
Relationship-Based Change Propagation: A Case Study

Marsha Chechik Winnie Lai Shiva Nejati Jordi Cabot Zinovy Diskin Steve Easterbrook
Mehrdad Sabetzadeh Rick Salay

Department of Computer Science
University of Toronto, Toronto, ON, Canada.

{chechik,wlai,shiva,jcabot,zdiskin,sme,mehrdad,rsala y}@cs.toronto.edu

Abstract

Software development is an evolutionary process. Re-
quirements of a system are often incomplete or inconsistent,
and hence need to be extended or modified over time. Cus-
tomers may demand new services or goals that often lead
to changes in the design and implementation of the system.
These changes are typically very expensive. Even if only
local modifications are needed, manually applying them is
time-consuming and and error-prone. Thus, it is essential
to assist users in propagating changes across requirements,
design, and implementation artifacts.

In this paper, we take a model-based approach and pro-
vide an automated algorithm for propagating changes be-
tween requirements and design models. The key feature of
our work is explicating relationships between models at the
requirements and design levels. We provide conditions for
checking validity of these relationships both syntactically
and semantically. We show how our algorithm utilizes the
relationships between models at different levels to localize
the regions that should be modified. We use the IBM Trade
6 case study to demonstrate our approach.

1 Introduction

Software development is an evolutionary process. Re-
quirements of a system are often incomplete or inconsis-
tent, and hence need to be extended or modified over time.
Customers may demand new services or goals. These often
lead to major or minor design and implementation changes.
Sometimes these changes trigger a complete redesign or
reconfiguration of the underlying system, such as changes
in non-functional requirements or system architecture but
sometimes the changes have a local effect, requiring de-
velopers to modify only a small part of a system. In the
latter case, it is essential for developers to separate those
parts of the system that are intact, and hence can be reused,

from those places that must be modified in response to the
change.

The process of modifying software to meet its changing
requirements is challenging and has been extensively stud-
ied before under termssoftware adaptation[5, 13],software
evolution[1], andchange impact analysis[7, 3]. Software
adaptation often refers to designing a system such that it can
operate correctly in a changing environment, i.e., facilitat-
ing “online” change. In contrast, we study changes that are
done “offline”; we assume that changes are made, the sys-
tem is recompiled and then put back into operation. Typi-
cally, such process is referred to as change impact analysis
or software evolution.

We take a model-based approach and provide an auto-
mated technique for propagating changes between require-
ments and design models. We start with a collection of
models that describe a system at different levels of abstrac-
tion and/or from different perspectives. Our goal is to pro-
vide a technique for propagating changes across these mod-
els. The key feature of our work is to explicate relationships
between these models, and then utilize these relationshipsto
propagate changes automatically, if possible, and to local-
ize the regions in other models that should be modified by
hand.

In our earlier work, we have studied relationships be-
tween homogeneous models, i.e., models defined in the
same notation. In particular, we have characterized syn-
tactic and semantic relationships between structural mod-
els, such as class diagrams and ER diagrams [10], and be-
havioural models, such as state machines [8]. Further, we
have developed semi-automated algorithms for computing
such relationships [8]. Here, we build on our earlier work to
describe relationships between a set of heterogeneous mod-
els, i.e., models described in different notations. The syntax
and semantics of such relationships are typically specified
through mappings between different model types. A rela-
tionship between a pair of heterogeneous models is valid if
it conforms to the mappings defined between their respec-

1



tive metamodels.
In this paper, we describe our model-based change prop-

agation technique by demonstrating it on a case study: an
IBM WebSphere Performance Benchmark Sample called
Trade 6 (see Section 2). Specifically, we show how relation-
ships between heterogeneous models can be defined, and
how the validity of these relationships can be checked using
metamodel-level mappings (Section 3). We also provide our
change propagation algorithm, and show how it can help us
identify and localize the effects of change across a set of
inter-related models (Sections 4-5). Section 6 compares our
work with the related research, and Section 7 concludes the
paper with a discussion of future research directions.

2 Example

We motivate our work using Trade 6 [12] – an example of
an online brokerage application, designed for benchmark-
ing web service performance. Using Java and IBM Web-
Sphere packages, it implements standard use cases for on-
line trading: getting account profile, getting a stock quote,
buy order, and sell order.

