Relationship-Based Change Propagation: A Case Study

Marsha Chechik Winnie Lai Shiva Nejati Jordi Cabot Zinovgkin Steve Easterbrook
Mehrdad Sabetzadeh Rick Salay
Department of Computer Science
University of Toronto, Toronto, ON, Canada.

{chechik,wlai,shiva,jcabot,zdiskin,sme,mehrdad,rsala y }@cs.toronto.edu
Abstract from those places that must be modified in response to the
change.

Software development is an evolutionary process. Re- The process of modifying software to meet its changing
quirements of a system are often incomplete or inconsistent equirements is challenging and has been extensively stud-
tomers may demand new seryices or goa_ls that often |eadev0|ution[1], andchange impact analysfg, 3]. Software
to changes in the design and implementation of the systemggaptation often refers to designing a system such thatit ca
These changes are typically very expensive. Even if onlygperate correctly in a changing environment, i.e., faiit
time-consuming and and error-prone. Thus, it is essential §one “offline”; we assume that changes are made, the sys-
to assist users in propagating changes across requirementsiay is recompiled and then put back into operation. Typi-

design,. and implementation artifacts. cally, such process is referred to as change impact analysis
In this paper, we take a model-based approach and pro- or software evolution.
vide an aut_omated algorlthm_ for propagating changes be- We take a model-based approach and provide an auto-
tween requirements and design models. The key feature of . ! .
: oo . . mated technique for propagating changes between require-
our work is explicating relationships between models at the

: . . ", ments and design models. We start with a collection of
requirements and design levels. We provide conditions for . :
) L : . . models that describe a system at different levels of abstrac
checking validity of these relationships both syntactjcal

: . o tion and/or from different perspectives. Our goal is to pro-
and semantically. We show how our algorithm utilizes the vide a techniaue for bropagating changes across these mod-
relationships between models at different levels to laeali 9 propagating g

the regions that should be modified. We use the IBM Tradeels' The key feature of our work is t(_)_expllcate rela_t|0nsh|p
between these models, and then utilize these relation&hips
6 case study to demonstrate our approach.

propagate changes automatically, if possible, and to-ocal
ize the regions in other models that should be modified by
hand.

In our earlier work, we have studied relationships be-
tween homogeneous models, i.e., models defined in the

Software development is an evolutionary process. Re-same notation. In particular, we have characterized syn-
quirements of a system are often incomplete or inconsis-tactic and semantic relationships between structural mod-
tent, and hence need to be extended or modified over timeels, such as class diagrams and ER diagrams [10], and be-
Customers may demand new services or goals. These oftehavioural models, such as state machines [8]. Further, we
lead to major or minor design and implementation changes.have developed semi-automated algorithms for computing
Sometimes these changes trigger a complete redesign osuch relationships [8]. Here, we build on our earlier work to
reconfiguration of the underlying system, such as changesdescribe relationships between a set of heterogeneous mod-
in non-functional requirements or system architecture butels, i.e., models described in different notations. Theayn
sometimes the changes have a local effect, requiring de-and semantics of such relationships are typically specified
velopers to modify only a small part of a system. In the through mappings between different model types. A rela-
latter case, it is essential for developers to separateethostionship between a pair of heterogeneous models is valid if
parts of the system that are intact, and hence can be reusedt, conforms to the mappings defined between their respec-

1 Introduction

tive metamodels. 3 Specifying Relationships

In this paper, we describe our model-based change prop-
agation technique by demonstrating it on a case study: an As we mention in Section 1, effective specification of
IBM WebSphere Performance Benchmark Sample calledrelationships between models is at the center of our method.
Trade 6 (see Section 2). Specifically, we show how relation- However, in this paper, we just illustrate relationships on
ships between heterogeneous models can be defined, angur example (which were constructed by hand) rather than
how the validity of these relationships can be checked usingdiscussing how to relate models in general.
metamodel-level mappings (Section 3). We also provide our The relationships between states of AD and messages of
change propagation algorithm, and show how it can help ussp in our example are shown as dashed lines in Figure 1.
identify and localize the effects of change across a set of\we note that an activity can be mapped to a single mes-
inter-related models (Sections 4-5). Section 6 compares ou sage or a sequence of messages (though it may not happen
work with the related research, and Section 7 concludes thehat the same message is part of the mapping of two differ-

paper with a discussion of future research directions. ent activities) (RuleR;). Intuitively, this is because an SD
represents a design-level model which is more defined than
2 Example a requirements model represented by an AD. For example,

the activity labeled; in AD is mapped to a single message
¢ buy in SD, whereas the activity, is mapped to a sequence

ges
< getAccountData, getQuoteData,

We motivate our work using Trade 6 [12] —an example 0
an online brokerage application, designed for benchmark-Of messa
ing web service performance. Using Java and IBM Web-

