
Software Model-Checking: Benchmarking and Techniques

for Buffer Overflow Analysis

by

Kelvin Ku

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright c© 2008 by Kelvin Ku

Abstract

Software Model-Checking: Benchmarking and Techniques for Buffer Overflow Analysis

Kelvin Ku

Master of Science

Graduate Department of Computer Science

University of Toronto

2008

Software model-checking based on abstraction-refinement has recently achieved widespread

success in verifying critical properties of real-world device drivers. We believe this success

can be replicated for the problem of buffer overflow detection. This thesis presents two

projects which contribute to this objective. First, it discusses the design and construction

of a buffer overflow benchmark for software model-checkers. The benchmark consists of

298 code fragments of varying complexity capturing 22 buffer overflow vulnerabilities in

12 open source applications. We give a preliminary evaluation of the benchmark using

the SatAbs model checker. Second, the thesis describes the implementation of several

components for supporting buffer overflow analysis in the YASM software model-checker.

ii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Techniques for Static Analysis of Buffer Overflows 3

1.2.1 Software Model-Checking . 4

1.2.2 Software Model-Checking: Current Status 6

1.2.3 CEGAR SMC: Limitations . 7

1.3 Objectives . 7

1.4 Organization . 8

2 Benchmarking Software Model-Checkers 9

2.1 Benchmarking Background . 9

2.2 Benchmark Requirements . 10

2.3 Benchmark Development Process . 13

2.4 Static Measures . 16

2.4.1 Predicate Generation in CEGAR: Modeling Dependencies 16

2.4.2 Dependency Graphs . 19

2.4.3 Programs with Loops . 20

2.4.4 Computing Static Measures with CodeSurfer 21

2.4.5 Threats to Measure Validity . 26

2.5 Testcase Construction . 27

iii

2.5.1 Example . 29

2.5.2 Testcase Documentation . 31

2.6 Suite Composition . 31

2.7 Evaluation . 34

2.7.1 Objectives . 34

2.7.2 Experimental Setup . 34

2.7.3 Solvability Results . 35

2.7.4 Performance Results . 37

2.7.5 Static Measure Results . 41

2.8 Related Work . 43

2.8.1 Buffer Overflow Benchmarks . 43

2.8.2 Other Benchmarks . 45

2.9 Conclusion . 47

2.9.1 Limitations and Future Work . 47

2.9.2 Lessons Learned . 49

3 Supporting Buffer Overflow Analysis in YASM 51

3.1 YASM Architecture . 51

3.2 Background . 54

3.3 Overview of Changes . 57

3.4 Java Interface for a Command-Line Theorem-Prover 59

3.4.1 Background . 59

3.4.2 Implementation . 61

3.4.3 Discussion . 63

3.5 Ximple Front-End . 64

3.5.1 Background . 64

3.5.2 Implementation . 70

3.5.3 Discussion . 71

iv

3.6 Predicate Abstraction of Pointer Expressions 71

3.6.1 Background . 71

3.6.2 Logical Memory Model . 75

3.6.3 Implementation . 77

3.6.4 Illustration . 80

3.6.5 Discussion . 82

3.7 Related Work . 83

3.8 Conclusion . 85

4 Conclusion 87

4.1 Summary . 87

4.2 Limitations . 88

4.3 Future Plans . 88

Bibliography 90

A Benchmark evaluation data 97

B Codesurfer plugin source code 100

v

Chapter 1

Introduction

1.1 Overview

The buffer overflow vulnerability is a serious security concern and has been studied in

detail as early as 1995 [43]. A buffer overflow occurs when a program writes data into

a fixed-size array past the end of the array and overwrites adjacent data. This typically

occurs in C programs which use unchecked string library functions to copy data into

arrays. If the data being written is user input, an attacker can exploit the vulnerability

by including machine instructions in the input which the program subsequently executes.

Thus, the vulnerability enables an attacker to use a host program to execute arbitrary

code. If the program is running with root privileges, this effectively gives the attacker

control of the host system.

Since the vulnerability is such a serious security threat, there is a strong motivation

for detecting and eliminating potential buffer overflows in a given program before it is

deployed. Static analysis is a promising approach to this end and there has been much

research in techniques for efficiently detecting potential vulnerabilities in C programs [49,

27, 51, 53]. However, buffer overflow analysis is an inherently hard problem. To see why,

consider the simple C program shown in Figure 1.1(a). The example shows a typical

1

Chapter 1. Introduction 2

void main (void)
{

char input [1 0] , buf [9] , ∗ src , ∗des t ;

des t = buf ;
s r c = input ;
while (∗ s r c)
{ VULN: ∗ des t++ = ∗ s r c++; }

}

(a)

void main (void)
{

char input [1 0] , buf [9] , ∗ src , ∗ des t ;

input [8] = ’ \0 ’ ;

des t = buf ;
s r c = input ;
while (∗ s r c)
{ VULN: ∗des t++ = ∗ s r c++; }

}

(b)

Figure 1.1: Example programs illustrating the difficulty of buffer overflow analysis: vul-
nerable (a), safe (b).

string copy loop which iterates over the string input, copying each character into the

array buf. To show that the statement labelled “VULN” could potentially overflow the

array buf, an analysis needs to show that there is a value of input for which the loop

executes at least ten times. Since input is uninitialized, it could have any of 25610 possible

values. Now consider the example in Figure 1.1(b). The addition of the single statement

input[8] =′ \0′ has removed the vulnerability from the original example, thereby making

it safe. An effective analysis should distinguish between the two cases, i.e., it should show

that the second case is safe. However, this is no easier than the original problem, since it

requires showing that the loop executes at most 9 times for all values of input. Note that

these examples are drastic simplifications of code that appears in real-world programs

which are typically much larger (e.g., 10K-1M lines of code) and contain complex syntax

and structure.

The goal of our work is to develop an effective static analysis for buffer overflows.

We believe such an analysis should provide a high overflow detection rate with few false

alarms and should efficiently handle real-world programs. Specifically, we define four

basic analysis requirements:

1. Soundness. The analysis should only produce correct results. It should not indi-

cate a vulnerability where one does not exist.

2. Verification. The analysis should be able to prove that a program is free of

Chapter 1. Introduction 3

vulnerabilities. Users should be able to check the correctness of a patch for a previ-

ously detected vulnerability, such as the addition of the statement input[8] =′ \0′

in Figure 1.1(b).

3. Verifiable results. The analysis should produce output which can be compared to

the input program in order to verify the results. Without this output, it is possible

for a tool to (1) produce incorrect results without the user knowing or (2) produce

correct results for a given program because of incorrect reasoning.

4. Robustness and scalability. The analysis should accept real-world programs

which may contain complex syntax and many lines of code.

1.2 Techniques for Static Analysis of Buffer Over-

flows

In this section we provide an overview of current techniques for static analysis of buffer

overflows.

Testing. The basic formulation of testing is to repeatedly run a program on ran-

domly generated inputs in an attempt to trigger a buffer overflow. Although testing

has been successfully applied to finding several buffer overflows [38], it performs poorly

when it must navigate through many branches [29]. Directed testing [45] improves upon

random testing by using symbolic execution to generate inputs which drive execution

down previously unexplored paths, thus improving the coverage of the tests. Testing-

based techniques satisfy all but one of our requirements, namely, verification, since it is

infeasible to test all possible executions of a program. Likewise, testing may require an

unacceptable amount of time to discover a vulnerability if one in fact exists, due to the

intractable number of inputs that must be tested.

Syntax-directed techniques. This is a family of techniques which identify patterns in

Chapter 1. Introduction 4

source code which may indicate a vulnerability. Tools such as ITS4 [48] and RATS [51]

search for common potentially dangerous uses of standard library functions, such as

printf("%s", in) where the variable in holds user input. These techniques suffer from

false alarms: they may flag a particular use of a function as unsafe even though some

other part of the program ensures that the use is in fact safe. Likewise, they may fail to

detect a potential vulnerability if it does not match one of the pre-specified patterns. In

general, these tools can only provide a very limited degree of assurance to the user.

Semantics-directed techniques. This is a class of techniques based on a variety of static

analyses such as dataflow analysis, abstract interpretation, and constraint analysis. These

techniques typically construct a simple abstraction of a program on which some limited

class of properties can be checked efficiently. The abstraction only models a subset of

a program’s semantics, so the subsequent analysis is subject to both missed detections

and false alarms. Tools such as Boon [49] (based on interval abstraction) and Splint [27]

(based on linear constraint analysis) have been shown to perform poorly at buffer overflow

detection and verification [53].

The discussion below concentrates on the static analysis technique known as soft-

ware model-checking. It is a promising approach to buffer overflow analysis and has the

potential to overcome the limitations of the techniques discussed above.

1.2.1 Software Model-Checking

Model-checking is a technique for verifying temporal properties of a finite-state machine

(i.e., a model) [20]. Software model-checking (SMC) builds on this to analyze programs

by automatically constructing a model which preserves certain behaviours of a given

program and using a model-checker to verify a specified property of the program, e.g.,

that an assertion is never violated. There are a variety of approaches to software model-

checking which we summarize below.

Explicit-state SMCs such as Java PathFinder [32] construct a program model on-the-

Chapter 1. Introduction 5

fly by executing the program in a virtual machine. At each execution step, it stores a

small record of the current machine state, such as a hash of the program counter and

memory, which it uses to avoid re-executing previously encountered states. At each

control-flow branch, it attempts to choose values for non-deterministic data, such as user

input and thread scheduler variables, that will drive execution to a desired state (e.g.,

an error state). The process continues until resources are exhausted or a desired state is

found.

Bounded SMCs construct a model representing all behaviours of a program for a finite

number of steps. Loops and recursive functions calls are unwound to a specified bound

and the result is encoded as a SAT formula or Binary Decision Diagram (BDD) which

is conjoined with the specified property. A decision procedure such as a SAT solver is

then used to check the property. CBMC [22] is a bounded model-checker for C that uses

a SAT solver to check user-specified assertions in a given program.

Counterexample-guided abstraction-refinement (CEGAR) SMCs such as Blast [16]

and Slam [15] iteratively construct an abstract model of a given program using predicates

(boolean expressions over program variables) to represent program state. The process

begins with the program’s control-flow graph as the model. Each state of the model

initially represents no knowledge about the program state at each control-flow location.

The model is then checked for a specified property; suppose we are checking the reach-

ability of an error state. If the model-checker fails to find a path to the error state, the

process terminates and the program is deemed safe with respect to the error. Otherwise,

it returns a counterexample: a path through the model terminating in the error state.

The counterexample is validated against the original program to see if each step in the

path is feasible. If it represents a real execution of the program, then it is returned to

the user as proof of an error. If not, it is an artifact of the overly coarse model of the

program. In this case, predicates tracking the relationships between certain program

variables (e.g., those which control the reachability of the error state) are added to the

Chapter 1. Introduction 6

model and the process is repeated.

SLAM [12] is the canonical CEGAR SMC; it uses a theorem-prover to construct the

abstract model and a symbolic executor to perform counterexample validation. Since

the development of SLAM, there have been a number of refinements to the CEGAR

design. Blast [16] attempts to improve upon the standard approach by constructing

a model containing only the reachable states of the system. SatAbs [22] uses a SAT

solver in place of a theorem-prover, thereby obtaining a much faster abstraction process.

Copper [18] uses a specialized abstraction for standard C library functions which enables

it to efficiently analyze certain uses of these functions. Finally, YASM [31] uses multi-

valued logic to construct a more precise model in which non-determinism is explicitly

represented and counterexamples do not need to be validated.

1.2.2 Software Model-Checking: Current Status

Explicit-state SMCs have been shown to be effective in buffer overflow detection [17].