This example was chosen by our funding partner but,
while being a well designed system, its documentation does
not include explicit requirements and design models.

To acquire those, we realized that Trade 6 implements
a relatively standard online brokerage system, like those
available on the web [2]. Thus, we chose a use case, buy
order, and obtained an activity diagram (AD) for placing an
order from [2]1. This diagram is shown on the left hand side
of Figure 1. For this paper, we refer to this AD as the re-
quirements model for this use case. In this AD, the user has
already been logged into the system. He/She begins by en-
tering the stock name and the number of stocks to buy. The
order is then placed on the queue for processing. Finally,
when the oder is finished, the system notifies the user.

We have further obtained a sequence diagram (SD)
of this use case by (manually) reverse-engineering source
code implementing it. This SD appears on the right
hand side of Figure 1, and we refer to it as the design
model for the buy order use case. A participant of type
TradeAction, which represents the user, sends abuy mes-
sage toTradeServices. The later processes the message
by communicating the retrieval information of the user ac-
count and the stock quote toDB. Afterwards, it sends
a queueOrder message toTradeBrokerMDB, which rep-
resents a trade exchange. AfterTradeBrokerMDB com-
pletes the order, it sends a message back toTradeServices

which, in turn, updates the user account and the status of the
order withDB, and sends anorderCompleted message to
TradeAction.

1The original activity diagram includes the flow for both buy and sell
orders, but we use it to describe buy orders only.

3 Specifying Relationships

As we mention in Section 1, effective specification of
relationships between models is at the center of our method.
However, in this paper, we just illustrate relationships on
our example (which were constructed by hand) rather than
discussing how to relate models in general.

The relationships between states of AD and messages of
SD in our example are shown as dashed lines in Figure 1.
We note that an activity can be mapped to a single mes-
sage or a sequence of messages (though it may not happen
that the same message is part of the mapping of two differ-
ent activities) (RuleR1). Intuitively, this is because an SD
represents a design-level model which is more defined than
a requirements model represented by an AD. For example,
the activity labeleds1 in AD is mapped to a single message
buy in SD, whereas the activitys2 is mapped to a sequence
of messages

< getAccountData, getQuoteData,

createOrder, queueOrder >
We refer to a (one or sequence of) messages as aregion. The
order of the activities in the AD should match the order if
the (sequence of) messages in the corresponding SD (Rule
R2). This is due to the fact that both diagrams describe the
same behavior model of the system, although at different
levels of abstraction. For example, the activitys1 in the AD
is followed bys2, and the correspondingbuy message is
followed by the corresponding sequence of messages.

RulesR1 andR2 described above indicate some of the
well-foundness rules of the relationship between ADs and
SDs. First, we connect elements on the metamodel level of
the corresponding diagrams (see Figure 2): activities and in-
teraction fragments, and connections between control-flow
elements. The actual rules are then formalized in OCL. As
an example, ruleR1 could be defined as:

context Messageinv R1:
self.interaction.activityNode−>size() ≤ 1
Clearly, such descriptions land themselves to natural im-

plementations of relationship checking within model man-
agement tools, such as our own tool MMTF [11].

4 Change Propagation

In this section, we illustrate how relationships defined
in Section 3 are used to help propagate changes made to
system requirements.

We now make a change requested by potential stakehold-
ers of the Trade 6 system. Specifically, we enhance the buy
order use case to ensure that the order is filled within a spec-
ified time frame. The new activity diagram is shown in Fig-
ure 3. The new requirement is captured as an addition of a
conditionc1 to the original AD of the buy order. If the order
is within the time limit, it is executed, and the system sends

2



Figure 1. Buy order scenario: Relating states of the AD (LHS) to messages in the SD (RHS).

Figure 2. Fragments of AD and SD metamodels, and relationships between their elements.

an acknowledgement to the client (s3); otherwise, it sends
anorder expired message.

As requirements change, the corresponding designs need
to evolve accordingly, and maintaining the consistency be-
tween the different models is a major undertaking. We pro-
pose to automate propagation of changes to the related mod-
els. In what follows, we first show how a desired SD re-
flecting the above change should look like and then discuss
the algorithm which can create this changed model semi-
automatically.