Sphere packages, it implements standard use cases for on- ‘ create(lrder, queuelrder >) h
line trading: getting account profile, getting a stock quote Ve refertoa (one or sequence of) messagesegian The
buy order, and sell order. order of the activities in the AD should match the order if

This example was chosen by our funding partner but, the (sequence of) messages in the corresponding SD (Rule

while being a well designed system, its documentation doesRQ)' This is ‘?'“e to the fact that both diagrams descr?be the
same behavior model of the system, although at different

not include explicit requirements and design models. , S
To acquire those, we realized that Trade 6 implements/€VelS of abstraction. For example, the activifyin the AD

a relatively standard online brokerage system, like those!S followed Dy s, and the 90”85p0ndi”91y message is
available on the web [2]. Thus, we chose a use case, bu;fOIIOWeOI by the correspon_dlng sequence of messages.
order, and obtained an activity diagram (AD) for placing an Rules R, and R, described above indicate some of the

order from [2}. This diagram is shown on the left hand side well-foundness rules of the relationship between ADs and
of Figure 1. For this paper, we refer to this AD as the re- SDs. First, we connect elements on the metamodel level of

quirements model for this use case. In this AD, the user hast"® corresponding diagrams (see Figure 2): activitiesand i

already been logged into the system. He/She begins by enteraction fragments, and connections betw_een <_:ontro|-f|ow
tering the stock name and the number of stocks to buy. The€lements. The actual rules are .then formalized in OCL. As
order is then placed on the queue for processing. Finally,&" €x@mple, ruld?; could be defined as:

when the oder is finished, the system notifies the user. context Messagenv R1: _

We have further obtained a sequence diagram (SD) sel f.interaction.activityNode—>size() < 1 _
of this use case by (manually) reverse-engineering source Clearly,_such descrl_ptlon_s land th_emse!ve_s to naturalim-
code implementing it. This SD appears on the right plementations of relationship checking within model man-
hand side of Figure 1, and we refer to it as the design agement tools, such as our own tool MMTF [11].
model for the buy order use case. A participant of type
TradeAction, which represents the user, sendmgmes- 4 Change Propagation
sage tdTradeServices. The later processes the message

by communicating the retrieval information of the user ac- In this section, we illustrate how relationships defined
count and the stock quote @B. Afterwards, it sends in Section 3 are used to help propagate changes made to
a queueOrder message t@radeBrokerMDB, which rep- system requirements.

resents a trade exchange. AfteradeBrokerMDB com- We now make a change requested by potential stakehold-
pletes the order, it sends a message baCk&deServices ers of the Trade 6 system. Specifically, we enhance the buy

which, in turn, updates the user account and the status of therder use case to ensure that the order is filled within a spec-
order withDB, and sends anrderCompleted message to ified time frame. The new activity diagram is shown in Fig-

TradeAction. ure 3. The new requirement is captured as an addition of a
1The original activity diagram includes the flow for both buydasell f:on(_j't{oncl tq the prlgw_al AD of the buy order. If the order
orders, but we use it to describe buy orders only. is within the time limit, it is executed, and the system sends

=
A
2
&
@
S
B
&
E<
O
LD

! T ~

v - \
S ™ e —— p— >N
Order is placed on the order . o e Tl
: -1 completerder =
(gueue (s;)) e = ~
i / debit AccountBalance U ,’
! /
1 y
,’ createHolding \ “
/~ System sends acknowledgement N\, .-~ ¥ e | s
to the client (s3) J = = = | -
T g updateOrderStatus | -
| 7~ i | -
/‘lg / orderCompieted Ll -
~ = T -
- <L -1

Figure 1. Buy order scenario: Relating states of the AD (LHS) to messages in the SD (RHS).

