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Abstract 

Software development is an evolutionary process. Requirements of a system are often 

incomplete or inconsistent, and hence need to be extended or modified over time. Customers 

may demand new services or goals that often lead to changes in the design and implementation 

of the system. These changes are typically very expensive. Even if only local modifications are 

needed, manually applying them is time-consuming and error-prone. Thus, it is essential to assist 

users in propagating changes across requirements, design, and implementation artifacts. 

In this thesis, we take a model-based approach and provide an automated algorithm for 

propagating changes between requirements and design models. The key feature of our work is 

explicating relationships between models at the requirements and design levels. We formalize the 

relationships and provide conditions for checking validity of these relationships both 

syntactically and semantically. We show how our algorithm utilizes the relationships between 

models at different levels to localize the regions that should be modified. We use the IBM 

Trade6 case study to demonstrate our approach. 
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1 Introduction 
Software development is an evolutionary process. Requirements of a system are often 

incomplete or inconsistent, and hence need to be extended or modified over time. Customers 

may demand new services or goals. These often lead to major or minor design and 

implementation changes. Sometimes these changes trigger a complete redesign or 

reconfiguration of the underlying system, such as changes in non-functional requirements or 

system architecture but sometimes the changes have a local effect, requiring developers to 

modify only a small part of a system. In the latter case, it is essential for developers to separate 

those parts of the system that are intact, and hence can be reused, from those places that must be 

modified in response to the change. 

The process of modifying software to meet its changing requirements is challenging and 

has been extensively studied before under terms software adaptation [2][3], software evolution 

[4], and change impact analysis [5][6]. Software adaptation often refers to designing a system 

such that it can operate correctly in a changing environment, i.e., facilitating “online” change. In 

contrast, we study changes that are done “offline”; we assume that changes are made, the system 

is recompiled and then put back into operation. Typically, such process is referred to as change 

impact analysis or software evolution. 

We take a model-based approach and provide an automated technique for propagating 

changes between requirements and design models. We start with a collection of models that 

describe a system at different levels of abstraction and/or from different perspectives. Our goal is 

to provide a technique for propagating changes across these models. The key feature of our work 

is to explicate relationships between these models, and then utilize these relationships to 

propagate changes automatically, if possible, and to localize the regions in other models that 

should be modified by hand. 
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The earlier work of members of the Toronto Merge Group1 has studied relationships 

between homogeneous models, i.e., models defined in the same notation. In particular, they have 

characterized syntactic and semantic relationships between structural models, such as class 

diagrams and ER diagrams [7], and behavioural models, such as state machines [8]. Further, they 

have developed semi-automated algorithms for computing such relationships [8]. Here, we build 

on their earlier work to describe relationships between a set of heterogeneous models, i.e., 

models described in different notations. The syntax and semantics of such relationships are 

typically specified through mappings between different model types. A relationship between a 

pair of heterogeneous models is valid if it conforms to the mappings defined between their 

respective meta-models. 

 

1.1 Related Work 
Specifying relationships between a set of heterogeneous models has been studied 

previously: [9] proposes an approach for checking the logical consistency of a set of related 

requirements. The consistency rules are described using first-order logic and are checked using a 

classical theorem prover. [10] develops an end-to-end framework, called xlinkit, for consistency 

checking of distributed XML documents. The framework includes a document management 

mechanism, a language based on first-order logic for expressing consistency rules, and a 

conformance checking engine for verifying documents against these rules and generating 

diagnostics. While these techniques can efficiently describe relationships across a set of 

heterogeneous models and can verify consistency of the models and their relationships, they do 

not provide support for change propagation or model repair in case an inconsistency arises. 

                                                 

 
1 Merge Group at Software Engineering Group, Department of Computer Science of University of Toronto. 
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Our work is most closely related to the efforts on impact analysis [6] and change 

propagation in the context of software engineering models [4]. [6] uses consistency rules to 

determine, as the change is made, which of the instances need to be reevaluated. [4] explicitly 

enumerates the types of changes that can be made on a particular type of models and gives 

recipes of how to propagate each kind of change among a related collection of models. The work 

is limited to Sequence Diagrams and Class Diagrams. We are not aware of work on automatic 

repair: while this approach is used in the database research, it does not seem to be applied yet to 

general software engineering models. Thus, we produce regions with unknowns rather than 

automatically generating the changed models. 

 

1.2 Contribution 
In this thesis, we formalize relationships between heterogeneous models, specifically, 

activity and sequence diagrams. While these models intrinsically describe a software system 

from different perspectives, we use them to represent different abstraction levels of the system. 

This is different than [4] that uses sequence diagrams and class diagrams to represent the same 

level of abstraction. We give a concept of a region to encapsulate a message or a sequence of 

messages in sequence diagram. This essentially hides the details of a refined model when we 

focus on relating its elements to the elements of an abstract model. It is obvious that such 

detailed information is needed when one relates regions to the elements of a more refined model. 

A region is different from InteractionFragment (an element in sequence diagram meta-

model) as region gives the flexibility of binding messages – there can be multiple regions in one 

interaction fragment, though it may be less likely that a region spans across multiple fragments.  

In addition, we define rules to validate the relationships between the models. Utilizing 

these relationships, we provide our algorithm to automatically propagate changes across models. 

Further, we illustrate how the algorithm works using a fragment of IBM’s Trade6 system, and 

discuss how it can be implemented in existing model-based tools. 
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1.3 Organization of This Thesis 
The rest of this thesis is organized as follows. In Chapter 2, we describe our model-based 

change propagation technique by demonstrating it on a case study: an IBM WebSphere 

Performance Benchmark Sample called Trade6 [1]. Specifically, we show how relationships 

between heterogeneous models can be defined, and illustrate how these relationships can be used 

to propagate changes. We then formalize the relationships between heterogeneous models in 

Chapter 3. We provide our change propagation algorithm, and show how it can help us identify 

and localize the effects of change across a set of inter-related models in Chapter 4. We briefly 

discuss how the algorithm can be implemented with existing modeling tools in Chapter 5. 