However, since this technique is limited to exploring finitely many behaviours of a

given program, it is unsuitable for verification, i.e., for proving properties about all

behaviours. Bounded SMCs may be used for verification but only if a sufficient bound

can be found [21]. This technique has been found to have a significant performance

dependence on the bound size [9], so its scalability in real-world programs is unclear.

In theory, CEGAR SMC satisfies the first three requirements of an effective analysis.

It is sound since each potential counterexample is validated before being reported to

the user. It may be used for verification since the analysis only terminates when it has

eliminated all counterexamples from the model; it may also in some cases construct a safe

model in a few iterations. Finally, when CEGAR SMC finds a vulnerability, it produces

verifiable results in the form of a counterexample.

In the published evaluations of CEGAR SMC implementations, such as those of

Slam [12], Blast [33], and SatAbs [23], the tools have been shown to be effective in

Chapter 1. Introduction 7

checking user-specified assertions in programs such as Windows and Linux device drivers

and open-source applications with up to tens of thousands of lines of code. Due to its

success in these domains, we believe CEGAR SMC is a promising technique for analysis

of large-scale, real-world code.

1.2.3 CEGAR SMC: Limitations

There are several outstanding issues concerning CEGAR SMC and buffer overflow analy-

sis. First, it is well known that CEGAR has a significant performance dependence on the

size of the loop bounds in the given program [29, 36, 37]. Buffer overflows often involve

loops over very large arrays (e.g., 512 or 4096 elements), so this dependence could severely

limit the utility of CEGAR in this domain. Second, we are unaware of any significant

studies of the real-world performance of CEGAR SMCs in buffer overflow analysis. The

only evaluation we found is in [37], in which the performance of three CEGAR SMCs is

compared on a single ten line buffer overflow example. Thus, we lack empirical knowledge

regarding the suitability of CEGAR in this domain. Finally, it is unclear why CEGAR

performs well in analyzing certain types of programs, such as device drivers, and whether

this success can be replicated for buffer overflow analysis. Specifically, we lack an un-

derstanding of the relationship between the structure of (programs containing) buffer

overflows and CEGAR performance.

1.3 Objectives

The goal of this thesis is to support the development of CEGAR SMC as an effective static

analysis for buffer overflows. We approach this goal in two parts. First, by developing a

buffer overflow benchmark for CEGAR SMCs. A benchmark is a natural method both for

evaluating the fitness of CEGAR for buffer overflow analysis and for understanding the

relationship between analysis complexity and problem structure. Second, by extending

Chapter 1. Introduction 8

YASM with the basic functionality required for buffer overflow analysis. The purpose of

this is to establish YASM as a basis for further development in this area. Our specific

objectives are as follows.

1. Determining the current state of CEGAR SMC with respect to buffer overflow

analysis.

2. Constructing a buffer overflow benchmark suitable for evaluating CEGAR SMCs.

3. Understanding the relationship between program structure and analysis complexity.

4. Enabling basic buffer overflow analysis in YASM.

1.4 Organization

The thesis is organized as follows. Chapter 2 covers the design and evaluation of a buffer

overflow benchmark for CEGAR SMCs. Chapter 3 describes YASM and the extensions

for enabling buffer overflow analysis of real-world C programs. Chapter 4 concludes the

thesis. Appendices include the raw data of the benchmark evaluation and source code

for the testcase complexity measurement tool.

Chapter 2

Benchmarking Software

Model-Checkers

In this chapter we discuss the design and implementation of a buffer overflow benchmark

for software model-checkers. The chapter begins with basic definitions in Section 2.1.

Section 2.2 defines the general objectives and specific requirements of the benchmark.

Section 2.3 provides an overview of our benchmark development process. Section 2.4

discusses basic static measures for estimating testcase complexity. Section 2.5 describes

our testcase construction process. Section 2.6 summarizes the contents of the benchmark.

Section 2.7 documents an evaluation of the benchmark. Section 2.8 discusses related

work. Finally, Section 2.9 concludes the chapter with a discussion of future work and

lessons learned.

2.1 Benchmarking Background

Here we define the terms used in this chapter.

Benchmark. A set of tests for comparing the performance of a collection of tools

on a common task. In this case, the tools of concern are CEGAR SMCs and the task is

the verification of buffer overflows in C programs.

9

Chapter 2. Benchmarking Software Model-Checkers 10

Buffer overflow. A buffer overflow occurs when a process accesses an address outside

the bounds of allocated memory. A common case of this is where a program writes a string

beyond the last element of an array and overwrites the adjacent cells. This is a security

risk when the string is provided by the user and the adjacent data contains a program

counter value which controls the subsequent execution of the process. Typically, the

program counter appears as a return address or function pointer. To exploit an overflow,

a user provides an input which overwrites the program counter to point to code which

is included in the input. This enables the user to execute the supplied code with the

privileges of the process.

Vulnerability. A program is vulnerable if there is an input for which the program

overflows a buffer. The term vulnerability may refer to a vulnerable program or to a

specific program statement in which a buffer overflow may occur. The simplest example

of the latter is an array expression, e.g., A[i]. We also use the term unsafe to describe a

vulnerable program and safe or patched to refer to a program which has had all known

vulnerabilities removed.

Common Vulnerabilities and Exposures (CVE). A database of known security

vulnerabilities in commercial and open-source programs. An entry in the database con-

sists of a CVE identifier, e.g. CVE-2007-5381, and a description which typically includes

the name and revision of the associated program and characteristics of the vulnerability.

Testcase. One or more source files comprising a single program. The source files

contain distinguished statements to be checked for buffer overflows.

2.2 Benchmark Requirements

A benchmark for evaluating SMC performance in buffer overflow analysis serves two

purposes. First, it enables SMC researchers to test analysis techniques in a realistic

setting. Second, it provides a common basis for communicating research results. In

Chapter 2. Benchmarking Software Model-Checkers 11

particular, for a single tool, it is used to measure (1) its performance profile across a

range of testcases and (2) changes in performance between revisions of the tool. In

the case of multiple tools, a benchmark is used to compare the relative strengths and

weaknesses of the tools. Motivated by these objectives, we define several requirements

for the benchmark as follows.

R1: Realism. Buffer overflows occur in a wide variety of programs, as indicated by

the large collection of buffer overflow vulnerabilities in CVE (more than 4000). Likewise,

the syntax and semantics, i.e., the form, of buffer overflows varies considerably across

programs as well. On the other hand, results from the benchmark should strongly indicate

the real-world performance of a given tool. Thus, the benchmark suite should (1) be

comprised of testcases sampled from many types of program and (2) exhibit a variety of

forms of vulnerabilities.

R2: Verification and falsification. As a corollary of R1, the suite should contain

both safe and unsafe testcases. There are several reasons for this. First, the class of SMCs

we are concerned with are designed for both verification and falsification (bug-finding).

In a realistic setting, it cannot be assumed that a given program is safe or unsafe. As

such, we assume that an SMC will be used for both purposes and, consequently, the

testcases should elicit both types of analyses.

Second, since we are concerned with evaluating the soundness of SMCs, we need a

method for determining if (1) a given tool obtains the correct result for a testcase and

(2) whether it arrived at the result by correct reasoning. For a testcase known to be

unsafe, determining (1) is straightforward: we simply check whether the tool finds the

overflow. However, this does not ensure that the tool is sound, since, in the extreme

case, it may simply return unsafe for all inputs. As such, each vulnerable testcase should

be accompanied by a patched version in which the (known) vulnerabilities have been

removed. If a tool produces the correct result for both the vulnerable and patched

version of a case, it increases our confidence that the tool is not producing a correct

Chapter 2. Benchmarking Software Model-Checkers 12

result as a by-product of a bug or an unsound heuristic.

R3: Comprehensibility. Each testcase should be short and simple enough for

an unacquainted reader to understand its vulnerability and the accompanying patch.

Constructing the benchmark this way makes it more accessible to others, since it frees

users of the benchmark from having to work with real-world source code which is (1)

not their primary concern and (2) unlikely to work correctly with prototype tools. This

requirement is also related to our concern with tool soundness in R2. To check that a tool

is reasoning correctly, we may want to compare its output, such as a counterexample, to

the source code of a testcase—this requires reading and comprehending the source code.

R4: Solvability. Some fraction of the suite should be solvable by existing SMCs.

That is, existing tools should be able to produce correct results for some number of

testcases within reasonable time and memory constraints. If this fraction is too small,

say, below 1/3, the benchmark produces too few results to evaluate the performance of a

tool and the results mainly consist of timeouts or abnormal behaviour such. At this level

of solvability, it is likely that the testcases are too complex for a research-grade tool to

accept. If the fraction is too large, say, above 2/3, then the benchmark fails to challenge a

tool and to indicate opportunities for improvement. At this level of solvability, it is likely

that the testcases are too simple and the results mainly indicate that the tool finished in

a negligible amount of time.

R5: Configurability. The benchmark should provide parameters with which the

user can adjust the complexity of the testcases. This serves several purposes. The first

is related to R4: setting parameters to lower levels may enable a tool to solve a larger

portion of the testcases. Conversely, increasing parameter values makes the testcases

more difficult, thereby exercising the scalability of a tool. Finally, analysis bottlenecks

can be identified by varying each parameter independently and measuring the resulting

change in performance.

Chapter 2. Benchmarking Software Model-Checkers 13

2.3 Benchmark Development Process

This section describes the stages of our benchmark development process: initial assess-

ment, defining complexity measures, testcase construction, benchmark evaluation, and

evolution and maintenance. It provides an overview of the subsequent sections and mo-

tivation for each of the stages.

Initial assessment. This stage involves an informal evaluation of currently available

SMCs. The purpose of the evaluation is to understand the current state of SMC with

respect to buffer overflow analysis and to identify potential problems which a benchmark

should accomodate.

For our preliminary experiments we chose to use the buffer overflow suite constructed

by Zitser et al [53]. The tools we selected are all publically available SMCs for C pro-

grams: SLAM [14], Blast [16], Verisoft [28], SatAbs [24], CBMC [22], Copper [18], and

YASM [31]. We found that all of the tools, with the exception of Copper, either produce

incorrect results, crash, or fail to terminate on each of the testcases in the Zitser suite.

SLAM has been evaluated on real-world Windows device drivers written in C++, e.g.,

in [12]. However, it lacks support for arrays: it treats all array subscript expressions, e.g.,

a[5] and a[i], as a single scalar variable. Also, its interface expects code to conform

to the Windows device driver API and is thus unsuitable for verifying other classes of

programs.

Blast has been used to check memory safety in C programs [16]. It too treats arrays

in the same way as SLAM and thus cannot be used to analyze programs for buffer safety.

Moreover, it requires programs to be preprocessed with CCured [42] since it lacks an

automatic instrumentation facility. We found that CCured often generates unreadable

code, making it difficult to compare the results of model-checking to the original code.

SatAbs has been used to check user-specified assertions in real-world C programs [22].

It includes a front-end which handles preprocessing, parsing, and instrumentation of the

input code. Satabs crashed, either during parsing or analysis, on all of the testcases in

Chapter 2. Benchmarking Software Model-Checkers 14

the Zitser suite. This is remarkable since the testcases are already simplifications of real

programs, comparable in size and complexity to the example code which is distributed

with this tool.

Copper has been evaluated on the Zitser suite [18]. It handles arrays in the same

way as SLAM and Blast but uses a specialized abstraction to model standard C library

functions, such as malloc and strcpy, which enables it to correctly analyze certain uses

of these functions. On the Zitser suite, it detected 43% of the overflows and produced

a false alarm in 21% of the cases. We found that Copper produces incorrect results for

testcases in which the vulnerability depends on pointer arithmetic (array subscripting is

an instance of pointer arithmetic).

YASM has been evaluated on several device driver examples distributed with Blast [31].