The SD for the enhanced buy order use case ap-
pears in Figure 4. It reflects the corresponding changes
in the AD in Figure 3. Specifically, it includes a
new combined alternate interaction fragment. If the
within time− limit constraint is satisfied (see the up-
per fragment), thecompleteOrder message is sent, and
theTradeServices participant proceeds as in the original
SD. If the constraint is not met (the lower fragment), an
orderExpired message is sent and then propagated to the

TradeAction participant.

We now show how the relationships between require-
ments and design models established in Section 3 can be
used to help users evolve the design of the SD for buy
order, in response to changes in requirements. This idea
is illustrated in Figure 5. The left-hand side represents
the original buy order use case, with its activity diagram
(we call it AD1) in the top left and its sequence dia-
gram (we call itSD1) in the lower left. The relation-
ships betweenAD1 and SD1 are those captured in Fig-
ure 1. The right hand side represents the enhanced buy or-
der use case mentioned above. The top right diagram is
its activity diagram (AD2), also shown in Figure 3. The
lower right diagram is the corresponding SD, referred to
as SD2 and also appearing in Figure 4. SinceAD2 is
evolved from the original ADAD1, we can distinguish be-
tween activities common to both diagrams and those new in
AD2. In particular, the precondition and the first two ac-
tivities, s1 ands2, are present in both diagrams. The activ-

3



Figure 5. Using relations (dashed lines) to propagate changes.

Figure 3. AD of the enhanced buy order.

ity System sends acknowledgement to the clients

(s3) is also present but has different preconditions in
the two diagrams. AD2 also has an additional condi-
tion (Is within time− limit, c1) and a new activity
(order expired message is sent to the client, s4),
added to one of the branches of the condition check.

Intuitively, SD regions in the original diagram corre-
sponding to the unchanged activities should be preserved in
the new diagram. For example, the first two regions ofSD1

(< buy >, and < getAccountData, getQuoteData,

Figure 4. SD of the enhanced buy order.
createOrder, queueOrder >) are preserved inSD2. SD
regions in the original diagram which correspond to the ac-
tivities which changed their precondition should appear in
the new diagram as well (and in the original order), but their
location may be different. For example, theSD1 message
sequence< completeOrder, debitAccountBalance,
createHolding, updateAccountHolding,
updateOrderStatus, orderCompleted > corresponds
to the changed activitys3 in AD1. Thus, this sequence

4



needs to appear inSD2 but in a different location. Finally,
the additions toAD2, the new condition checkc1 and the
new activitys4 should be appropriately reflected inSD2,
with an addition of analt operator and a newelse block.

5 Automating Change Propagation

We now give high-level pseudocode for an algorithm for
automating the relationship-based change propagation ex-
emplified in Section 4. A more formal version of this algo-
rithm can be found in [6].

Suppose we are given a version of an activity diagram
AD1 and its corresponding sequence diagramSD1. Let S1

be the states inAD1, andRE1 be the regions inSD1 and
assume that the relationship betweenRE1 andS1, calledρ1

is available as well. In addition, we are given a new version
of activity diagram,AD2 (with statesS1) and a relationship
ρAD that relatesS1 andS2. Our goal is to automatically
compute changes needed to be made in the new sequence di-
agram. We do so in an algorithm LOCATECHANGE, shown
in Figure 6.

The algorithm starts by looking at the difference between
states ofAD1 andAD2, storing them inaddedStatesandre-
movedStates. Then it initializes the new sequence diagram
SD2 by copying the regions fromSD1 whose correspond-
ing states are not inremovedStates. It also initializes the
relation,ρ2, between the regions inSD2 and the statesS2

in AD2. This is done by (1) taking the regions ofSD2,
copied fromSD1; (2) finding the corresponding states in
AD1 via the relationρ1; and (3) using the relationρAD to
find the states inAD2 mapped to states ofAD1 identified
in the previous step.

After these initializations, the algorithm iterates over ev-
ery state inaddedStatesto produce placeholders for regions
of SD2 that correspond to these new states. In particular,
for a given new statey, the algorithm finds its predecessor
(or its successor)x in AD2 and looks for the statex1 in
AD1 that is related tox.