Finally, we conclude the thesis with a summary, limitations and a discussion of future research 

directions in Chapter 6. 
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2 Use Case and Motivation 
In this chapter, we motivate our work using an example of an online brokerage 

application. We begin by introducing the example and providing a set of inter-related UML 

diagrams for the example in Section 2.1. We define the relationships between different diagrams 

in Section 2.2. Finally, we show how these relationships can be utilized for change propagation 

in Section 2.3. 

 

2.1 Motivating Example 
We use an online brokerage application in our study of propagation of model changes. 

For that, we need two levels of model abstractions to describe requirements and designs 

respectively. We have found a specification of an online brokerage system [11] that covers 

fundamental use cases, which include account profile management, placing a trade order, and 

retrieval of stock information from stock exchange. The specification captures documentation 

created at different stages of software development: stake holder’s requests, use case 

requirements, and designs of the system. In particular, there is an activity diagram describing the 

requirements for a use case of placing an order, which describes the flow for both buy and sell 

orders. For the sake of our example, we simplify the activity diagram and use it as the 

requirements model for the use case of buy order. 

Further, we use Trade6 [1] as our additional sources of models. Trade6 is an online 

brokerage application designed for benchmarking web service performance. Using java and IBM 

WebSphere packages, it implements standard use cases that include getting account profile, 

getting stock quote, buy order, and sell order. Since Trade6 does not provide explicit 

requirements and design documentation, we reverse engineer a sequence diagram of buy order 

from code. We use the sequence diagram as the design model for the use case of buy order. 

Figure 1 shows the requirements model of the use case of buy order. In this use case, the 

user has been logged into the system. The user first enters the stock name and the number of 
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stocks to buy, the order is then placed on the queue for process. Finally, the system notifies the 

user when the order is finished. 

 

Figure 1.  Activity diagram of buy order. 

 

Figure 2.  Sequence diagram of buy order. 

Figure 2 shows the design model of the use case of buy order. In this design, a participant 

of type TradeAction, which represents the user, sends a buy message to TradeServices. 

TradeServices then process the message by communicating to DB for retrieving information 
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of user account and stock quote, and for creating an order. Then it sends a queueOrder message 

to TradeBrokerMDB, which represents a trade exchange. After TradeBrokerMDB completes 

the order, it sends a completeOrder message back to TradeServices. TradeServices 

then updates the user account and status of the order with DB, and it sends an orderCompleted 

message to TradeAction at the end. 

 

2.2 Relating Models 
In this example, we manually create the relationships between the activity diagram 

(Figure 1) and the sequence diagram (Figure 2) to relate the states and messages (Figure 3). It is 

noted that an activity can be mapped to a single message or a sequence of messages. This is 

because a sequence diagram represents a design level model, and so it is a more refined and 

detailed description of an activity diagram which represents a requirements model. For example, 

in Figure 3, the activity labeled as s1 in the activity diagram is mapped to the single message buy 

in the sequence diagram. But activity s2 is mapped to a sequence of messages 

getAccountData, getQuoteData, createOrder, and queueOrder. Also, it is noted that 

the order of the activities in the activity diagram matches to the order of the (sequence of) 

messages in the sequence diagram that corresponds to those activities. This is due to the fact that 

both diagrams describe the same behavior model of the system, though they are at various levels 

of abstraction. For example, the activity s1 in the activity diagram is followed by the activity s2, 

and we see that the corresponding buy message of s1 in the sequence diagram is followed by the 

corresponding sequence of messages (getAccountData, getQuoteData, createOrder, and 

queueOrder) of s2. 
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Figure 3.  Relates states in activity diagram to messages in sequence diagram. 

 

2.3 Utilizing Relationships for Change Propagation 
Using the example, we demonstrate how we use the inter-model relationships to help 

propagate changes made to one of the models. Suppose the stakeholders of Trade6 request to 

enhance the buy order use case such that a given order expiration time is checked before the 

order is executed. As shown in Figure 4, a new activity diagram for the enhanced use case is 

created to show the change in requirements. In particular, a check of time-limit (c1) is added to 

the activity diagram. If the order is within the time-limit, it is executed, and the system sends an 

acknowledgement to the client (s3); otherwise, an order expired message is sent to the client 

(s4). This is a conditional addition to the original activity diagram of buy order. 
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Figure 4.  Activity diagram of enhanced buy order 

As requirements change, the corresponding designs then need to evolve to accommodate 

the changes. In the enhanced buy order use case, a new sequence diagram is created as shown in 

Figure 5 to reflect the corresponding changes in the activity diagram (Figure 4). In particular, a 

combined alternate interaction fragment is added. If the within time-limit constraint is 

satisfied (the upper fragment), the completeOrder message is sent, and TradeServices 

responds by updating the user account and status of the order with DB, and finally sends an 

orderCompleted message to TradeAction. If the constraint is not met (the lower fragment), 

an orderExpired message is sent and TradeServices responds by sending an 

orderExpired message to TradeAction. 
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Figure 5.  Sequence diagram of enhanced buy order 

This example is small and straightforward, and it would be easy to manually identify new 

changes in sequence diagram. However, a software system in reality is at different scales, and 

changes in requirements models are not always straightforward. Thus, identifying and making 

changes in the corresponding design models is error-prone. Thus, we need tools to automatically 

identify the changes in one model, and provide assistance to the users for propagating the 

corresponding changes to the more refined models. 

As we have established relationships between requirements models and design models, 

our goal is to utilize these relations to help users in evolving designs. This idea is illustrated in 

Figure 6. The left-hand side represents the original buy order use case, with the top left diagram 

showing its activity diagram (ADv1) and the lower left diagram showing its sequence diagram 
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(SDv1). The relationships between ADv1 and SDv1 have been described in Section 2.2. The 

right-hand side represents the enhanced buy order use case mentioned above. The top right 

diagram is its activity diagram (ADv2) and has been given in Figure 4, while the lower right 

diagram is its sequence diagram (SDv2) and has been shown in Figure 5. Since the new activity 

diagram ADv2 is evolved from the original activity diagram ADv1, we can identify the activities 

that are found in both diagrams, and identify the new activities that are added to ADv2. In 

particular, the pre-condition and the first two activities (s1 and s2) are the same in both diagrams. 