Chapter 2 describes extensions to YASM which enable basic support for pointers and ar-

rays. It currently fails to parse the testcases in the Zitser suite and is limited to checking

programs with small buffers.

Even after removing problematic syntax from the testcases to avoid crashing the tools,

the tools failed to terminate on many of the cases before exhausting available resources.

We also noticed that tool behaviour tended to be polarized: for a given testcase, a tool

would either (1) crash or timeout or (2) solve the testcase in a negligible amount of time.

Defining complexity measures. In this stage we identify program features which

have an impact on analysis complexity and measures of these features. There are several

purposes for this. First, the measures provide a tool-independent estimate of the difficulty

of a testcase. This allows us to estimate the workload a testcase may incur on any given

tool, e.g., trivial, impossible, or somewhere in between. Second, they provide dimensions

along which to classify the testcases. Third, a user can apply the measures to a new

testcase and, inferring from the benchmark results for a variety of tools, choose a tool

which best fits the new testcase. In other words, the measures can be used to classify

tools according to their performance profiles across the various dimensions.

Chapter 2. Benchmarking Software Model-Checkers 15

Constructing testcases. This stage constructs a suite of testcases from a collec-

tion of real programs which are known to contain buffer overflow vulnerabilities. For

each program we produce a series of testcases of gradually increasing complexity. The

construction process aims to overcome the issues we identified in the initial assessment,

specifically: (1) tool failure due to program syntax, (2) tool failure or timeout due to

program complexity, and (3) polarized tool performance.

Furthermore, the set of testcases serves as a basis for measuring the improvement

gained by a new optimization, technique, or bugfix. Likewise, providing more than one

testcase may reveal particular combinations of constructs which are particularly difficult

(or easy) for a tool. This may inform the development of new techniques for handling

these specific forms.

Evaluation. In this stage we apply the benchmark to one or more tools and col-

lect results. First, this allows us to test the benchmark: to see how well it meets our

requirements and to uncover any practical issues before release. Our initial evaluation

prompted us to edit many of the testcases and to write scripts to automate benchmarking

and result collection. Second, the evaluation provides information about the performance

of the tools and uncovers bugs and bottlenecks.

Evolution and maintenance. This stage involves the long-term maintenance of

the benchmark. It is only briefly described here, as a full treatment is beyond the scope

of this work. It involves several parts:

• A publicly accessible repository of testcases and benchmark results.

• An API on which to build scripts for automating testing and data collection of a

new tool. The scripts serve to specify the testing procedure and how to interpret

the results for a given tool.

• A standard format for storing results. Establishing this entails agreeing upon per-

formance measures which may be difficult to apply uniformly to different classes of

Chapter 2. Benchmarking Software Model-Checkers 16

tools.

• Periodic updates of the suite. This includes adding new testcases and removing

obsolete ones.

2.4 Static Measures

In this section we define static measures for estimating the cost of analyzing a testcase

using CEGAR. The basis for the measures arises from an understanding of the predicate

generation strategy used in SLAM-like SMCs. The measures are computed from a de-

pendency graph which represents the semantic dependencies of a given vulnerability. We

use CodeSurfer [11] to construct and measure the dependency graph for a given program.

CodeSurfer is a “program-understanding” tool which allows the user to navigate

through source code in various representations, such as the control-flow graph and func-

tion call graph, and to examine the results of standard dataflow analyses such as reaching

definitions and slicing. It also includes an API (in Scheme) which provides a program-

matic interface to these structures and analyses.

2.4.1 Predicate Generation in CEGAR: Modeling Dependen-

cies

The runtime complexity of CEGAR is dominated by predicate abstraction and model-

checking. The cost of these steps is in turn exponential in the size of the predicate

set. Thus, a useful static measure is one which can be used to estimate the size of the

predicate set. First, let us review the CEGAR predicate generation process with the

example shown in Figure 2.1(a), in which all variables are integers.

Assume the property being checked is the reachability of the statement labelled ERROR.

Figure 2.1(b) shows an initial abstraction of the program with a potential counterexample

Chapter 2. Benchmarking Software Model-Checkers 17

1 x = 1 ;
2 z = x ;
3 y = x ;
4 i f (y < 0)
5 ERROR: ;

(a)

! (y<0)

x = 1

z = x

y = x

(y<0)

(b)

x = 1

y = x z = x

(y<0)

ERROR

(c)

Figure 2.1: Example program (a), initial abstraction (b), dependency graph (c).

(cex) in bold and the error state shaded. It traverses lines 1 through 5, denoted 〈1, . . . , 5〉.

The cex is infeasible since it imposes the unsatisfiable constraint x = 1∧y = x∧y < 0 and

predicates are added to eliminate it from the subsequent model. Specifically, predicates

are added to model two types of dependencies: data and control.

Data dependency. If a statement t possibly uses a value defined in statement s,

then s is a data dependency of t. In the current example, y = x (definitely) uses the

value defined by x = 1, so the latter statement is a dependency of the former. A data

dependency is otherwise known as a reaching definition, a standard dataflow analysis [8].

Data dependencies of pointer expressions are defined by way of (may) points-to sets,

which denote the variables which a pointer variable may point to at a particular program

location. There are standard techniques for computing points-to sets such as [50]. In

the presence of pointers, a pointer variable p possibly uses the value of variable v if

the points-to sets of p and v overlap, i.e., if their intersection is non-empty. If v is a

non-pointer variable, its points-to set contains only itself: {v}.

Control dependency. For a conditional statement s and a statement t, if s guards

the execution of t, i.e., if t is executed iff s evaluates to true, then s is a control dependency

of t. In the example above, if (y < 0) is a control dependency of the ERROR statement.

Chapter 2. Benchmarking Software Model-Checkers 18

procedure PredGen(Cex c, Stmt s)
S := {conditions of control dependencies in c}
loop

for each data dependency d ∈ c do
for each predicate p ∈ S do

S := S ∪ wp(d, p)
end for

end for
end loop
return S

end procedure

Figure 2.2: Predicate generation procedure.

Returning to the example in Figure 2.1(a), assume that a SLAM-like SMC adds

predicates y < 0 and x < 0 to the predicate set by simulating the cex 〈1, . . . , 5〉. Say

predicate y < 0 is added first to model the control dependency between lines 4 and 5.

Then, in a subsequent CEGAR iteration, x < 0 is added to model the data dependency

between lines 3 and 4. Specifically, x < 0 is added since x < 0 = wp(y := x, y < 0), i.e.,

since y = x defines a value used in y < 0.

Notice that even though line 1, x = 1, is a data dependency of line 2, z = x, no

predicates are added to model this dependency since wp(z := x, x < 0) = x < 0 and

similarly for y < 0. That is, z = x does not define a value used in any of the previously

generated predicates. No new predicates are added for the data dependency between

lines 1 and 3 since wp(x := 1, x < 0) == 1 = 0 == false and wp(x := 1, y < 0) = y < 0,

which is already in the predicate set.

In general, to eliminate a spurious cex c establishing the reachability of statement s,

predicate generation follows the procedure shown in Figure 2.2. The procedure yields

a predicate set composed of (1) conditions of control dependencies in c and (2) a finite

number of applications of wp(d, p), where p ∈ S and d is a data dependency occurring

in c. Notice that the bounds of the loop are unspecified. Determining the size of (1)

is straightforward; we simply count the control dependencies appearing in c. However,

we only estimate the size of (2), since computing it exactly may require work equivalent

Chapter 2. Benchmarking Software Model-Checkers 19

to CEGAR. Specifically, we approximate the data dependencies to which wp is applied

by using a dependency graph. We discuss the estimation of the number of applications

of wp further below in Section 2.4.3 which covers programs with loops; for now we only

consider programs without loops.

2.4.2 Dependency Graphs

A dependency graph is a representation of a program’s dependencies constructed using

the following rules:

• Add a node s′ for each statement s

• Add a directed edge D(s′, t′) if s is a data dependency of t

• Add a directed edge C(s′, t′) if s is a control dependency of t

A combined dependency graph (CDG) is a dependency graph where the edge labels are

omitted, i.e., in which control and data dependencies are not distinguished. Assume there

is a unique target which is the statement of interest. In the example in Figure 2.1(a), the

target is the ERROR statement. Define a trace in a dependency graph to be any acyclic

path from any node to the target node. Finally, define the backward slice as the subgraph

of the CDG composed of all traces. This definition coincides with the standard one: the

set of all statements that may influence (1) whether the target is executed and (2) the

values of the variables used at the target [47].

The dependency graph for the example program is shown in Figure 2.1(c); data

dependence edges are solid, control dependence edges are dotted. Consider the trace

denoted in bold. Notice that the predicates generated by CEGAR to eliminate the

cex, namely y < 0, x < 0, and x > 0, arise from the dependencies appearing in the

trace and that the node for z = x, for which no predicates are generated, is not part of

any trace. The trace illustrates a chain of transitive dependencies: the immediate control

Chapter 2. Benchmarking Software Model-Checkers 20

1 i = j = 0 ;
2 A = 10;
3 B = 8 ;
4 while (i < A) {
5 i f (j > B)
6 ERROR: ;
7 i = i + 1 ;
8 j = j + 1 ;
9 }

(a)

i = j = 0

A = 10

B = 8

! (i<A) (i<A)

(j>B)! (j>B)
i = i +1

j = j +1

(b)

i = j = 0A = 10 B = 8

(i<A) (j>B)

ERRORi = i +1 j = j +1

(c)

Figure 2.3: A program with a normal loop (a), its initial abstraction (b), and its depen-
dency graph (c).

dependency of the target, (y < 0), the subsequent data dependency y = x which defines

the value of y used in (y < 0), the next data dependency x = 1 which may be used in

y = x, and so on.

Comparing the trace in the example to the predicates generated to verify it, we

conjecture that the length of a trace is an approximation of the size of the predicate set

generated by CEGAR to check the reachability of the target.

2.4.3 Programs with Loops

We now consider the effect of loop constructs on CEGAR analysis complexity. Specifi-

cally, we consider what we call a normal loop which executes the loop body once for each

element of a fixed-size array. For example, in the program in Figure 2.3(a), in which all

variables are integers, say A and B denote the sizes of two arrays.

Consider how a SLAM-like SMC generates predicates in checking the reachability of

the ERROR statement in this example. Initially, it adds predicates i < A, j > B, i <

10, j > 9 to eliminate the spurious cex in the initial abstraction shown in Figure 2.3(b).

Chapter 2. Benchmarking Software Model-Checkers 21

Subsequently, it introduces predicates i + 1 < A, j + 1 > B, i + 1 < 10, j + 1 > 9,

applying the loop of the predicate generation procedure once. This process continues

until predicates i+B + 1 < A, j +B + 1 > B, i+B + 1 < 10, i+B + 1 > 9 are added,

and the cex in the final model is valid.

From this simple example, we observe that the size of the final predicate set is roughly

proportional to A which bounds the number of iterations of the while loop. Moreover,

the final predicate set is obtained by roughly A applications of the predicate generation

loop. The actual size of the predicate set is the size of the initial set of predicates (4)

multiplied by B+1 (9), but multiplying by A (10) gives us a reasonable upper bound.

Now consider the dependency graph for this example, shown in Figure 2.3(c). The

graph shows the (transitive) dependency of the target on the while loop. The length of

the trace in bold roughly corresponds to the size of the initial predicate set. From this

example we make the conjecture: the size of the predicate set generated for a target which

depends on a single loop can be estimated as the product of a trace length and the loop

bound. In the case of nested (normal) loops, each of which iterates over a separate array,

where the target is in the innermost loop, we estimate the size of the predicate set to be

(trace length) × (product of the array sizes).

2.4.4 Computing Static Measures with CodeSurfer

In this section we describe the CodeSurfer API and the CodeSurfer plugin we imple-

mented to compute measures of the dependency graph for a given program.