Then it finds the regionsd1 in SD1 that is related tox1.
If the regionsd1 can be found, a placeholder is inserted
after (or before)sd1 in SD2. This placeholder indicates the
location of the new regionsd in SD2 that corresponds to
the new statey. The relationshipρ2 is also updated with
the relation betweensd andy. If a statex1 in AD1 cannot
be found, it means that the predecessor (or the successor)
x of the new statey is also a new state inAD2. In this
case, we do not add a new region fory in SD2; instead
we extend the placeholder of the region forx in SD2 to
also hold the messages corresponding toy. This is a design
decision made to minimize the number of placeholders in
the resulting SDs.

Finally, the algorithm checks for potential violations of
the ordering constraint (ruleR2) and reports them to users

Algorithm. LOCATECHANGE

Input: AD1: An AD, version 1.
AD2: An AD, version 2.

SD1: An SD, version 1, corresponding toAD1.

ρ1: A relation betweenSD1 andAD1.

ρAD: A relation betweenAD1 andAD2.

Output: SD2: An SD version 2, corresponding toAD2.
ρ2: A relation betweenSD2 andAD2.

1: LetaddedStatesbe states inAD2 but whose corresponding
(via ρAD) states are not inAD1

2: Let removedStatesbe states inAD1 but whose corresponding
(via ρAD) states are not inAD2

3: InitializeSD2 with SD1, but only keep regions ofSD1

whose corresponding (viaρ1) states are not inremovedStates
4: Initializeρ2 by copying those tuples(x, y) of ρ1 such that

x is not inremovedStates
5: For every states in addedStates
6: Insert a placeholder regionr corresponding tos in SD2

7: Updateρ2 to include(s, r)
8: Check ifρ2 is a valid relation betweenAD2 andSD2

using well-foundness rules (see Section 3)
9: Report any violations caused byρ2

Figure 6. Algorithm for locating changes.

for manual fix. In particular, by usingρAD , we look for any
statey in AD2 and its related states1 in AD1, such that the
predecessor ofy is not related to the predecessors1. Also,
for every statey and its predecessorx in AD2, we look for
the regionsd′ of y and the regionsd of x in SD2 by using
ρ2, and then check whether the ordering betweenx andy is
in conflict with the ordering betweensd andsd′.

In the example in Figure 5,addedStatesis {c1, s4}, and
removedStatesis an empty set; thus{s1, s2, s3} are pre-
served in bothAD1 andAD2. The sequence diagramSD2

is initialized with the regions inSD1 that correspond tos1,
s2 ands3. Also, the relationshipρ2 is initialized with the
relations between the regions inSD2 and the correspond-
ing statess1, s2 ands3 in AD2. For the new statec1, its
predecessor inAD2 is s2. The states2 in AD2 is mapped
to the states2 in AD1, and the states2 in AD1 is related
to the regionsd2 (< getAccountData, getQuoteData,
createOrder, queueOrder >) in SD1. So a placeholder
for the region corresponding to the statec1 is inserted after
the regionsd2 in SD2. The predecessor of the new state
s4 in AD2 is c1. Sincec1 is not found in the relationρAD,
we assume that the placeholder for the region ofc1 in SD2

should be extended to hold the messages ofs4. After han-
dling the new states, we checkAD2 against order violations
(rule R2). The predecessor of the states3 in AD2 is c1,
while the predecessor ofs3 in AD1 is s2. Sinces2 andc1

are not related, we report this violation for manual inspec-
tion.

5



6 Related Work

Specifying relationships between a set of heterogeneous
models has been previously studied: [4] proposes an ap-
proach for checking the logical consistency of a set of re-
lated requirements. The consistency rules are described us-
ing first-order logic and are checked using a classical theo-
rem prover. [9] develops an end-to-end framework, called
xlinkit, for consistency checking of distributed XML doc-
uments. The framework includes a document management
mechanism, a language based on first-order logic for ex-
pressing consistency rules, and a conformance checking en-
gine for verifying documents against these rules and gen-
erating diagnostics. While these techniques can efficiently
describe relationships across a set of heterogeneous models
and can verify consistency of the models and their relation-
ships, they do not provide support for change propagation
or model repair in case an inconsistency arises.