The activity “System sends acknowledgement to the clients” (s3) is found in both ADv1 and 

ADv2 but it has different predecessors in the two diagrams. In addition, ADv2 has added a 

condition check of “Is within time-limit” (c1) and a new activity “order expired message is sent 

to the client” (s4) to one of the branches of the condition check. For the activities that are not 

changed, the corresponding messages in the original sequence diagram need to be preserved in 

the new sequence diagram. For example, the first five messages (buy, getAccountData, 

getQuoteData, createOrder and queueOrder) in SDv1 are preserved in SDv2. For the 

relocated activities, the corresponding messages in the original sequence diagram need to be in 

the new sequence diagram but may appear in different locations. For example, the activity s3 in 

ADv1, its corresponding messages (completeOrder, debitAccountBalance, 

createHolding, updateAccountHolding, updateOrderStatus and orderCompleted) 

in SDv1 need to appear in SDv2, but they may appear in different locations in the new sequence 

diagram in order to reflect the change of the predecessor of the activity in the new activity 

diagram. In addition, the condition check c1 and the new activity s4 in ADv2 are then needed to 

appear in SDv2. 

One of the challenges in impact analysis on heterogeneous models is that the domain- 

specific semantics of each element in an abstraction model is usually not explicitly and directly 

expressed at the elements in a refined model. The reason that we know s1 is related to buy in the 

example because we understand those English words in the diagrams. For the sake of 

propagating changes, we assume that the relations between the original activity diagram and its 

sequence diagram are granted. From the example, we note that we need to detect changes made 

in activity diagrams. Specifically, we need to identify what activities are preserved, what are 
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added to and removed from the original diagram. Also, we need to detect any changes in the 

ordering of activities because those changes must be reflected in the corresponding sequence 

diagram. In particular, we need to establish a rule to check the ordering of activities against the 

ordering of messages. We also note that one activity may correspond to one message or a 

sequence of messages, so we need to define a notion that captures this relation. At the end of 

change propagation, we want to identify and localize the impact on sequence diagram. 
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Figure 6.  Using relations to propagate changes.  The left-hand side is the activity diagram 

and sequence diagram of the original buy order, and the right-hand sides is the diagrams 

of the enhanced buy order. Relations between these diagrams are indicated by dashed-

arrows. 
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3 Formalization of Relationships 
In this chapter, we formalize models and their relationships. We start with formalizing 

simple activity and sequence diagrams at the model level. Then we define a conceptual enclosure 

of messages over a sequence diagram called region. Finally, we capture the relationships 

between activity and sequence diagrams in terms of regions.  

Definition 1 (Activity diagram): An activity diagram is a tuple ),,,,( 00 fsSAD τΔ= , 

where S is a set of states, Ss ∈0  is an initial state, and Sf ∈0  is a final state. τ  is a set of 

transition labels, and we useb/ to denote a blank label.  ( )SS ××⊆Δ τ  is a transition relation 

relating states and labels. Further, ,di SSS ∪=  where iS  is a set of state activities, and dS  is a 

set of decision states. 

In our example, activity diagram ADv1 of buy order (see Figure 1), iS  is { }321 ,, sssS = , 

τ  is {b/ }, and Δ  is ( ) ( ) ( ) ( ){ }03322110 ,,,,,,,,,,, fbssbssbssbs //// . 

 

Definition 2 (Sequence diagram): A sequence diagram is a tuple 

( ),,,,,, labelorderinstanceMILESD = , where E  is a set of events, partitioned into ( )Esend  

and ( )Ereceive , where ( )Esend  denotes a set of send events and ( )Ereceive  denotes a set of 

receive events. L is a set of message labels. I is a set of instances. M is a bijection: 

( ) ( )EreceiveEsend → .  The function instance : IE →  maps an event to the instance in which 

the event occurs. The function label : LE →  maps events to labels. Order is a set of total orders 

{ }Iii ∈≤ , and { } { }ieinstanceEeieinstanceEei =∈×=∈⊆≤ )()(  denotes the total order 

of events on instance i . 
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Figure 7. Sequence diagram of buy order.  The ei’s are added to show the occurrences of 

the events of the corresponding message. 

An example of a sequence diagram SDv1 is shown in Figure 7. The set of instances I is 

{ }rMDBTradeBroke DB, es,TradeServi n,TradeActio . L is the set of labels shown above 

the message arrows →  or ← , e.g., buy, getQuoteData, orderCompleted. The events E 

is{ }2221 ,,, eee K , where ( )Esend  is{ }21531 ,,,, eeee K , and ( )Ereceive  is { }22642 ,,, eeee K . An 

example of bijection M is ( )1eM  returns 2e . The function ( )1einstance  returns TradeAction, 

and ( )2einstance  returns TradeServices. Both ( )1elabel  and ( )2elabel  are buy. The total 

order of events on instance TradeAction, denoted as nTradeActio≤ , is { }221 ee nTradeActio≤ . The set 

of total orders order is the union of nTradeActio≤ , cesTradeServi≤ , DB≤ , and erMDBTradeBrokd≤ , where the 

last three denote the total order of events on instances TradeServices, DB, and 

TradeBrokerMDB, respectively. 
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Definition 3 (Partial order over events): Given a sequence diagram SD , EESD ×⊆p  

denotes partial ordering of events in SD so that { })()(,( EsendeeMe
Ii

iSD ∈∪≤=
∈
Up . 21 ee SDp  

holds if 1e  happens before 2e . Also, ( ) ( ) 313221 eeeeee SDSDSD ppp ⇒∧ . 

In the example SDv1 (Figure 7), the partial order over events in the sequence diagram 

SDp  is a union of nTradeActio≤ , cesTradeServi≤ , DB≤ , erMDBTradeBrokd≤ , and 

  { }=∈ )()(,( EsendeeMe { }22214321 ,,, eeeeee SDSDSD pKpp . 

Also, we know 31 ee SDp  because 21 ee SDp and 32 ee SDp as the latter is in cesTradeServi≤ . 