CodeSurfer dependency graph API. CodeSurfer defines a data-structure called

the system dependence graph (SDG) which is similar to the dependency graph we defined.

A subgraph of the SDG representing a single function is called a procedure dependence

graph (PDG). The SDG differs from our definition in several respects.

A node in a SDG is called a program point. Like the nodes in our dependency graph,

each statement is represented by a program point, but an SDG includes additional points

Chapter 2. Benchmarking Software Model-Checkers 22

for declarations, the entry and exit points of a function, function call arguments (formal

and actual), and a result variable capturing the value returned by a return statement.

Traces in an SDG may be longer than those in the corresponding dependency graph due

to these additional points.

Each program point and edge in the SDG has an attribute called its kind. The

basic kind of program point is an expression, which represents an assignment statement.

There are many kinds of program points, most of which do not represent visible program

constructs. In our plugin, we filter program points by kind in order to avoid inflating

the lengths of traces with artificial points. The two basic kinds of edges are control-

and data-dependence edges, corresponding to the two types of edges in our dependency

graph.

CodeSurfer plugin. The plugin takes as input an SDG, computed by CodeSurfer

before the plugin is invoked, and a string. For each statement s with a label containing

the string, it computes a depth-first search of the SDG starting at s and proceeding

backwards to dependencies of s. The search along a branch terminates if a cycle or leaf

is detected. The output is the lengths of all traces of s. Pseudo-code for the plugin is

shown in Figure 2.4. The notation 〈s〉 is a path containing only the PDG vertex (program

point) s, {p} is the set of vertices in path p, |p| is the length of path p, and p ◦ t is the

path formed by appending vertex t to path p.

Procedure DFS simply calls DFSPath with a path containing only the vertex s. Pro-

cedure DFSPath takes a path p and recursively walks to each of the predecessors of its

last vertex, which is returned by Tail. Procedure Predecessors returns the set of ver-

tices with a (control or data) dependence edge targeting the given vertex s, i.e., the

predecessors of s in the SDG. The CodeSurfer API provides functions for accessing the

predecessors of a given PDG vertex and for manipulating sets of PDG vertices.

For example, given the dependency graph shown in Figure 2.3(c) and the string

ERROR, DFS calls DFSPath(〈ERROR〉). Tail(〈ERROR〉) returns ERROR (the program point

Chapter 2. Benchmarking Software Model-Checkers 23

1: TL := ∅ ⊲ Stores trace lengths
2: Input: a PDG vertex s

3: Output: a set of trace lengths
4: procedure DFS(PDGVertex s)
5: DFSPath(〈s〉)
6: return TL

7: end procedure

8: procedure DFSPath(Path p)
9: t := Tail(p)

10: P := Predecessors(t)
11: P ′ := P − {p} ⊲ Remove cycles
12: if P ′ is empty then ⊲ Leaf detected
13: TL := TL ∪ {|p|}
14: return

15: end if

16: for each d ∈ P do ⊲ DFS each predecessor
17: DFSPath(p ◦ d)
18: end for

19: end procedure

Figure 2.4: SDG DFS pseudo-code.

representing the ERROR statement). Predecessors(ERROR) returns the set {(j > B)}, so

ERROR is not a leaf, and DFSPath recursively calls itself with DFSPath(〈ERROR, (j > b)〉).

Now, Tail(〈ERROR, (j > b)) returns (j > b) and PreDecessors((j > b)) returns

{(i < A), i = j = 0, B = 8}. Suppose the for loop selects B = 8: DFSPath recurses with

DFSPath(〈ERROR, (j > b), B = 8〉). This time, PreDecessors(B = 8) returns an empty

set, so we add the length of the current path (|〈ERROR, (j > b), B = 8〉| = 3) to

TL. This continues until all program points have been explored; the final value of TL is

{3, 4, 5}.

The implementation has details not present in the pseudo-code and also allows for

certain degrees of freedom:

• The kinds of vertices returned by Predecessors are configurable. The plugin

currently filters out all but the basic kinds of vertices: expressions (assignments),

control points, and function parameters.

• The number of branches (predecessors) per vertex and the total number of paths

Chapter 2. Benchmarking Software Model-Checkers 24

explored by DFSPath is configurable. These parameters significantly affect the

runtime of the plugin, since even a small program may have a relatively large SDG.

• If the target is a function call, e.g., strcpy(dest,src), the program points for the

arguments, i.e., dest and src, are passed to DFS, since the essential dependencies

are those of the arguments, not the call site.

• Since a program can contain more than one target statement with a matching label,

the output is grouped by target statement.

Measures. Given a set of trace lengths for an individual target statement, we can

compute several basic measures using the plugin: maximum trace length, average trace

length, and number of traces.

Example. Here we provide an example of the measures computed by the plugin

for a series of related testcases taken from the Verisec suite, shown in Figure 2.5. In

each of the cases, the target statement is labelled VULN. The code introduced in each

successive case affects the reachability of the target statement, that is, the code changes

the backwards slice of the target. The first case, no test, performs no tests on the input

data, the second, med test, performs two tests, e.g., fbuf[fb] == ’\n’, and the third,

heavy test, performs five tests. This increasing complexity is reflected in the analysis

cost and static measures of each testcase, as shown in Table 2.1 (DFS was limited to 1000

traces and 10 branches per vertex in these trials). For example, in the second row of the

table, which shows the result for the second test case, med test, SatAbs generated 12

predicates to check the safety of the target statement labeled BAD; the CodeSurfer plugin

found 484 traces for the target; the maximum trace length was 14 and the average trace

length was 12.2.

Notice that the cost of checking the reachability of the target statement, measured in

the size of the predicate set generated by SatAbs, increases with the PDG measures. This

agrees with the intuition that (1) a trace represents a chain of transitive dependencies of

Chapter 2. Benchmarking Software Model-Checkers 25

char fbu f [MAXLINE+1] ;
int fb ;
int c1 ;

fb = 0 ;
while ((c1=nondet i n t ()) !=EOF)
{

fbu f [fb] = c1 ;
fb++;

}
i f (fb > 0)
{

/∗ BAD ∗/
fbu f [fb] = EOS;

}

no test

char fbu f [MAXLINE+1] ;
int fb ;
int c1 ;

fb = 0;
while ((c1=nondet i n t ()) !=EOF)
{

i f (c1 == ’= ’)
continue ;

f bu f [fb] = c1 ;

i f (fbu f [fb] == ’\n ’) {
fb−−;
i f (fb < 0)

fb = 0 ;
else i f (fbu f [fb] != ’\ r ’)

fb++;

fbu f [fb] = 0 ;
fb = 0;

}
else

fb++;
}

i f (fb > 0) {
/∗ BAD ∗/
fbu f [fb] = 0 ;

}

med test

char fbu f [MAXLINE+1] ;
int fb ;
int c1 ;

fb = 0 ;
while ((c1=nondet i n t ()) !=EOF)
{

i f (i s a s c i i (c1) && i s sp ac e (c1))
continue ;

i f (c1 == ’=’)
continue ;

f bu f [fb] = c1 ;

i f (fbu f [fb] == ’\n ’)
{

fb−−;
i f (fb < 0)

fb = 0 ;
else i f (fbu f [fb] != ’\ r ’)

fb++;

fbu f [fb] = 0 ;
fb = 0 ;

}
else

fb++;
}

i f (fb > 0)
{

/∗ BAD ∗/
fbu f [fb] = 0 ;

}

heavy test

Figure 2.5: Three successively more complex testcases derived from Sendmail CVE-1999-
0047.

Testcase #Preds Max. Trace Len. Avg. Trace Len. # Traces
no test 0 7 6.5 14
med test 12 14 12.2 484
heavy test 18 24 21.3 ≥ 1000

Table 2.1: SatAbs analysis cost and trace length measures of three related testcases.

Chapter 2. Benchmarking Software Model-Checkers 26

1 w = z = 0 ;
2 x = w;
3 y = z ;
4 i f (x < 0)
5 i f (y < 0)
6 VULN: ;

(a)

w = z = 0

x = w y = z

(x<0)

(y<0)

ERROR

(b)

Figure 2.6: A program with significant dependencies in separate traces (a), its depen-
dency graph (b).

the target, (2) CEGAR generates predicates in order to model these linked dependencies,

and (3) the cost of CEGAR analysis is determined by the size of the predicate set. We

discuss the accuracy of the measures over a larger set of testcases in the evaluation

section.

2.4.5 Threats to Measure Validity

There are several factors which may affect how accurately the PDG measures estimate

the analysis cost of a given vulnerability.

Multiple potential counterexamples. In checking a vulnerability, CEGAR may

generate predicates modeling dependencies occurring in more than one trace. In this

case, measures of individual traces such as maximum or average length underestimate

the analysis cost. A simple example in which this occurs is shown in Figure 2.6(a) along

with its PDG in Figure 2.6(b). In this case, a CEGAR SMC may generate predicates

y < 0 and z < 0, corresponding to the dependencies in the rightmost trace, but also

generate predicates x < 0 and w < 0, corresponding to the leftmost trace. However, the

individual traces do not reflect all the dependencies which are modeled by CEGAR. Some

combination of the trace measures, e.g., a weighted sum of the lengths, may provide a

more accurate estimate of the total size of the predicate set.

Chapter 2. Benchmarking Software Model-Checkers 27

Concise abstraction. In some cases, a vulnerability may have many dependencies

but CEGAR generates relatively few predicates in verifying it. That is, there may be

dependencies occurring in the PDG which are ignored by CEGAR, so the PDG-based

measures overestimate the analysis cost. This can occur if (1) a simple abstraction

contains a valid cex, so no further predicate generation occurs, or (2) CEGAR generates

a small set of predicates which eliminates all potential counterexamples. It is unclear

how to detect when this is the case for a given program without replicating part of the

potentially expensive CEGAR process.

Conflation with simple measures. It may be the case that CEGAR analysis cost

has a stronger correlation with a simpler measure such as lines of code (LOC) and that

the PDG measures are in fact indirect measures of LOC. Intuitively, this should not be

the case, since one can artificially increase the LOC without introducing dependencies,

e.g., by adding no-ops or irrelevant statements, and, consequently, without inducing the

generation of additional predicates. Nonetheless, we check for the possibility of conflation

with LOC in the evaluation section by comparing analysis cost with LOC.

2.5 Testcase Construction

In this section we describe the process by which we construct a series of testcases from

a vulnerability. Recall that the basic objective of this process is to obtain a tractable

testcase from real-world source code which cannot originally be analyzed by a given tool

for technical reasons or resource limitations. The next objective is to produce, from a

single vulnerability, a series of related testcases with varying complexity according to our

dependency graph measures.

Base case. We first examine the source code for each vulnerability and, after under-

standing the reason for the error and the corresponding patch we identify the function in

which the potential overflow occurs and slice away code outside its calling context. We

Chapter 2. Benchmarking Software Model-Checkers 28

also identify the specific target statements which contain the vulnerable operations. We

then parameterize all buffer size declarations by a preprocessor macro, BASE_SZ, so that

we can control the bounds of buffer-dependent loops. At this point, we have reduced the

original source code to a base case, from which we generate a series of testcases.

Simplification. Each testcase is obtained by applying a combination of simplifica-

tions to the base case. The simplifications eliminate or reduce (transitive) dependencies

of the target statements, thereby reducing the analysis complexity. The simplifications

are summarized in Table 2.2. Each row describes a single simplification: its type, an

example of a statement before and after applying it, and whether it affects a data (D) or

control (C) dependency. In most cases, it is clear why a simplification affects a particular

kind of dependency. We briefly discuss some of the more subtle simplifications.

Replace pointer with array. Recall that the dependencies of a pointer expression

consist of the dependencies of the variables in its points-to set. By replacing a pointer

expression with a scalar or array expression, we reduce the points-to set to a singleton

set. In applying this simplification, we consistently replace all expressions containing a

particular pointer variable, introducing auxiliary variables as necessary.