Activity Diagram (partial) Sequence Diagram (partial)
:
e w

* target
ActivityEdge ActivityNode

e

sowce
Int eraction

GeneralOrdering

""" OccurenceSpedication

Figure 2. Fragments of AD and SD metamodels, and relationships between their elements.

an acknowledgement to the client); otherwise, it sends TradeAction participant.

anorder expired message. . . .
We now show how the relationships between require-

As requirements change, the corresponding designs needents and design models established in Section 3 can be
to evolve accordingly, and maintaining the consistency be- ,saq to help users evolve the design of the SD for buy
tween the different models is a major undertaking. We pro- orqer, in response to changes in requirements. This idea
pose to automate propagation of changes to the related mody jjjystrated in Figure 5. The left-hand side represents

els. In what follows, we first show how a desired SD re- e original buy order use case, with its activity diagram
flecting the above change should look like and then d|scuss(We call it AD;) in the top left and its sequence dia-

the algorithm which can create this changed model SeMi-gram (we call itSD;) in the lower left. The relation-

automatically. ships betweemD; and SD; are those captured in Fig-
The SD for the enhanced buy order use case ap-ure 1. The right hand side represents the enhanced buy or-
pears in Figure 4. It reflects the corresponding changesder use case mentioned above. The top right diagram is
in the AD in Figure 3. Specifically, it includes a its activity diagram 4D-), also shown in Figure 3. The
new combined alternate interaction fragment. If the lower right diagram is the corresponding SD, referred to
within time — limit constraint is satisfied (see the up- as SD- and also appearing in Figure 4. Singd), is
per fragment), theompleteOrder message is sent, and evolved from the original ADAD,, we can distinguish be-
theTradeServices participant proceeds as in the original tween activities common to both diagrams and those new in
SD. If the constraint is not met (the lower fragment), an AD,. In particular, the precondition and the first two ac-
orderExpired message is sent and then propagated to thetivities, s; ands,, are present in both diagrams. The activ-

o ife cient (53)

:

i
1
]
'
i
[
1
i
I

W|||\

W

% \

5|, il Tradesction | :Tradeservices 0B ||IradeBrokenon ! I radescton ||:1raeservices | | pp || Trademrokenvon | LA |
Mg =" 7| | e e Y
e o S I I I == e et s Y
DI === | | EEE=——r el |
SV | eeoudtebta [N] D f 0 || oetouoteDate |
I T e A N] [A | e | R P
L el N T —|
Nl e T S] [| | e 1 | s i
e | b N e—————h]

P e

Figure 5. Using relations (dashed lines) to propagate changes.

........... ‘ Tradesction | | TradeServices | | 0B | |:Traderoksva
the system
i buy
ient enters stock name, number "J getAccountData
of stocks (sy)
getQuoteData
= createOrder
Order is placed on the order >
ueue (s;
g &) queueDrder
N System sends acknowledgement ot _)[wmntime—linit] completeDrder i
Is within time-fimit? to the client (s3) J
{c1) debitAccountBalance I_
INo] createHolding
updateAccountHolding
Order expired message is sent to
< the client (s4) > tposteOrierStatus
orderCompleted
el T T T T T T T T T T T T T T Torderpied 1|
orderExpired il
i

Figure 3. AD of the enhanced buy order. ' ¥

ity System sends acknowledgemt_ent to the cligl}ts _ Figure 4. SD of the enhanced buy order.

(s3) is also present but has different preconditions in create0rder, queueOrder >) are preserved i§ D,. SD
the two diagrams. AD, also has an additional condi- regions in the original diagram which correspond to the ac-
tion (Is within time —limit, ¢1) and a new activity tjvities which changed their precondition should appear in

(order expired message is sent to the client, s4), the new diagram as well (and in the original order), but their

added to one of the branches of the condition check. location may be different. For example, tid; message
Intuitively, SD regions in the original diagram corre- sequence< completeOrder, debitAccountBalance,

sponding to the unchanged activities should be preserved increateHolding, updateAccountHolding,

the new diagram. For example, the first two region§ 6% updateOrderStatus, orderCompleted > corresponds

(< buy >, and < getAccountData, getQuoteData, to the changed activitgs in AD;. Thus, this sequence

needs to appear ifD- but in a different location. Finally,
the additions ta4D,, the new condition check, and the
new activity s, should be appropriately reflected D5,
with an addition of aralt operator and a newlse block.

5 Automating Change Propagation

We now give high-level pseudocode for an algorithm for
automating the relationship-based change propagation ex
emplified in Section 4. A more formal version of this algo-

rithm can be found in [6].

2
Suppose we are given a version of an activity diagram

AD; and its corresponding sequence diagiay . Let Sy
be the states il D, and RE; be the regions it D, and
assume that the relationship betwdeh; andS, calledp,

is available as well. In addition, we are given a new version

of activity diagram A D- (with statesS;) and a relationship
pap that relatesS; andS;. Our goal is to automatically

compute changes needed to be made in the new sequence d7|%

agram. We do so in an algorithnolcATECHANGE, shown
in Figure 6.