 

Definition 4 (Region): Suppose we are given a sequence diagram SD and its partial 

ordering over events SDp . Let ( )rordellabeeinstancMILEds ′′′′′′′=′ ,,,,,,  be a tuple and ds ′p be 

partial ordering over its events E ′ . The tuple ds ′  is a region of SD  if all the following properties 

hold:  

(a) ,EE ⊆′ ,LL ⊆′ ,II ⊆′ ,MM ⊆′ ,instanceeinstanc ⊆′ ,labelllabe ⊆′  

,orderrorde ⊆′ and SDds pp ⊆′ . 

(b) ( )( )EzyzzxEzyxEyx
SDSDds ′∈⇒∧∈∀⇒′∈∀ ′ ppp., . 

(c) ( ) ( )Esendxxminx ds ′∈⇒∀ ′. . (Refer to Definition 5 for the description of dsmin ′ ) 

(d) ( ) ( )Ereceivexxmaxx ds ′∈⇒∀ ′. . (Refer to Definition 6 for the description of dsmax ′ ) 
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Figure 8.  Sequence diagram of buy order.  The black dashed areas denoted by sd’i are valid 

regions, while the dotted area denoted by dr is an example of an invalid region. 

Figure 8 illustrates the idea of regions in SDv1. The tuple 

( )22222222 ,,,,,, rordellabeeinstancMILEds ′′′′′′′=′  

is an example of a region over the sequence diagram. Its events 2E′  is { }10,943 ,,, eeee K , its set of 

labels 2L′  is { }queueOrderr,createOrdeta,getQuoteDaData,getAccount , the 

instances of the region 2I ′  is { }erMDBTradeBrokd DB, ces,TradeServi , and the events 

bijection 2M ′  is { }109876543 ,,, eeeeeeee →→→→ . The function ( )32 eeinstanc ′  returns 

TradeServices, and ( )42 eeinstanc ′  returns DB. Both ( )32 ellabe ′  and ( )42 ellabe ′  are 

getAccountData. The total order of events on instance TradeServices, denoted as 
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cesTradeServi2≤′ , is a set of tuples ( ) ( ) ( ) ( ) ( ) ( ){ }979575937353 ,,,,,,,,,,, eeeeeeeeeeee . As shown in 

Figure 9, the partial order over events in the region 
2ds ′p is jointly formed from 

{ })()(,( 22 EsendeeMe ′∈′ , cesTradeServi2≤′ , DB2≤′ , and rMDBTradeBroke2≤′ . For example, event 3e  

happens before 4e  and 5e , and there is no order between 4e and 5e . 

 

Figure 9.  Partial order of events over a region sd'2 of SDv1 shown in Figure 8.  The 

notation yx ee → means that xe  happens before ye . 

 

Definition 5 (Minimum event predicate): Given a region ds ′ , predicate 

Emin ds ′⊂′ denotes minima of ds ′p  so that ( )xmin ds ′  holds if Ey ′∈∃/  s.t. xy ds ′p . 

Definition 6 (Maximum event predicate): Given a region ds ′ , predicate 

Emax ds ′⊂′ denotes maxima of ds ′p  so that ( )xmax ds ′  holds if Ey ′∈∃/  s.t. yx ds ′p . 

From the partial order over events of 2ds ′  (Figure 9), the minimum event predicate 

( )xmin ds 2′
 is true for 3e , which is a send event; while the predicate is false for other events. The 

maximum event predicate ( )xmax ds 2′
 is true only for 8e  and 10e , which are receive events. This 

also illustrates that a region can have more than one minimum and one maximum event. We also 

know that 2ds ′  in Figure 8 is a region because it satisfies all the properties of Definition 4. 

In Figure 8, a tuple representing the area dr enclosed by the dotted line is not a region 

because property (b) of Definition 4 is unsatisfied. In particular, 95 ee ds ′p  requires that 7e  be in 
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the events of this tuple in order to satisfy the property. Further, if 7e  is added to the events, 8e  

needs to be added as well because the mapping between send and receive events is a bijection. 

 

Definition 7 (Partial ordering over regions): Let { }ndsdsR ′′= ,,1 K  be a set of regions of a 

sequence diagram SD , and for each region ids ′ , its partial ordering over events be 
ids ′p . Let 

RRR ×⊆p denote a partial ordering over regions. jRi rr p  if 

( ) ( )( ) ( ) ( )( )yxyminxmaxyxxyyminxmaxyx SDjiSDji pp ∧∧∃∃∧∧∧∃∃¬ .. . In other words, 

given two regions ir  and jr , we say ir  happens before jr  if (i) all the minimum events of jr  do 

not happen before any maximum event of ir  and (ii) some maximum events of ir  happen before 

some minimum events of jr . 

 

Figure 10. Sequence diagram of buy order, with regions 
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Figure 10 illustrates the order over the set of regions { }321 ,, dsdsdsR ′′′=  in SDv1. It is 

noted that 2e  is the only maximum event of 1ds ′ , and 32 ee SDp , so we know 21 dsds R ′′ p . Also, 

11e  is the only minimum event of 3ds ′ , 1110 ee SDp , and there is no order between 8e and 11e , so 

we conclude 32 dsds R ′′ p . 

 

Definition 8 (Relations between activity diagram and sequence diagram): Let SD  be a 

sequence diagram, R  be a set of regions of SD , AD  be an activity diagram, and S  be the states 

in AD . Let SR ×⊆ρ  be a relation between the regions and states. We use this relationship to 

find whether the ordering over the regions R  in the sequence diagram SD  has any conflict with 

the ordering of states S  in the activity diagram AD . If a region x  happens before a region x′ , 

the state y′  corresponding to the region x′  does not happen before the state y  corresponding to 

the region x . Also, if a state y  happens before a state y′ , the region x′  corresponding to the 

state y′  does not happen before the region x  corresponding to the state y . Formally, 

( ) ( ) ρρ ∈′′′∀′∀∧∈∀∀ yxyxyxyx ,, , ( ) ( ) ),,(),,( xxyzyzyzyzxx RR pp /′⇒Δ∈′∃∧Δ∉′∀⇒′ . 
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Figure 11. Relations between activity states and regions. 