Inline function. This removes the data dependencies in the implicit assignment be-

tween formal and actual parameters and between the function result and a result variable

at the call site, e.g., z in z = sum(x,y). This also removes the implicit control depen-

dencies between the call site and function entry and exit points.

Replace function with stub. This substitutes a simpler function, a stub, for a more

complex one. The simplest stub we use, NONDET, randomly returns 0 or non-zero. Using

this stub enables a CEGAR SMC to model a potentially complex function as a single non-

deterministic branch. We may also use a more complex stub which partially implements

the original function. For example, the function strstr (substring search), could be

replaced by strchr (single character search). Similarly, strlen (string length) could be

replaced by a function which returns a random value in a given interval.

Chapter 2. Benchmarking Software Model-Checkers 29

Simplification Before After D C
Remove assignment x = y; — X
Replace pointer with array p++; *p; i++; a[i]; X
Inline function z = sum(x,y); z = x + y; X X
Variable/constant propagation x = y; z = x; z = y; X
Remove branch/loop if (c) x = y; x = y; X X
Simplify branch condition if (c && d) if (c) X X
Replace function with stub if (strstr(s, t)) if (NONDET()) X X

Table 2.2: Testcase simplifications

To choose which simplifications to apply to a given vulnerability, we first experiment

with model checkers and base cases, identifying source code constructs which appear

to incur the greatest analysis cost. We then select simplifications which affect these

constructs. However, we restrict the simplifications to those that preserve the input

language of the vulnerability. That is, the simplifications retain existing attack inputs,

but may create new ones. For example, removing a branch which aborts on malformed

input allows previously rejected input to produce an overflow.

The simplification process continues until the programs are reduced to a form which

we believe current CEGAR SMCs can effectively handle. We then review the generated

testcases and remove redundant and uninteresting ones. Finally, we apply the official

source code patch, possibly modified for compatibility with our simplifications, to obtain

a safe variant of each testcase. In general, each vulnerability required between one and

four days for a single person to understand, slice, and process into testcases.

2.5.1 Example

Figure 2.7 shows the base case for the Apache CVE-2006-3747 vulnerability, annotated

with the simplifications which were applied to it to produce a set of testcases for the

benchmark. The target statement is labelled VULN. Function escape_absolute_uri takes

as input a string, uri, specifying a Uniform Resource Indicator (URI), and an integer,

scheme, specifying the length of the prefix of the input denoting its “scheme”. If the

Chapter 2. Benchmarking Software Model-Checkers 30

1 #define TOKEN SZ (BASE SZ + 1)
2 void e s c a p e a b s o l u t e u r i (char ∗ ur i , int scheme) {
3 int cp , c ;
4 char ∗ token [TOKEN SZ] ;
5 i f (scheme == 0 | | s t r l e n (u r i) < scheme) // #1 Remove branch and body .
6 return ;
7 cp = scheme ; // #2 Propagate va lu e o f scheme .
8 i f (u r i [cp−1] == ’ / ’) { // #3 Remove branch .
9 while (u r i [cp] != EOS && ur i [cp] != ’ / ’) // #4 Remove one or both conjunct s

10 ++cp ; // or remove loop .
11 i f (u r i [cp] == EOS | | u r i [cp+1] == EOS) // #5 Remove branch and body .
12 return ;
13 ++cp ; scheme = cp ; // #6 Remove both assignments .
14 i f (strncmp (ur i , LDAP, LDAP SZ) == 0) { // #7 Replace strncmp with s tub .
15 c = 0 ;
16 token [0] = ur i ;
17 while (u r i [cp] != EOS && c < TOKEN SZ) {
18 i f (u r i [cp] == ’ ? ’) {
19 ++c ;
20 VULN: token [c] = u r i + cp + 1 ;
21 u r i [cp] = EOS;
22 }
23 ++cp ;
24 }
25 }
26 return ;
27 }
28 int main () {
29 char u r i [URI SZ] ;
30 int scheme ;
31 u r i [URI SZ−1] = EOS;
32 scheme = LDAP SZ + 2 ;
33 e s c a p e a b s o l u t e u r i (ur i , scheme) ; // #8 In l i n e func t ion c a l l .
34 return 0 ;
35 }

Figure 2.7: Example testcase from Apache CVE-2006-3747.

URI is of type LDAP, lines 7–24 check the syntax of the URI and identify tokens in the

input, storing the token offsets in the array token. However, the bounds check on line

16, c < TOKEN_SZ, is incorrect, since c can be incremented on line 18, and then used

to index into array token on line 19, the target statement. That is, c can have value

TOKEN_SZ on line 19, which is greater than the upper bound of array token, TOKEN_SZ-1.

The patched version changes the check on line 16 to c < TOKEN_SZ-1.

Each of the simplifications preserve the intrinsic nature of the base case while allowing

Chapter 2. Benchmarking Software Model-Checkers 31

additional inputs to trigger the overflow. In the base case, to trigger the overflow the

input must begin with the string “ldap://” and followed by a minimum number of “?”

characters, e.g., “ldap://??”—the specific number of “?” characters depends on the

size of the target buffer, token. The simplifications are denoted by the comments on

the right hand side of the source code in Figure 2.7. For example, line 8 checks for

a “/” character after the “ldap:” prefix of the input. Simplification #3 removes this

check, so in addition input “ldap:??” triggers the overflow. Line 14 checks if the input

has the prefix “ldap:” using strncmp, the substring-search function of the C standard

library. Simplification #7 removes this check, so that input “//??” triggers the overflow.

Lines 15–23 comprise the operations which characterize the vulnerability, so they are left

unmodified in all testcases: the while loop iterates over the input, “uri”, copying a

pointer into token each time the “?” character is encountered in uri.

2.5.2 Testcase Documentation

Each vulnerability is accompanied by the following documentation: a link to the original

source code of the associated program, the file(s) in the original source code containing

the vulnerability, the names of the source files of our testcases (listed in order of com-

plexity), an explanation of how the vulnerability works and how the patch removes the

vulnerability, and definitions of the simplifications used in each testcase. Documentation

for the vulnerability in Figure 2.5 is shown in Figure 2.8.

2.6 Suite Composition

The benchmark is composed of testcases derived from a variety of buffer overflow vulnera-

bilities in open source programs, summarized in Table 2.3. We analyzed 22 vulnerabilities

in 12 programs, producing 298 testcases (half of these are faulty versions and the other

half are patched). Most of the vulnerabilities come from the Common Vulnerabilities

Chapter 2. Benchmarking Software Model-Checkers 32

-= CVE-1999-0047 =-

Vulnerable version: Sendmail 8.8.3 and 8.8.4

File: sendmail/mime.c

Download from: http://www.sendmail.org/releases/historic.php

Domain: Server

_ Vulnerable Functions and Buffers _

Function mime7to8 reads four characters at a time from a file and copies each

character into a fixed sized buffer. The number of elements copied depends on

the length of the input, but the pointer into the dest buffer is reset if a

’\n’ is encountered. A typo (fbuf >= &fbuf[X], which is always false, instead

of fbufp >= &fbuf[X]) prevents the copying loop from stopping early if the end

of the dest buffer is reached. The patched version fixes the typo.

_ Decomposed Programs _

Zitser’s model program:

mime7to8/

mime7to8_{arr,ptr}_{one,two,three}_char*_{no,med,heavy}_test_{bad,ok}.c

Variants arr and ptr use array indexing and pointer operations, respectively.

Variants one, two, and three read (and test) one, two, and three characters

from input on each iteration of the while loop. Variant no only checks whether

the input char is EOF; med also checks whether the input is ’=’, ’\n’, or ’\r’;

heavy also checks the input with isascii and isspace.

_ Notes _

This is Zitser’s sendmail/s4, simplified. BASE_SZ was originally 50.

Figure 2.8: Testcase documentation for Sendmail CVE-1999-0047.

Chapter 2. Benchmarking Software Model-Checkers 33

Program Domain # Vulns # Testcases
Apache Server 2 36
edbrowse App 1 6
gxine App 1 2
LibGD Library 1 8
MadWifi Driver 1 6
NetBSD libc Library 1 24
OpenSER Server 2 102
Samba Server 1 4
SpamAssassin App 1 2
BIND Server 2 22
WU-FTPD Server 3 24
Sendmail Server 7 63

Table 2.3: Suite Composition

and Exposures (CVE) database [25] while the rest appear in prior publications [36, 53].

Different types of programs use buffers in different ways, so we selected programs from a

variety of domains.

The benchmark directory structure is organized by program, vulnerability, and func-

tion – for example, OpenSER/ CVE-2006-6749/parse_expression_list/ contains test-

cases from a vulnerability in the parse_expression_list() function of OpenSER, re-

ported in vulnerability CVE-2006-6749. Each testcase’s filename ends in bad, indicating

a vulnerable case, or ok, indicating a patched case. Furthermore, each vulnerable state-

ment in a testcase is preceded by the comment BAD (OK in the patched cases). Finally,

all testcases #include a header file, stubs.h, in which standard macros, typedefs, and

library functions are declared. Simple implementations of these functions are provided

in lib/stubs.c. For example, Figure 2.9 shows the stub for the strcpy function, which

copies the string pointed to by src into the buffer pointer to by dest, simply by iterat-

ing over each character in src until a null character is encountered. The header file also

defines an important preprocessor macro, BASE_SZ, which specifies the base buffer size

by which every testcase is parameterized.

Chapter 2. Benchmarking Software Model-Checkers 34

1 char ∗ s t r cpy (char ∗dest , const char ∗ s r c)
2 {
3 int i ;
4 char tmp ;
5 for (i = 0 ; ; i++) {
6 tmp = s r c [i] ;
7 des t [i] = tmp ;
8 i f (s r c [i] == ’ \0 ’)
9 break ;

10 }
11 return des t ;
12 }

Figure 2.9: Stub function for strcpy.

2.7 Evaluation

2.7.1 Objectives

In this section we apply the benchmark to a CEGAR SMC, namely SatAbs [24], in order

to evaluate the quality of the benchmark with respect to our original objectives and

requirements. Requirements R1, R2, and R3, i.e., realism, verification and falsification,

and comprehensibility, are satisfied by the construction of the benchmark. To address

R4 (solvability) we present solvability results below. For R5 (configurability) we present

results showing the relationship between tool performance and (1) buffer size and (2)

the simplifications we introduced into the testcases. The results also show that the

benchmark obtains a wide range of performance from the test subject, thereby satisfying

the basic objective of a benchmark.

2.7.2 Experimental Setup

We chose SatAbs as the test subject because it provides automatic instrumentation of

potential buffer overflows and thorough handling of the C language, particularly arrays

and pointer arithmetic which are heavily used in our testcases. We used version 1.6 with

the default model checker, Cadence SMV, and with the iteration limit disabled. For the

evaluation, we configured SatAbs to check all relevant buffer overflow assertions. The

test platform was a 3.0 GHz Intel Xeon with 2 GB of RAM. All tests were run with a

Chapter 2. Benchmarking Software Model-Checkers 35

Buffer size
Result 1 2 3 4
Success 167 (76%) 155 (70%) 150 (68%) 145 (66%)
Crash 24 (11%) 26 (12%) 28 (13%) 31 (14%)
Incorrect 18 (8%) 18 (8%) 18 (8%) 17 (8%)
Timeout 11 (5%) 21 (10%) 24 (11%) 27 (12%)

Table 2.4: Solvability results for safe testcases (220 claims)

Buffer size
Result 1 2 3 4
Success 101 (43%) 94 (40%) 86 (36%) 79 (33%)
Crash 37 (16%) 37 (16%) 40 (17%) 42 (18%)
Incorrect 63 (27%) 61 (26%) 59 (25%) 56 (24%)
Timeout 36 (15%) 45 (19%) 52 (22%) 60 (25%)

Table 2.5: Solvability results for unsafe testcases (237 claims)

half hour (1800s) timeout at buffer sizes 1 through 4.

