 2007.

[9] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J.,
Thomason IV C., Nordstrom G., Sprinkle J., Volgyesi P. The
Generic Modeling Environment, In Proc. Workshop on
Intelligent Signal Processing, May 17, 2001.

[10] MetaEdit+ homepage: www.metacase.com

[11] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.,
Zave, P. Matching and Merging of Statecharts
Specifications. In Proc. ICSE'07, pp.54-64, May 2007.

[12] Ohst, D., Welle, M., and Kelter, U. 2003. Differences
between versions of UML diagrams. SIGSOFT Softw. Eng.
Notes 28, 5 (Sep. 2003), 227-236.

[13] Sabetzadeh, M, Easterbrook, S.M. iVuBlender: A Tool for
Merging Incomplete and Inconsistent Views. In Proceedings
of Int. Conf. on Requirements Engineering (RE'05), pp. 453-
454, Sept. 2005.

[14] Sabetzadeh, M, Easterbrook, S. View Merging in the
Presence of Incompleteness and Inconsistency. Requirements
Engineering Journal, 11(3), pp. 174-193, June 2006.

[15] Sabetzadeh, M., Nejati, S., Easterbrook, S., Chechik, M. A
Relationship-Driven Framework for Model Merging. In
Proc. Int. Workshop on Modeling in Software Engineering
(MiSE'07) at ICSE'07, 2007.