Figure 11 illustrates relations between activity states and regions. Suppose we are given a 

relation ( ) ( ) ( ){ }332211 ,,,,, sdssdssds ′′′=ρ . We know 1s  relates to 1ds ′ , and 2s  corresponds 

to 2ds ′ . Also, we know that 21 dsds R ′′ p  from Definition 7. Hence by Definition 8, we know there 

should be no transition from 2s  to 1s , and this is true by inspecting the activity diagram. On the 

other hand, the activity diagram indicates that there is a transition from 1s  to 2s , and so we 

expect 2ds ′  does not happen before 1ds ′ . This is confirmed in the sequence diagram.  Suppose 

now we are given a subset ( ) ( ){ }22110 ,,, sdssds ′′=ρ , and we want to discover any missing 

relations. From the given 0ρ , we know that 2s  relates to 2ds ′ . Also, we know that 32 dsds R ′′ p  

from Definition 7. The activity diagram indicates that there is a transition from 2s  to 3s . It is 

safe to say that any intermediate activities right after 2s  are related to any intermediate regions 

after 2ds ′ . If there is only a single activity after 2s  and only a single region after 2ds ′ , then we 

can conclude that this single activity ( 3s ) relates to this single region ( 3ds ′ ). 
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4 Automating Change Propagation 
In this chapter, we show how to automatically propagate a change in an abstraction 

model to a refined model by using the inter-model relationships defined in Chapter 3. We start 

with formalizing changes made in an activity diagram (Section 4.1), then we give an algorithm 

that propagates the changes to the corresponding sequence diagram (Section 4.2), and illustrate it 

with the buy order use case (Section 4.3). We wrap this chapter by discussing possible 

extensions of our model and algorithm, and challenges of full automation. 

4.1 A Notion of Change 

Suppose we are given a version of an activity diagram 1AD  and its sequence diagram 1SD . 

Let 1S  be the states in 1AD , and 1R  be the regions in 1SD . Further, we are given the relation 

between 1R  and 1S , namely, 1ρ . Also, we are given a new version of activity diagram 2AD . In 

addition, we are given ADρ  that relates the states between 1S  and 2S  (states of 2AD ). We want to 

locate the changes needed in the sequence diagram corresponding to 2AD , and we do this in an 

algorithm LocateChange. Figure 12 gives a pictorial description of this algorithm. It takes 1AD , 

1SD , 1ρ , 2AD  and ADρ  as its input, and generates a new sequence diagram 2SD  with 

placeholders for the potential places of new regions that correspond to the new activities in 2AD . 
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Figure 12.  Input and output of algorithm LocateChange 

Before we give the algorithm LocateChange, we formalize a function NotCovered that is 

used in the algorithm for determining the states that are added or removed from activity 

diagrams. 

Definition 9 (function NotCovered ): Let 1AD  be the original version of the activity 

diagram, 1S  be the states of 1AD , and 1Δ  be the transition relation of 1AD . Also, let 2AD  be the 

new version of the activity diagram, 2S  be the states of 2AD , and 2Δ  be the transition relation 

of 2AD . Suppose we are given a relation 21 SSAD ×⊆ρ  that relates the states between the two 

activity diagrams. We define a function NotCovered  that takes ADρ  and 1S  (respectively 2S ) as 

input and returns the states in 1S  (respectively 2S ) that are not covered by the relations 

between 1S  and 2S . Formally, ( ){ }ADAD ssSsSsSNotCovered ρρ ∈′∈′∃/∈= ,.|),( 211 , and 

( ){ }ADAD ssSsSsSNotCovered ρρ ∈′∈′∃/∈= ,.|),( 122 . 

To elaborate a bit, if ),( 1SNotCovered ADρ  returns an empty set, then the states in the 

activity diagram 1AD  are not removed. Otherwise, the non-empty set specifies the states that are 

removed from 1AD . Similarly, if ),( 2SNotCovered ADρ  returns an empty set, then no state is 

added to the activity diagram 2AD . Otherwise, the non-empty set tells the states that are added 
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to 2AD . In the example given in Figure 6, let 1S  be the states of the activity diagram ADv1, 2S  

be the states of the activity diagram ADv2, and ADρ  be the relations between the states in ADv1 

and ADv2. The function ),( 1SNotCovered ADρ  returns an empty set and so no state in ADv1 is 

removed. In contrast, the function ),( 2SNotCovered ADρ  returns two states, namely, the 

condition check 1c  and the activity 4s  , indicating that 1c  and 4s  are the states added to ADv2.  

 

4.2 Algorithm 
We are now ready to describe the algorithm LocateChange (Figure 13). The algorithm 

starts by finding the difference of states between 1AD  and 2AD . In particular, it finds the states 

that are added to 2AD , namely, saddedState , and the states that are removed from 1AD , namely, 

tesremovedSta . It then initializes the new sequence diagram 2SD  for 2AD  by copying the regions 

from 1SD  whose corresponding states are not in tesremovedSta . It also initializes the relations 

2ρ  between the regions in 2SD  and the states 2S  in 1AD . This is done by first taking the regions 

just established in 2SD  (which are the cloned regions in 1SD ), and then finding the 

corresponding states in 1AD  through the relations 1ρ , and finally using the relations ADρ  to find 

the states in 2AD  that are mapped to those states we just found in 1AD . After these initializations, 

the algorithm iterates over every state in the saddedState  by finding the placeholders of regions 

in 2SD  that correspond to these new states. In particular, for a given new state y , the algorithm 

finds its predecessor (or its successor) x  in 2AD  and looks for the state 1x  in 1AD  that is related 
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to x . Then it finds the region 1sd  in 1SD  that is related to 1x . If the region 1sd  can be found, a 

placeholder is inserted after (or before) 1sd  in 2SD  as a potential place for the region sd  in 2SD  

that corresponds to the state y in 2AD . The relationship 2ρ  is also updated with the relation 

between sd and y . If the state 1x  in 1AD  cannot be found, it means that the predecessor (or the 

successor) x  of the new state y  is also a new state in 2AD . In this case, we do not explicitly add 

a dedicated region for y  in 2SD ; instead we extend the placeholder of the region for x  in 2SD  

to hold the messages corresponding to y as well. Finally, the algorithm checks for any potential 

violation of ordering and reports them to users for manual fix. In particular, by using ADρ , we 

look for any state y  in 2AD  and its related state 1s  in 1AD , such that the predecessor of y  is not 

related to the predecessor 1s . Also, for every state y  and its predecessor x  in 2AD , we find the 

region ds ′  of y  and the region sd  of x  in 2SD  by using 2ρ , and then we check whether the 

ordering between x  and y  is in conflict with the ordering between sd and ds ′ . 