2.7.3 Solvability Results

Given a testcase, SatAbs identifies a set of claims : statements to check for buffer over-

flows. In total, we ran SatAbs on 120 safe cases and 120 unsafe cases, for which SatAbs

generated 220 and 237 claims, respectively. We observed that the solvability results are

affected by the base buffer size. For example, for a testcase with two claims A and B,

SatAbs may successfully check both claims at buffer size 1, but only succeed for claim

A at buffer size 2. For claim B at buffer size 2, SatAbs may have crashed, produced

an incorrect result, or timed out. As such, we present solvability results in terms of the

number of claims successfully checked at each base buffer size.

Tables 2.4 and 2.5 show the solvability results for the safe and unsafe testcases,

respectively. Figure 2.10 shows the result as a bargraph; each bar shows the result

distribution for the buffer size indicated beneath the bar. Each row shows the number of

claims which obtained a particular type of result at buffer sizes 1 through 4; the numbers

in parentheses show the count as a percentage of the total number of claims.

Chapter 2. Benchmarking Software Model-Checkers 36

Timeout
Incorrect
Crash
Success

 0

 20

 40

 60

 80

 100

43214321

R
es

ul
t d

is
tr

ib
ut

io
n

(%
 o

f
te

st
ca

se
s)

Buffer size Buffer size
Safe testcases Unsafe testcases

Figure 2.10: Solvability results as bargraphs.

In general, SatAbs’ success rate falls between our rough bounds of 1/3 and 2/3.

The success rate gradually decreases as the buffer size increases due to a corresponding

increase in timeouts. Note that we also ran the benchmark at twice the timeout limit

(3600s) with little change in the solvability results. In some cases, increasing the buffer

size triggered bugs in SatAbs which caused it to crash or produce incorrect results. The

timeout rates for the unsafe cases are from two to three times as high as those for the

safe cases. One explanation for this is that in certain cases, the number of predicates

generated is independent of the buffer size in the safe case, but grows with the buffer size

in the unsafe counterpart. Thus, SatAbs succeeds on the safe case, but yields a timeout

as the buffer size grows in the unsafe case. We discuss this behaviour in more detail

below.

Chapter 2. Benchmarking Software Model-Checkers 37

Buffer size 4

Buffer size 3

Buffer size 2

Buffer size 1

 0

 20

 40

 60

 80

 100

 120

 140

 160

A
ve

ra
ge

 N
um

be
r

of
 P

re
di

ca
te

s
pe

r
V

ul
ne

ra
bi

lit
y

Vulnerability

Apache 1 Apache 2 Bind 1 Bind 2 LibGD MADWiFi NetBSD Sendmail 2 WU−ftpd

Figure 2.11: SatAbs performance results, safe cases.

2.7.4 Performance Results

In order to generate consistent performance results, we filtered the results so that only

claims which were checked successfully at all buffer sizes were included. As such, some

testcases were removed from the results altogether, since, for these, SatAbs failed to

successfully check even a single claim at all buffer sizes. In sum, the performance results

are collected over 90 safe and 90 unsafe cases with 136 and 76 claims, respectively.

Figures 2.11 and 2.12 show the performance results for the safe and unsafe vulnerabil-

ities, respectively, with at most six testcases; results for OpenSER CVE-2006-6749 and

Sendmail 1 CVE-1999-0047 are shown in Figures 2.13 and 2.14, respectively. Each bar

indicates the difficulty of a testcase as the average number of predicates generated per

claim (recall that a testcase can contain more than one claim). The results for buffer size

1 are shown by the darkest bar at the bottom, while results for buffer sizes 2 through 4

Chapter 2. Benchmarking Software Model-Checkers 38

Buffer size 4

Buffer size 3

Buffer size 2

Buffer size 1

 0

 20

 40

 60

 80

 100

 120

 140

 160
A

ve
ra

ge
 N

um
be

r
of

 P
re

di
ca

te
s

pe
r

V
ul

ne
ra

bi
lit

y

Vulnerability

340

Apache 1 Apache 2 Bind 2 Edbrowse LibGD NetBSD Sendmail 2 WU−ftpd

Figure 2.12: SatAbs performance results, unsafe cases.

are shown in order by the lighter bars stacked above. For example, the rightmost bar in

Figure 2.11 indicates that the most complex of the testcases for WU-ftpd CVE-1999-0368

generated 75 predicates at buffer size 1 and 126 predicates at buffer size 4. The bars are

clustered by vulnerability and sorted from left to right by order of testcase difficulty, that

is, the leftmost testcase has the most simplifications and the rightmost has the fewest.

In the case where bars do not appear for certain buffer sizes, the number of predicates

generated remained the same as the buffer size increased. For example, the results at

buffer sizes 2 through 4 for Apache 2 in Figure 2.11, are the same as those at buffer size 1.

The results in the first two figures confirm two trends which we expected to encounter,

given our testcase construction methodology and understanding of CEGAR. First, for

each vulnerability, the series of testcases produces gradually increasing analysis complex-

ity. Also, the diversity of results shows that different vulnerabilities generate testcases

Chapter 2. Benchmarking Software Model-Checkers 39

Buffer size 4

Buffer size 3

Buffer size 2

Buffer size 1

 0

 20

 40

 60

 80

 100

A
ve

ra
ge

 N
um

be
r

of
 P

re
di

ca
te

s
pe

r
V

ul
ne

ra
bi

lit
y

cases1 cases2

Testset

cases3

safe unsafe safe unsafe safe unsafe

Figure 2.13: SatAbs performance results, OpenSER CVE-2006-6749.

with distinct difficulty bounds. For example, looking at Figure 2.11, we see that at

buffer size 1, the most difficult case in Bind 2 (CVE-2001-0011) generates only 41 predi-

cates, whereas the comparable case in Apache 2 (CVE-2006-3747) generates 130. Second,

buffer-dependent loop bounds are shown in many cases to have a significant impact on

analysis difficulty.

In some of the safe cases, such as Apache 2 (CVE-2006-3747), we see that SatAbs’

performance is independent of buffer size; the number of predicates generated for these

testcases remains the as the buffer size increases. The base source code for this vulnera-

bility, before the patch is applied, is shown in Figure 2.7. Notice the conditional branch

on line 17 guarding the vulnerable statement on line 20. The predicate appearing in the

branch, (c < TOKEN_SZ), which in the patched version is (c < TOKEN_SZ - 1) implies

the safety of the array access, token[c], on line 20. Thus, once CEGAR produces the

Chapter 2. Benchmarking Software Model-Checkers 40

Buffer size 4

Buffer size 3

Buffer size 2

Buffer size 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

A
ve

ra
ge

 N
um

be
r

of
 P

re
di

ca
te

s
pe

r
V

ul
ne

ra
bi

lit
y

one_char two_chars

Testset

three_chars
safe unsafe safe unsafe safe unsafe

Figure 2.14: SatAbs performance results, Sendmail 1 CVE-1999-0047.

predicate (c < TOKEN_SZ - 1), it is able to prove the safety of the array operation,

regardless of the size of the array.

This trend only holds for safe testcases in which buffer operations are guarded by

inequality checks on pointers or array indices; i.e. in which the check implies the safety

of the buffer operation which it guards. In other testcases, for example those that use

strcpy() to (safely) copy the contents of one array into a sufficiently large target array,

the number of predicates needed to prove safety is roughly equal to those needed to find

an error, and grows as a function of the target buffer size.

The bargraphs for OpenSER CVE-2006-6749 and Sendmail 1 CVE-1999-0047 show

the results for these vulnerabilities for which we produced a more refined set of testcases.

Note the change in the scale of the vertical axis from 160 to 100 for OpenSER and 40 for

Sendmail, respectively.

Chapter 2. Benchmarking Software Model-Checkers 41

The testcases for the OpenSER vulnerability are grouped according to a parameter

called cases. The vulnerability involves looping over a string and checking whether each

character matches one of several character constants. Testcases grouped under cases1

check only whether the input contains a null character, those grouped under cases2

check for both the comma and null characters, and those grouped under cases3 check

for the comma, null, and quotation mark characters.

Similarly, the Sendmail 1 vulnerability involves looping over a string and processing

one or more characters in each iteration. The testcases are grouped according to the

number of characters which are processed per iteration. For example, one_char testcases

process one character per iteration. Within each of the groups, the testcases are sorted

according to additional parameters. In the case of Sendmail 1, the first three tests have

all pointer expressions replaced with array expressions, whereas the last three retain the

pointer expressions. Then, each of these groups of three tests are sorted according to the

number of conditional branches they contain. These testcases were constructed to isolate

the effects of specific types of simplifications. The results confirm that each simplification

has a significant effect on performance. For example, the impact of replacing pointers

with arrays is clearly shown by the results for the Sendmail 1 testcases.

2.7.5 Static Measure Results

We also ran the CodeSurfer plugin on each testcase to obtain trace measures. The

plugin was limited to explore at most 10 branches per program point and 1000 paths per

program. Branches were explored in the arbitrary order selected by the pdg-vertex-set-

traverse function of the CodeSurfer API. Since a testcase may have more than one

target, i.e., more than one vulnerable statement, we collect the lengths of the longest

traces for each target and take the average—the average maximum trace length.

The relationship between average maximum trace length and testcase difficulty, mea-

sured as the average number of predicates generated by SatAbs, is shown in the four

Chapter 2. Benchmarking Software Model-Checkers 42

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Trace Length

#
P
re

d
ic

a
te

s

(a)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Trace Length

#
P
re

d
ic

a
te

s
(b)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

LOC

#
P
re

d
ic

a
te

s

(c)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Trace Length

#
P
re

d
ic

a
te

s

(d)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Trace Length

#
P
re

d
ic

a
te

s

(e)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

110

120

130

LOC
#

P
re

d
ic

a
te

s

(f)

Figure 2.15: Comparison of relationship between static measures and testcase difficulty.
The top row, (a)–(c), shows results for the safe cases, the bottom row, (d)–(f), shows
results for the unsafe cases. Graphs (a) and (d) show the trace length measurements at
buffer size 1 and (b) and (e) are for buffer size 4. Graphs (c) and (f) show the LOC
measurements.

leftmost scatter plots on Figure 2.15. Each point denotes the result for a single test-

case. The two plots on the right show the relationship between the number of lines of

code (LOC) and testcase difficulty. Data points with LOC exceeding 50 or number of

predicates exceeding 130 are omitted from the graphs.

The results show a positive correlation between both static measures and testcase

difficulty. However, it is unclear to what degree trace length is a stronger measure of

testcase difficulty than LOC. For example, with the safe cases at buffer size 1, the graphs

for trace length and LOC look somewhat similar: the points are distributed along an

Chapter 2. Benchmarking Software Model-Checkers 43

upwards slope (denoting a positive correlation) and form clusters, i.e., around 10 program

points in the trace length graph and 35 LOC in the LOC graph. At buffer size 4, the

clusters in the trace length graphs are dispersed vertically because of buffer-dependencies

in the testcases, but retain the same positions in the horizontal axis.

Moreover, the trace length graphs at buffer size 1 look like the corresponding LOC

graphs shifted to the left by about 30 units. This may be due to our testcase construction

method which removes superfluous statements from the base code so that most remaining

statements are significant, i.e. ones which lie in a trace. We may be able to obtain a more

significant difference between the measures if we used larger, unprocessed testcases, e.g.,

testcases which measure high in LOC but low in trace length. Also, since the majority

of our testcases measure less than 15 program points in trace length, we expect most

of the results to be clustered around that value in the trace length graphs. To obtain

more conclusive results, we need to experiment with testcases with a wider range of trace

lengths.