Our work is most closely related to the efforts onimpact
analysis[3] andchange propagationin the context of soft-
ware engineering models[1]. [3] uses consistency rules to
determine, as the change is made, which of the instances
need to be reevaluated. [1] explicitly enumerates the types
of changes that can be made on a particular type of models
and gives recipes of how to propagate each kind of change
among a related collection of models. The work is limited to
Sequence Diagrams and Class Diagrams. We are not aware
of work on automaticrepair: while this approach is used in
the database research, it does not seem to be applied yet to
general software engineering models. Thus, we produce re-
gions with unknowns rather than automatically generating
the changed models.

7 Conclusion and Discussion

Change propagation between activity diagrams and se-
quence diagrams described in this paper is part of our on-
going work to enable semi-automated change propagation
in the MDD setting. The algorithm outlined in Section 5
is being implemented on top of our MTTF [11] framework,
and we are planning to do additional case studies to under-
stand what other relationships and rules need to be specified
to propagate changes as models are being evolved. We also
expect to identify domain-specific rules, on the model and
the meta-model levels, which would help construct mean-
ingful relationships.

Of course, the work is far from being complete. Specif-
ically, so far we have not looked at relating models other
than ADs and SDs. Our initial investigation into relating
these models with Java code (or other implementation mod-
els) only indicated how challenging the problem is.

We have also showed that fully automating change prop-
agation on models constructed at different levels of abstrac-

tion is impossible, and that our process results in models
with “unknowns” that require designer interaction. Formal-
izing this notion and enabling reasoning about it, as well
as proofs of correctness of our approach are again left for
future work.

Acknowledgments. We are grateful to members of the
CERAS project and to Richard Paige for many interesting
discussions.

References

[1] L. Briand, Y. Labiche, L. O’Sullivan, and M. Sówka. “Auto-
mated Impact Analysis of UML Models”.Journal of Systems
and Software, 79(3):339–352, 2006.

[2] G. Chintalapani. “Online Stock Brokerage System”, Fall
2003. Available at: http://www.isr.umd.edu/
˜austin/ense621.d/projects04.d/project_
gouthami.%html .

[3] A. Egyed, E. Letier, and A. Finkelstein. “Generating and
Evaluating Choices for Fixing Inconsistencies in UML De-
sign Models”. InProceedings of ASE’08, pages 99–108,
2008.

[4] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nu-
seibeh. Inconsistency handling in multiperspective specifi-
cations.IEEE TSE, 20(8):569–578, 1994.

[5] J. Kramer and J. Magee. “Self-Managed Systems: an Ar-
chitectural Challenge”. InFuture of Software Engineering,
pages 259–268, 2007.

[6] W. Lai. “Towards a Relationship-Based Change Propaga-
tion”. Master’s thesis, University of Toronto, Departmentof
Computer Science, February 2009.

[7] A. Maule, W. Emmerich, and D. Rosenblum. “Impact Anal-
ysis of Database Schema Changes”. InProceedings of
ICSE’08, pages 451–460, 2008.

[8] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. “Matching and Merging of Statecharts Specifica-
tions”. In Proceedings of ICSE ’07, pages 54–64, 2007.

[9] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible consistency checking.ACM TOSEM, 12(1):28–63,
2003.

[10] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and
M. Chechik. “Consistency Checking of Conceptual Models
via Model Merging”. InProceedings of RE ’07, pages 221–
230, 2007.

[11] R. Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. Mc-
Cormick, S. Nejati, M. Sabetzadeh, and P. Viriyakattiya-
porn. “An Eclipse-Based Tool Framework for Software
Model Management”. InProceedings of ETX’07 at OOP-
SLA’07, October 2007.

[12] IBM Trade6 Benchmark, June 2005. Available at:
http://www.ibm.com/developerworks/edu/
dm-dw-dm-0506lau.html .

[13] J. Zhang and B. Cheng. “Model-Based development of Dy-
namically Adaptive Software”. InProceedings of ICSE’06,
pages 371–380, 2006.

6