LocateChange 
  input: 
    1AD ,  // activity diagram version 1 
    1SD ,   // sequence diagram version 1 for 1AD  
    1ρ ,     // relations between regions in 1SD  and states in 1AD  
    2AD ,  // activity diagram version 2 
    ADρ     // relations between states in 1AD  and 2AD  
  output: 
    2SD ,  // sequence diagram version 2 for 2AD  
    2ρ      // relations between regions in 2SD  and states in 2AD  
 
begin 
   // Let 2S  = states in 2AD , find the states added to 2AD  
   saddedState ( )2, SNotCovered ADρ=  
   // Let 1S  = states in 1AD , find the states removed from 1AD . 
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   tesremovedSta ( )1, SNotCovered ADρ= . 
 
   // Initialize 2SD  with 1SD , but only keep regions whose corresponding states are in 2AD . 
   ( ){ }tesremovedStasssdSDsdsdSD ∉∧∈∧∈= 112 ,| ρ  
   // Initialize 2ρ  with the relations between the regions that are just put in 2SD   
   // and the states in 2AD  that correspond to those regions. 
   ( ) ( ( ) ( ) ){ }ADssssdsSDsdssd ρρρ ∈′∧∈∃∧∈′= ,,|, 122  
 
   // Iterate over every new state in 2AD  
   for each new state y  in saddedState  
      // Let sd  denote the new region we need to add in 2SD  for y  
      // if we can find a region 1sd  in 1SD  such that 
      // (i) 1sd  is related to state 1x  in 1AD ,  
      // (ii) 1x  is related to x  in 2AD , and 
      // (iii) x  is a predecessor of the new state y in 2AD  
      if ( ) 2,, Δ∈∃∃ yuxux  && ( ) ADxxx ρ∈∃ ,11  && ( ) 1111 , ρ∈∃ xsdsd  then 
         insert placeholder for region sd after a region equivalent to 1sd  in 2SD  
         add ( )ysd ,  to 2ρ  
      // or, if we can find a region 1sd  in 1SD  such that 
      // (i) 1sd  is related to state 1x  in 1AD ,  
      // (ii) 1x  is related to x  in 2AD , and 
      // (iii) x  is a successor of the new state y in 2AD  
      else if ( ) 2,, Δ∈∃∃ xuyux  && ( ) ADxxx ρ∈∃ ,11  && ( ) 1111 , ρ∈∃ xsdsd  then 
         insert placeholder for region sd before a region equivalent to 1sd  in 2SD  
         add ( )ysd ,  to 2ρ  
      endif 
   end for 
 
   // Iterate the states 2S  in 2AD  to check for ordering violations 
   for each state y  in 2S  
      Let x = predecessor of y  
      Let 1s  = related state of y  in 1AD  
      Let 1x  = predecessor of 1s  
      Let sd = region of x  in 2SD  
      Let 'sd = region of y  in 2SD  
      if ( ) ADxx ρ∉,1  or ordering of x and y violates ordering of sd and 'sd then 
         print 'sd  as potential violations for users to fix 
      endif 
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   end for 
end 

Figure 13. Algorithm for locating changes. 

We warp up this section by discussing the complexity of the algorithm. The complexity 

of ),( SNotCovered ADρ  is ( )ADS ρ×Ο , 2SD  initialization is ( )( )tesremovedStaR +×Ο 11 ρ , 

and 2ρ  initialization is ( )( )ADR ρρ +×Ο 12 , where 1R ( respectively 1R ) is the regions in 1SD    

(respectively 2SD ). For every new state y  in 2AD , the complexity of locating placeholders for 

its regions is ( )( )21 ρρρ ++×Ο ADyps , where yps  is the predecessors (or successors) of y . 

Thus, it takes ( )( )212 ρρρ ++××Ο ADypsS  to locate regions for new states in 2AD .  For 

checking against ordering violations of states in activity diagrams, the complexity is 

( )ADypsS ρ××Ο 2 . To check against ordering violations of regions, we refer to partial 

ordering over regions (Definition 7). We need to find all the minimum and maximum events of 

all regions, and the complexity for each region r  is ( )rpΟ . Let sdmaxE  denote the maximum 

events of region sd , and dsminE ′  denote the minimum events of region ds ′ . The complexity of 

checking the ordering of two regions dssd R ′p  is ( )SDdssd minEmaxE p××Ο ′ . Thus, the 

complexity of checking against ordering violations of regions is 

( )( )SDdssdry minEmaxEpsS pp ××++××Ο ′22 ρ . Note that 1ρ , tesremovedSta  and 1R  

are bounded by 1S ,  2R , 2ρ  and yps  are bounded by 2S , and ADρ  is bounded by 

( )21 ,min SS . Also, sdmaxE  and dsminE ′  are bounded by E , and rp  and SDp  are bounded 
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by 2E , where E  is the events of 1SD . Thus the complexity of the algorithm is 

( )42
2

3
2 ESS +Ο . In practice, SDp  can be stored in a hash table, making the expected running 

time closer to ( )22
2

3
2 ESS +Ο . 

4.3 Illustration 
We illustrate the algorithm using the example given in Figure 6. First, saddedState  is 

{ }41, sc , tesremovedSta  is an empty set, and so { }321 ,, sss  are preserved in both 1AD  and 2AD . 