2.8 Related Work

2.8.1 Buffer Overflow Benchmarks

Zitser et al. [53] constructed a benchmark suite from real C programs containing buffer

overflow vulnerabilities. The benchmark was designed to evaluate a class of tools based

on dataflow analysis. This type of analysis computes a program abstraction over a fixed

abstract domain and thus captures only pre-specified facts about a given program’s be-

haviour. As such, the analysis may fail to detect a vulnerability or produce a false alarm.

The benchmark measures tool performance in terms of detection and false alarm rates.

To enable this, the suite includes a patched (i.e., safe) counterpart of each vulnerable

testcase. We adopted this methodology in the construction of the Verisec benchmark.

The testcases in the Zitser benchmark are slices of real-world code and lack any further

Chapter 2. Benchmarking Software Model-Checkers 44

R4
Name R1 R2 R3 Detection Rate False Alarm Rate R5
Zitser Y Y N 40% 20% N
Kratkiewicz N Y Y 100% 0% Y
Wilander N Y Y 100% 0% N

Table 2.6: Buffer overflow benchmarks evaluated under our requirements. R1: realism;
R2: verification and falsification; R3: comprehensibility; R4: solvability; R5: configura-
bility.

simplifications. As mentioned above, they obtained poor performance from the CEGAR

SMC, Copper. Moreover, the suite only included one testcase per vulnerability and the

testcases were not parameterized.

Kratkiewicz et al. [35] produced a benchmark consisting of small synthetic C programs

with systematically varying syntactic constructs. The work is a follow-up to Zitser’s, de-

signed to evaluate the same class of tools, and uses the same methodology of including

safe and unsafe testcases. The benchmark attempts to identify specific language con-

structs which account for a tool’s false alarms and missed detections. However, the

SMCs Copper and SatAbs obtained a perfect detection rate and false alarm rate of zero

on the suite. Moreover, the tools which Kratkiewicz evaluated achieved a similarly high

performance measure. This suggests that the parameters which the authors selected, i.e.,

the syntactic constructs, have a weak correlation with tool performance.

Similarly, the benchmark of Wilander et al. [51] is comprised of a set of yet smaller

programs, each containing a single call to a standard C library function. The benchmark

was designed to evaluate an even weaker class of tools based on syntactic analysis. These

tools scan source code for specific syntactic patterns which may indicate a buffer overflow

vulnerability and are thus highly susceptible to missed detections and false alarms. The

SMC Copper obtained a perfect performance measure on this benchmark due to its

specialized abstraction for C library functions.

An overview of the benchmarks described in this subsection is presented in Table 2.6.

Each row of the table shows the evaluation of one benchmark with respect to our require-

Chapter 2. Benchmarking Software Model-Checkers 45

ments. For example, the first row shows that the Zitser suite is realistic; includes both

vulnerable and patched testcases; does not include comprehensible testcases; obtained

a 40% detection rate (proportion of vulnerabilities found by Copper) and a 20% false

alarm rate (proportion of safe cases deemed unsafe by Copper); and does not provide

parameters for configuring the testcases.

2.8.2 Other Benchmarks

Atiya et al. present a benchmark for model-checkers of concurrent systems in [10]. The

benchmark consists of a collection of problems, i.e. concurrent systems and their related

properties, compiled from a survey of the model-checking literature. The authors defer

the definition of performance measures to the “wider community.” They also omit an

evaluation of their suite, including instead the published results of case studies and ex-

periments involving the sampled problems. The notable feature of this benchmark is that

the authors classify the suite according to characteristics of the problems, such as appli-

cation domain, communication method, and property type, and the types of techniques

that have been used to solve them.

We initially attempted to create a similar classification scheme for the Verisec suite.

Testcases were divided into groups by domain, e.g., server, user application, and library.

We also defined two types of overflows: length-based, in which the overflow only depends

on the length of the user input, and content-based, in which the overflow depends on the

specific contents of the input. However, we did not find any relationship between CEGAR

analysis complexity and domain or overflow type. Also, whereas Atiya et al. built their

suite from testcases which were already documented with their classification features, we

had to infer the overflow type from source code and bug reports, a time-consuming and

unreliable process.

Dwyer et al. present a benchmark for evaluating explicit-state concurrent software

model-checkers in [26]. The benchmark suite was compiled from a variety of sources and

Chapter 2. Benchmarking Software Model-Checkers 46

includes both synthetic and real-world testcases which are seeded with errors. The work

has two main objectives. The first is determining whether search order in an explicit-

state model-checker (ESMC) has a more significant effect on performance than certain

techniques do. The authors show that in some cases, simply randomizing search order

yields a greater improvement over the default search order than a particular technique.

The second objective is identifying program features which have a significant effect on

ESMC performance; i.e., identifying program complexity measures. The authors find one

such feature called path error density which is roughly the probability that a reference

ESMC finds an error within 10000 runs using a random search order and a random

scheduler. An interesting feature of their methodology is the use of a baseline analysis

from which to evaluate a particular ESMC technique. Perhaps this approach could be

adapted to the evaluation of CEGAR techniques. For example, we could use directed

testing or bounded model-checking as a baseline analysis. In the case of directed testing,

we may find a correlation between the size of the constraint set or the length of the error

path and CEGAR performance; in the case of bounded model-checking, the size of the

SAT instance or UNSAT core may be an indicator of CEGAR performance.

Pelanek presents an analysis of a benchmark for model-checkers of concurrent systems

in [44]. The immediate objective of their work is to classify concurrent systems according

to their structural and semantic properties. The authors hope to use the classification

as a basis for automatically selecting the tool and the tool parameters which will solve

a given problem most efficiently. The structural properties are computed from a given

problem’s state space graph, e.g., whether the graph is acyclic or consists of small con-

nected components. The semantic classifications are obtained from a given problem’s

high-level description, e.g., the application domain from which the problem is derived.

Unfortunately, the authors leave the evaluation of the benchmark to future work.

Singh et al. present a benchmark for multiprocessor (MP) systems in [52]. The bench-

mark consists of several parallel applications which, the authors claim, are representative

Chapter 2. Benchmarking Software Model-Checkers 47

of the tasks which MP systems are typically used for, such as matrix factorization and

physical simulations. The authors define several “behavioural characteristics” with which

they classify the applications, e.g., the synchronization method used by an application.

They also describe the syntactic structure of each of the applications’ source code. The

authors use these characteristics to (qualitatively) account for the performance profile of

a test system across the benchmark. The work on testcase complexity measures in this

thesis is loosely based on Singh’s use of static characteristics to classify testcases.

Amla et al. present an evaluation of three bounded model-checking (BMC) tech-

niques on a suite of industrial examples in [9]. They claim that counterexample depth,

computed by an unbounded model-checker, is a significant factor in determining BMC

performance. However, their results generally show a weak correlation between perfor-

mance and counterexample depth, i.e., a wide variation in performance over a set of

problems with a small variation in counterexample depth. On the other hand, the results

do show distinctly different performance profiles for each of the BMC techniques. Unfor-

tunately, they neglect to the discuss the features of the testcases which may account for

these differences.

2.9 Conclusion

2.9.1 Limitations and Future Work

There are several aspects of the benchmark which can be improved upon in future work:

Benchmark scope. The vulnerabilities included in the benchmark were sampled

non-randomly: we chose those which were interesting and which seemed to differ in form

from previously selected ones. However, considering that CVE catalogs over 4000 buffer

overflow vulnerabilities, our selection of 22 is very sparse, and it is likely that our sample

excluded certain forms of overflows. Either a systematic or random sampling of a larger

number of testcases would improve the realism of the benchmark, but this requires more

Chapter 2. Benchmarking Software Model-Checkers 48

manpower than was available for this project.

Testcase construction. As discussed in the evaluation section, our testcase con-

struction method yielded cases which were relatively small in both LOC and trace length

measures. Because of this, the results obtained from the benchmark may not reflect the

performance of tools such as SatAbs at a larger scale. However, recall that even with

such small testcases SatAbs’ success rate at buffer size 4 is only 33% for the unsafe cases.

Another significant limitation of our testcase construction method is that the simpli-

fications were carried out by hand. We only generated fine-grained testsets for a few vul-

nerabilities, such as OpenSER CVE-2006-6749. Ideally, we would generate fine-grained

testsets for all vulnerabilities, so that we could observe the effect of each simplification

in isolation. However, this would require automation of the simplification process and

it is unclear how this could be accomplished. This is because our testcase construction

method requires that the simplifications preserve attack inputs, which in turn requires an

understanding of the semantics of the testcase. As such, simple, syntax-based transfor-

mations would not be adequate for this purpose. One possible direction for supporting

automatic testcase construction is static analysis for determining the attack language

and its relationship to the source code.

SatAbs was used as the only reference tool in the testcase construction process This

is problematic since the testcases were constructed around a single tool and may not

obtain interesting or useful results when applied to another tool. However, given our

time constraints, it would have been impractical to use more than one reference tool to

construct the testcases, since each tool would have its own bugs and parser deficiencies

to work around.

Evaluation. To improve readability, we reported the evaluation results for a given

testcase as the average number of predicates generated by the test subject (in our case,

SatAbs) for all buffer overflow claims over all buffer sizes between 1 and 4 (inclusive).

However, for more than half the claims, there was at least one buffer size at which SatAbs

Chapter 2. Benchmarking Software Model-Checkers 49

Claim
Buffer size A B Result (average)

1 5 10 7.5
2 7 — 7

Table 2.7: Example performance results.

failed to terminate successfully. Thus, the results for these claims were not included in

the averages, as this would have misrepresented SatAbs’ performance on the benchmark.

To see why, consider Table 2.7 which shows the performance results for a fictional testcase

with two claims, A and B: at buffer size 1 the test subject generated 5 and 10 predicates

for each claim respectively; at buffer size 2 it generated 7 predicates for claim A and

failed to check claim B. The average results are shown in the rightmost column. If we

retain both claims in the results, it would appear that the tool’s performance improved

as the buffer size increased, yet it actually performed worse in claim A. Thus, for this

testcase we would discard the results for claim B.

2.9.2 Lessons Learned

Collaborate with the target community. Sim defines a theory of benchmarking [46] in

which (1) testcases are selected by a community of researchers and practitioners and

(2) the benchmark is initially evaluated by tool developers. That is, the benchmark

developers serve only to facilitate the development of the benchmark and its construction

and evaluation are left to the community. In our case, we, the benchmark developers,

performed both (1) and (2).

By following Sim’s methodology we may have avoided the issue of limited bench-

mark scope, since the community would select all the testcases which it deemed relevant.

The issues we encountered in testcase construction and evaluation might also have been

avoided if we worked in conjunction with tool developers: testcase simplifications made

to avoid parser or analysis bugs would be unnecessary and more complete results could

be obtained. Moreover, testcases could be constructed independently of a reference tool,

Chapter 2. Benchmarking Software Model-Checkers 50

since we would work with the developers to debug their tools until they succeeded on

the testcases. Nonetheless, our testcase analysis and documentation provide an under-

standing of a variety of vulnerabilities and enable tool developers to concentrate on their

tools, rather than the testcase code.

Program structure affects CEGAR analysis complexity. The benchmark provided in-

sight into the difficulty of the buffer overflow problem and its relationship to CEGAR.

Specifically, we identified two basic types of dependencies which account for the com-

plexity of CEGAR analysis. We also discovered a form of overflow which is buffer-size-

independent and therefore amenable to CEGAR analysis; moreover, we observed this

form in several real-world cases.

* * *

The benchmark is available at http://www.cs.toronto.edu/~kelvin/benchmark.

We encourage all SMC developers and users to download and experiment with the test-

cases and provide feedback.