. . . 9
The algorithm starts by looking at the difference between

states ofA D, andA D, storing them iraddedStateandre-

movedStatesThen it initializes the new sequence diagram

S D, by copying the regions fror§ D; whose correspond-
ing states are not iremovedStateslt also initializes the
relation, po, between the regions ifiD-, and the states,
in ADs. This is done by (1) taking the regions 81D,

copied fromSDy; (2) finding the corresponding states in

AD;s via the relatiorp;; and (3) using the relatiopsp to
find the states il D, mapped to states of D, identified
in the previous step.

After these initializations, the algorithm iterates over e

Algorithm. LOCATECHANGE

Input: AD;:An AD, version 1.
ADs: An AD, version 2.

SD;: An SD, version 1, corresponding t#D; .
p1: Arelation betweerb D, andAD; .
pap: Arelation betweerd D, and AD-.

Output: SD>: An SD version 2, corresponding t#D-.
p2: Arelation betweerb D, and AD-.
1. LetaddedStatebe states im D- but whose corresponding
(via pap) states are not il D¢
. LetremovedStatelse states im D, but whose corresponding
(via pap) states are not il Do
3: Initialize S D> with SDy, but only keep regions d§ D;
whose corresponding (via) states are not iremovedStates
4: Initialize p2 by copying those tuplege, y) of p1 such that
x is not inremovedStates
5. For every state in addedStates
6: Insert a placeholder regioncorresponding t@ in SD-
Updatep: to include(s, r)
Check ifps is a valid relation betweeA D, and.SD»
using well-foundness rules (see Section 3)
Report any violations caused py

Figure 6. Algorithm for locating changes.

for manual fix. In particular, by usingsp , we look for any
statey in AD- and its related statg in AD,, such that the
predecessor q@f is not related to the predecessoer Also,
for every statey and its predecessarin AD-, we look for
the regionsd’ of y and the regiod of = in SD, by using
p2, and then check whether the ordering betwe@mdy is
in conflict with the ordering betweesn andsd’.

In the example in Figure ®ddedStates {c1, s4}, and

ery state irmddedStatet® produce placeholders for regions removedStates an empty set; thugsi, s2, s3} are pre-
of S D5 that correspond to these new states. In particular, served in bottd D, and AD,. The sequence diagrafiD,
for a given new statg, the algorithm finds its predecessor s initialized with the regions irt' D, that correspond te;,

(or its successor) in ADy and looks for the state; in
AD; that is related ta:.
Then it finds the regiond; in SD; that is related ta:;.

s andss. Also, the relationships is initialized with the
relations between the regions #, and the correspond-
ing statess;, sy andss in AD,. For the new state,, its

If the regionsd; can be found, a placeholder is inserted predecessor il D; is so. The states; in ADs is mapped

after (or beforeyd; in SD,. This placeholder indicates the
location of the new regiond in S D, that corresponds to
the new state;. The relationship, is also updated with
the relation betweerd andy. If a statex; in AD; cannot

to the states, in ADq, and the state, in AD; is related
to the regionsds (< getAccountData, getQuoteData,
createOrder, queueOrder >) in SD;. So a placeholder
for the region corresponding to the stateis inserted after

be found, it means that the predecessor (or the successotthe regionsds in SD,. The predecessor of the new state

x of the new statg, is also a new state il Ds. In this
case, we do not add a new region fpin SD-; instead
we extend the placeholder of the region foin SD; to
also hold the messages corresponding.tdhis is a design

s4in ADs is ¢1. Sincec; is not found in the relatiop 4 p,
we assume that the placeholder for the region,ah S D,
should be extended to hold the messages, ofAfter han-
dling the new states, we chedkD, against order violations

decision made to minimize the number of placeholders in (rule Ry). The predecessor of the statgin AD is ¢y,

the resulting SDs.

while the predecessor af, in AD; is so. Sinces, andc;

Finally, the algorithm checks for potential violations of are not related, we report this violation for manual inspec-

the ordering constraint (rul&;) and reports them to users

tion.