The sequence diagram 2SD  is initialized with the regions in 1SD  that correspond to 1s , 2s  and 

3s . Also, the relationship 2ρ  is initialized with the relations between the regions in 2SD  and the 

corresponding states 1s , 2s  and 3s  in 2AD . For the new state 1c , its predecessor in 2AD  is 2s . 

The state 2s  in 2AD  is mapped to the state 2s  in 1AD , and the state 2s  in 1AD  is related to the 

region 2sd  (getAccountData, getQuoteData, createOrder, queueOrder) in 1SD . So a 

placeholder for the region corresponding to the state 1c  is inserted after the region 2sd  in 2SD . 

For the new state 4s , its predecessor in 2AD  is 1c . Since 1c  is not found in the relations ADρ , 

we assume that the placeholder for the region of 1c  in 2SD  is to be extended to hold the 

messages of 4s . After handling the new states, we check all the states in 2AD  for any violation 

of ordering. The predecessor of the state 3s  in 2AD  is 1c , while the predecessor of 3s  in 1AD  is 

2s . Since 2s  and 1c  are not related, we report this violation for manual inspection. The 

predecessor of 1c  in 2AD  is 2s ; in contrast, the predecessor of 1c  in 1AD  does not exist because 

1c  is a new state. Since the two predecessors cannot be related, we report the placeholder for the 
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region of 1c  in 2SD  for manual fix. Similarly, we report the placeholder for the region of 4s  for 

manual inspection because 4s  is a new state.  

 

4.4 Discussion 
In what follows, we discuss two possible extensions of our model given in Chapter 3 and 

the algorithm in this chapter, and challenges of full automation.  

Typed states 

 The meta-model of activity diagram [12] defines a type ActivityNode and further 

extends the type to a derived type Action for representing an action in the diagram, and a 

derived type DecisionNode for representing logic controls in the diagram. Although we do not 

distinguish between these two notions in our model and simply use state to represent them 

(Definition 1 in Chapter 3), this does not affect the algorithm LocateChange (Chapter 4) for 

propagating changes. This is because we can still use the state transitions to find the predecessor 

(and the successor) of a state, and use the relations to find the corresponding states in the old 

activity diagram, and to find the regions of those states in the old sequence diagram. If there is a 

need to decide the detailed locations of new regions, say, fragments inside a combined alt- 

fragment in a sequence diagram, we can extend our states to define typed states and use the 

transition labels between those states to help us deciding the details of a new sequence diagram. 

Loops  

In the example we study so far, we assume there is only one predecessor for any given 

state. This is not true for all activity diagrams, for example, we may have a loop as a logic 

control. To address this, we can extend LocateChange to fully utilize the information given by 

transition labels. To elaborate, if a state has two predecessors, each of the predecessors can be 
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uniquely identified by the transition label between the predecessor and the state. In the case of 

loop control, we may end up having a region whose preceding regions are graphically separated. 

Also, we have a conflict in partial ordering of regions, namely, a region preceding another region 

( 12 dsds R ′′ p ) also comes after the same region ( 21 dsds R ′′ p ). We can report this conflict to the 

user for manual fix. If we build in typed states, we may realize that the related regions in the 

original sequence diagram will need to be embedded in a new combined loop fragment in the 

new sequence diagram. 

Challenges of Full Automation 

Our algorithm thus far automatically locates the placeholders of regions that correspond 

to changes in activity diagrams. However, we encounter various challenges of fully automating 

change propagation. To name a few of them, it is difficult to decide the instances and messages 

over a new region, and the granularity of messages. In particular, a new region may involve a 

subset or full set of the participants in the sequence diagram, or new participants that are not yet 

in the diagram. This is partly because there is a lack of knowledge about the domain of 

applications, about the design intent of the participants and their responsibilities, and partly 

because there could be multiple designs that meet the same requirement and so it becomes a 

subject of using the best design principle. The difficulty of automatically synthesizing messages 

comes from the fact that the requirements and design models represent two levels of abstraction. 

A simple description of an activity may be implemented as a simple message or a sequence of 

synchronous or asynchronous messages across different participants. We have seen activity 1s  

maps to a single message in region 1ds ′  while activity 3s  is implemented as a sequence of six 
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messages in region 3ds ′  (Figure 11). As an example of the above arguments, the designer wants 

to create a sequence diagram for the use case of sell order from the existing software artifacts of 

buy order use case, and he/she starts with changing the activity diagram of buy order. Since we 

understand the words “buy”, “sell”, and we know the application software should credit the 

user’s account with the proceeds of the sell order instead of debiting the account when the order 

is completed, propagating this change to the corresponding sequence diagram looks easy to 

humans. However, it becomes a challenging task to automated tools because the tools need to 

interpret those words (with an aid from external tools), and walk through each message in 

regions to decide whether there is a need of change. As another example, the requirements of the 

sell order are evolved to support withdrawal of tax from proceeds based on certain taxation rules. 

It is difficult for tools to automatically recognize that new participants (for example, revenue 

agency) are needed in the new sequence diagram. The difficulty of deciding the granularity of 

messages can be seen from adding a requirement to the use case of buy order that allows users to 

buy stocks from foreign exchanges. Should message debitAccountBalance be broken down 

into a sequence of messages that explicitly take foreign currencies into account?  These kinds of 

challenges cannot be solely solved by model and meta-model, therefore, our algorithm reports 

regions to designers for manual fix. 
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5 Towards Tool Support 
In this chapter, we describe how the algorithm (Figure 13) can be implemented in 

existing modeling tools. Since modeling tools like MMTF [13] are based on meta-models, we 

first briefly describe the meta-models of activity and sequence diagrams [12]. Then we discuss 

how the algorithm that is based on models and relations can be implemented in the language of 

these meta-models. 