6 Reated Work tion is impossible, and that our process results in models
with “unknowns” that require designer interaction. Formal

Specifying relationships between a set of heterogeneoudzing this notion and enabling reasoning about it, as well

models has been previously studied: [4] proposes an ap-as proofs of correctness of our approach are again left for

proach for checking the logical consistency of a set of re- future work.

lated requirements. The consistency rules are described usAcknowledgments. We are grateful to members of the

ing first-order logic and are checked using a classical theo-CERAS project and to Richard Paige for many interesting

rem prover. [9] develops an end-to-end framework, called discussions.

xlinkit, for consistency checking of distributed XML doc-

uments._ The framework includes a d_ocument mar_1agemenpeferenceS

mechanism, a language based on first-order logic for ex-

pressing consistency rules, and a conformance checking en-

gine for verifying documents against these rules and gen- [1] L. Briand, Y. Labiche, L. O'Sullivan, and M. Sowka. "Aat

mated Impact Analysis of UML ModelsJournal of Systems

erating diagngstics: While these techniques can effigientl and Software79(3):339-352, 2006.

describe relationships across a set of heterogeneoussnodel [2] G. Chintalapani. “Online Stock Brokerage System”, Falll
and can verify consistency of the models and their relation- 2003. Available at: http://www.isr.umd.edu/

ships, they do not provide support for change propagation “austin/ense621.d/projects04.d/project_

or model repair in case an inconsistency arises. gouthami.%html

. : [3] A. Egyed, E. Letief, and A. Finkelstein. “Generating and
Our work is most closely related to the effortsiarpact Evaluating Choices for Fixing Inconsistencies in UML De-

analySIS[B.] and. change propagatiom the Con_teXt of soft- sign Models”. InProceedings of ASE’'Q8ages 99-108,
ware engineering models[1]. [3] uses consistency rules to 2008.

determine, as the change is made, which of the instances[4] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B-Nu
need to be reevaluated. [1] explicitly enumerates the types seibeh. Inconsistency handling in multiperspective dpeci
of changes that can be made on a particular type of models _ cations.|[EEE TSE 20(8):569-578, 1994.

and gives recipes of how to propagate each kind of change [®] J- Kramer and J. Magee. “Sel-Managed Systems: an Ar-

: ‘i chitectural Challenge”. Ifruture of Software Engineering
among a related collection of models. The work is limited to pages 259268, 2007,

Sequence Diagrams and Class Diagrams. We are not awarejg) . Lai. “Towards a Relationship-Based Change Propaga-
of work on automatieepair: while this approach is used in tion”. Master’s thesis, University of Toronto, Departmeifit
the database research, it does not seem to be applied yetto Computer Science, February 2009.

general software engineering models. Thus, we produce re- [7] A. Maule, W. Emmerich, and D. Rosenblum. “Impact Anal-

gions with unknowns rather than automatically generating ~ ¥SiS of Database Schema Changes”. Rroceedings of
ICSE’08 pages 451-460, 2008.

the changed models. [8] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, an
P. Zave. “Matching and Merging of Statecharts Specifica-
7 Conclusion and Discussion tions”. In Proceedings of ICSE 'Qpages 54—64, 2007.

[9] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.

. . . Flexible consistency checkindhCM TOSEM 12(1):28-63,
Change propagation between activity diagrams and se- 2003, y A M12(1)

quence diagrams described in this paper is part of our on{10] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrootl, a
going work to enable semi-automated change propagation M. Chechik. “Consistency Checking of Conceptual Models
in the MDD setting. The algorithm outlined in Section 5 via Model Merging”. InProceedings of RE 'Q7/ages 221-
is being implemented on top of our MTTF [11] framework, 230, 2007. _ o

and we are planning to do additional case studies to under/1 R- Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. Mc-

. . . Cormick, S. Nejati, M. Sabetzadeh, and P. Viriyakattiya-
stand what other relationships and rules need to be specified porn. “An Eclipse-Based Tool Framework for Software

to propagate changes as models are being evolved. We also ;0 4el Management”. IProceedings of ETX'07 at OOP-

expect to identify domain-specific rules, on the model and SLA'07 October 2007.
the meta-model levels, which would help construct mean-[12] IBM Trade6 Benchmark, June 2005. Available at:
ingful relationships. http://www.ibm.com/developerworks/edu/

Of course, the work is far from being complete. Specif- dm-dw-dm-0506lau.html

[13] J. Zhang and B. Cheng. “Model-Based development of Dy-
namically Adaptive Software”. IProceedings of ICSE’Q6
pages 371-380, 2006.

ically, so far we have not looked at relating models other
than ADs and SDs. Our initial investigation into relating
these models with Java code (or other implementation mod-
els) only indicated how challenging the problem is.

We have also showed that fully automating change prop-
agation on models constructed at different levels of abstra