The meta-model of activity diagrams is given on the left-hand side of Figure 14.  The 

Action in the meta-model represents an activity, and is a regular state in our model of activity 

diagram (Definition 1). The DecisionNode is a decision node in the diagram, and an example 

is the diamond shaped condition node. Both Action and DecisionNode are of type 

ActivityNode. While the meta-model distinguishes between the types DecisionNode and 

Action, we treat them the same in our model. The ActivityEdge in the meta-model 

represents a transition label in the diagram. An ActivityEdge, a source ActivityNode, and a 

target ActivityNode form a transition from a source state to a target state. The meta-model of 

sequence diagrams is given on the right-hand side of Figure 14. The InteractionFragment 

in the meta-model represents an interaction or a fragment in a sequence diagram. We are 

interested in fragments as they are similar to the regions (Definition 4) in our model. In 

particular, the meta-model defines a type CombinedFragment parameterized with value alt 

for representing an alternate-fragment in the diagram. The GeneralOrdering specifies the 

ordering of the fragments, and so it can tell the ordering of messages in the sequence diagram. 

The ordering of these fragments corresponds to the ordering of events (Definition 3) and the 
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ordering of regions (Definition 7) in our model. The figure also gives the relationships of 

elements between two meta-models, in particular, it relates DecisionNode to 

CombinedFragement, ActivityNode to InteractionFragment, and the transition formed 

by ActivityNode and ActivityEdge to GeneralOrdering. 

 

Figure 14. Meta-models of activity diagram and sequence diagram. 

Given the elements in the meta-models along with their relationships, and their 

counterparts in our model, we can then present the algorithm (Figure 13) in terms of the meta-

models and their relationships. For example, an activity diagram AD is an instance of activity 

diagram meta-model. Each of the state in AD is converted to an instance of ActivityNode, and 

a transition Δ  in AD is a tuple Δ~  formed from instances of  ActivityEdge and 

ActivityNode. A sequence diagram SD is an instance of sequence diagram meta-model. A 

region in SD is an instance of InteractionFragment, and the ordering of regions is specified 
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in terms of GeneralOrdering. The relations ρ  between states and regions are given by the 

relationships ρ~  between instances of ActivityNode and InteractionFragement. The 

relations ADρ  between the states in two activity diagrams can be converted to an association ADρ~  

that relates instances of ActivityNode between two instances of activity diagram meta-model, 

which represent the two different activity diagrams. Instead of finding the difference of states 

(addedStates and removedStates) between 1AD  and 2AD , the algorithm finds the difference of 

nodes (addedNodes and removedNodes) between the corresponding meta-model counterparts of 

1AD  and 2AD . To facilitate that, the NotCovered function (Definition 9) can be slightly 

modified such that it operates on instances of meta-model counterparts. Initialization of meta-

model counterparts of 2SD  and 2ρ  is straightforward. By utilizing 2
~Δ  (transition tuple of 

activity diagram meta-model version 2), 1
~ρ  (meta-model counterpart of 1ρ ), and ADρ~ , we can 

find a placeholder for meta-model counterpart of a new region for every new element in 

addedNodes, and update 2
~ρ  (meta-model counterpart of 2ρ ). Finally, we can check against 

order violations as in Figure 13 using the corresponding meta-model counterparts. 

As we mentioned, we map a state in an activity diagram to an instance of 

ActivityNode in a meta-model. Technically speaking, we cannot do such mapping because 

ActivityNode is an abstract class that cannot be instantiated. This is one of the examples that 

there is no direct mapping relationship between our model and the meta-model elements. 

Another example is InteractionFragment in the meta-model which represents an interaction 

or a fragment in a sequence diagram. When we map a region to an InteractionFragment 

instance, we intend to map it to a fragment but not an interaction. To fix the first problem, we 
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can blindly instantiate Action, and this should not break our algorithm as discussed in Section 

4.4. Alternatively, we instantiate either Action or DecisionNode provided that we have 

sufficient information to decide (see Section 4.4). To fix the second problem, we can use 

constraints to strengthen the types of meta-model elements so that we control what metal-model 

elements gets mapped to our model elements. While it is somewhat more difficult, we can still 

leverage meta-model based tools to implement our algorithm. 
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6 Conclusion and Future Work 
The process of manually modifying software to meet its changing requirements is 

expensive and error-prone. Our goal is to provide assistance to the users for automatically 

propagating changes across software artifacts. In this thesis, activity and sequence diagrams are 

used to represent models at the requirements and design levels respectively, and describe a 

software system from different perspectives. We gave a notion of regions in sequence diagrams 

to give an abstraction of sequence of messages such that it closes the gap between model 

elements from different levels of abstraction. We formalized the relationships between activity 

and sequence diagrams, and provided conditions to validate these relationships. For example, 

one of such well-formedness rules was checking that the ordering of activities and regions 

correspond to each other. In addition, we described how our algorithm utilizes the inter-model 

relationships to automatically propagate changes across these models, and locate potential 

regions in sequence diagrams that require manual fix. Further, we discussed how the algorithm 

could be implemented in existing modeling tools. 

Our algorithm thus far is demonstrated on activity diagrams with if-decision controls, and 

it assumes that every state has a single predecessor, but we also discussed how the algorithm can 

be extended to work for loop controls, i.e., cases where a state has more than one predecessor. 

Moreover, we explained why our algorithm works without distinguishing between decision 

nodes and action nodes, and discussed how to add typed states to the algorithm for deciding the 

detailed locations of new regions. 
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Of course, the work is far from being complete. Specifically, so far we have not looked at 

relating models other than activity and sequence diagrams. Our initial investigation into relating 

these models with Java code (or other implementation models) only indicated how challenging 

the problem is. 

Change propagation between activity diagrams and sequence diagrams described in this 

thesis is part of our ongoing work to enable semi-automated change propagation in the MDD 

setting. The algorithm outlined in Chapter 4 is being implemented on top of our MMTF [13] 

framework, and we are planning to conduct additional case studies to understand what other 

relationships and rules need to be specified to propagate changes as models are evolving. We 

also expect to identify domain-specific rules, on the model and the meta-model levels, which 

would help construct meaningful relationships. 

We have also showed that fully automating change propagation on models constructed at 

different levels of abstraction is impossible (Section 4.4), and that our process results in models 

with “unknowns” that require designer interaction. Formalizing this notion and enabling 

reasoning about it, as well as proofs of correctness of our approach are again left for future work.  
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