Chapter 3

Supporting Buffer Overflow Analysis

in YASM

YASM is a software model-checker for C. This chapter describes several changes made to

YASM to support buffer overflow analysis in real-world programs. The chapter begins

with an overview of YASM’s architecture in Section 3.1, followed by a background on the

techniques and data structures used in YASM in Section 3.2, an outline of the changes

that were made to support buffer overflow analysis in Section 3.3 and detailed description

of the changes in Sections 3.4 (theorem-prover interface), 3.5 (XML front-end), and 3.6

(predicate abstraction of pointer expressions). The chapter concludes with related work in

Section 3.7 and a discussion of the current status of YASM and future work in Section 3.8.

3.1 YASM Architecture

YASM implements the standard symbolic software model-checking loop which com-

bines predicate abstraction, model-checking, and counterexample-guided abstraction-

refinement (CEGAR). The input is the source code of a C program and a temporal

property to be checked on the program. The output is a truth value indicating whether

the program satisfies the property:

51

Chapter 3. Supporting Buffer Overflow Analysis in YASM 52

Figure 3.1: YASM architecture.

• True: the program satisfies the property

• False: the program violates the property

• Maybe: the analysis was inconclusive.

Figure 3.1 illustrates the YASM architecture. Components are denoted by rectangles,

edges denote data-flow between components and are annotated with the type of data

being passed, and the diamond denotes a conditional branch. The components are further

discussed below.

1. Parser. The source code is parsed into an abstract syntax tree (AST). An initial

predicate abstraction is computed from the AST by representing all statements

as skip (no-op) and conditional branches as ∗ (non-deterministic choice). We call

this a nullary or trivial abstraction since it is computed with an empty predicate

set. The abstraction is represented as a predicate program (PProgram). Predicate

abstraction and the PProgram data structure are discussed in Section 3.2.

2. Model Compiler and Model Checker. The PProgram is compiled into a finite-

state model, namely, a Kripke structure [20], according to the semantics defined

Chapter 3. Supporting Buffer Overflow Analysis in YASM 53

(a)

1 void main (void) {
2 int x = 2 ;
3 int y = 2 ;
4 while (y <= 2)
5 { y = y − 1 ; }
6 i f (x == 2)
7 { P1 : }
8 }

(b)

1 void main (void) {
2 while (∗)
3 { }
4 i f (∗)
5 { P1 : }
6 }

(c)

1 void main (void) {
2 (x=2) := T;
3 while (∗)
4 { (x=2) := (x=2); }
5 i f (x=2)
6 { P1 : }

(d)

1 void main (void) {
2 (x=2) := T;
3 (y <= 2) := T;
4 while (y <= 2)
5 { (y <= 2) := (y <= 2) ? T : ∗ ;
6 (x=2) := (x=2); }
7 i f (x=2)
8 { P1 : }

Figure 3.2: A simple C program (a), its initial abstraction (b), after adding x = 2 (c),
after adding y ≤ 2 (d).

in [30]. The model is checked for the property using the model-checker XChek [19].

If the property has a definite value in the model, namely, true or false, the process

terminates. Otherwise, the model is too coarse to yield a conclusive result. The

model-checker produces a proof which demonstrates why this is the case.

3. Predicate Generation. The abstraction is refined by adding predicates to the

predicate set, following the abstraction-refinement strategy of [30]. The proof pro-

duced by the model-checker is traversed until an inconclusive transition is found.

New predicates are obtained from the corresponding statement in the PProgram.

4. Abstraction Refinement. The predicate abstraction is re-computed using the

updated predicate set. A theorem-prover, CVC Lite, is used to compute an ap-

proximation of the abstraction. The refined abstraction is checked by returning to

step 2.

Example. The following example illustrates CEGAR analysis of a reachability prop-

erty and is adapted from an example in [30]. Consider the program in Figure 3.1(a) and

suppose we are checking for the reachability of the line labelled P1. This can be expressed

as the CTL property EF (pc = P1) [20]. Figures 3.1(b)–(d) show the three predicate pro-

Chapter 3. Supporting Buffer Overflow Analysis in YASM 54

grams which are constructed by CEGAR to check this property. Figure 3.1(b) shows

the initial abstraction in which conditional branches are replaced with “∗”, denoting a

non-deterministic choice, and all statements are omitted, indicating no-ops. Compiling

and model-checking this PProgram yields value maybe since the reachability of the line

labeled P1 depends on the values of the non-deterministic branches. Specifically, there

may be a path which exits the while loop and enters the if statement, but the feasibility

of this path depends on the branch conditions. In particular, a predicate x = 2 is needed

to determine whether the if statement is entered. Figure 3.1(c) shows the subsequent

abstraction with the new predicate: x = 2 is initialized to true to model the statement x

= 2, is unaffected by the body of the while loop, and is checked in the branch condition

of the if statement. Compiling and model-checking shows that the line labeled P1 is

reachable if the while loop terminates, so the branch condition of the loop, y ≤ 2, is

added to the predicate set. The final abstraction is shown in Figure 3.1(d). The change

of interest is the abstraction of statement y = y - 1 which reads as follows: if y ≤ 2

is true, then it remains true after decrementing y, otherwise its value is unknown (∗);

the value of x = 2 is unaffected. This abstraction is sufficient to determine that the loop

does not terminate and thus the property EF (pc = P1) is false.

3.2 Background

This section defines terms which are used in the rest of the chapter, specifically those

related to parts of YASM which were modified.

Predicate abstraction. In order to apply model-checking to check a property of

a program, a finite representation of the program is required. Predicate abstraction is

a technique for constructing a finite representation of a program with an infinite data

domain, first applied to C programs in [13]. A concrete state, i.e., a valuation of all

program variables, is mapped to an abstract state according to its evaluation under a

Chapter 3. Supporting Buffer Overflow Analysis in YASM 55

finite set of predicates, i.e., boolean expressions over program variables and constants.

To see why even a trivial program can be an infinite state system, consider a statement

in a program with a single integer variable x as a binary relation R over integers where

(y, y′) ∈ R iff executing the statement with x = y obtains x = y′. Then an assignment

statement s = x := x+ 1 is an infinite relation,

{. . . , (−1, 0), (0, 1), (1, 2), . . .}.

Suppose we abstract states with respect to the predicate p = (x > 0): p denotes the

set of states which satisfy p, {s|s |= p}, and similarly for ¬p = (x ≤ 0). We represent

statement s as a finite relation over abstract states by mapping each state in R to its

evaluation under p, obtaining

{(x ≤ 0, x ≤ 0), (x ≤ 0, x > 0), (x > 0, x > 0)}.

Below we show how we obtain this abstraction, but first we briefly define the data struc-

ture we use to store the abstraction.

Predicate program. The following definitions are adapted from [30]. First, define

a program as a control flow graph (CFG): a directed graph where each edge is labeled

with an operation. Let V be the set of program variables. An operation is either (1) an

assignment v := e, where v ∈ V and e is an expression over V or (2) assume(e) where e

is a boolean expression over V .

A predicate program is a CFG labeled with boolean operations. Let P = {p1, . . . , pn}

be a set of quantifier-free boolean expressions over V . Then a boolean operation is either

(1) a parallel assignment p1 := e1, . . . , pn := en or (2) assume(e), where the e and ei are

partial boolean expressions defined by the following grammar:

pbexpr ::= ∗ | choice(boolexpr, boolexpr) | ¬pbexpr | boolexpr.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 56

The symbol ∗ denotes an unknown expression and choice(a, b) is defined as follows:

choice(a, b) =

true if a is true

false if b is true

∗ otherwise

Weakest precondition (WP). Given a finite set of predicates, the goal is to com-

pute a predicate abstraction of a program. We do this in a bottom-up fashion by comput-

ing the weakest precondition of a single predicate p for a statement s. Intuitively, wp(s, p)

denotes those states in which executing s makes p true. The weakest precondition of p

wrt. an assignment x := e, written wp(x := e, p), is p[e/x]: p with e substituted for all

occurrences of x. For example,

wp(x := x+ 1, x > 0)

= (x > 0)[x+ 1/x]

= x+ 1 > 0

= x > −1.

For the assume operation, wp(assume(e), p) is simply e ∧ p.

WP strengthening. For a predicate set P and a predicate p ∈ P , we may have

wp(s, p) = φ /∈ P . In the previous example, with P = {x > 0}, we have

wp(x := x+ 1, x > 0) = (x > −1) /∈ P.

We need a finite abstraction, so we approximate φ by constructing a strengthening φ′

over P such that φ′ ⇒ φ. Let P = {p1, . . . , pk}. We define a cube over P be a conjunction

c1 ∧ · · · ∧ ck where ci ∈ {pi,¬pi}. We construct φ′ to be the largest (weakest) disjunction

of cubes such that φ′ ⇒ φ, i.e., for any φ′′ ⇒ φ, we have φ′′ ⇒ φ′. Thus, φ′ is the weakest

precondition, over predicates in P , for p to be true after executing s. To construct φ′,

Chapter 3. Supporting Buffer Overflow Analysis in YASM 57

we use CVCL to check the implication c ⇒ φ for each cube c. Continuing the example,

with P = {x > 0}, CVCL checks

¬(x > 0) ; (x > −1)

and

(x > 0) ⇒ (x > −1)

and returns φ′ = (x > 0).

3.3 Overview of Changes

Objective. The overall goal of the work described in this chapter is to extend YASM to

effectively check for buffer overflows in real-world C programs. The immediate goal is to

provide the necessary data structures and algorithms for YASM to reason about pointers

and arrays, as these are the essential constructs of a pointer-manipulating program. As

a prerequisite, YASM must be able to parse all language constructs which appear in

real-world code.

Previous Limitations. To understand the need for the changes made, we briefly

review the limitations of the initial implementation of YASM, called OldYASM, below.

1. Native theorem-prover interface. YASM uses CVCL to compute WP approx-

imations in the predicate abstraction step. CVCL is written in C++ while YASM

is written in Java. In OldYASM, CVCL object code is linked into YASM by way

of SWIG [7] which automatically generates Java Native Interface [5] (JNI) code to

translate Java method calls and data to their C++ counterparts and vice versa.

The SWIG templates are tedious to maintain, especially since the generated C++

code needs to be corrected by hand, and the opaque C++ exception interface makes

it difficult to debug theorem-prover errors.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 58

2. ANTLR C Parser. OldYASM uses the ANTLR parser-generator [1] and a gram-

mar for GNU C [4] for the first stage of parsing. The grammar is incomplete and

rejects certain language constructs which commonly appear in low-level code. Also,

to reduce the number of language constructs handled in the rest of YASM, redun-

dant constructs were removed from the grammar. A separate tool, CIL [41], is

used to transform code to conform to the simplified grammar before passing it to

ANTLR. However, like ANTLR, CIL also has incomplete language support and,

furthermore, produces code which is difficult to read and relate back to the original

code.

3. Flat memory model. In OldYASM, memory is modeled as a mapping from

variables to integers. There is no notion of the address of a memory element.

This model cannot faithfully represent an array, since this is a sequence of memory

elements with contiguous addresses. Likewise, a pointer, i.e., a memory element

containing an address, and pointer (address) arithmetic cannot be represented.

Changes. The changes are of two types: improvements to existing functionality and

extensions which provide new functionality.

• Improvements

1. Java interface for a command-line theorem-prover. The CVCL library

is replaced by an interactive process which YASM communicates with via

pipes. A class is added to translate from YASM’s internal expression language

to CVCL’s presentation input language.

2. Ximple front-end. The ANTLR parser is replaced by an XML parser which

accepts Ximple programs. Ximple is an XML representation of GCC’s internal

representation of a C program, designed by Arie Gurfinkel. CIL is replaced

by a modified version of GCC which produces Ximple output.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 59

• Extensions

3. Predicate abstraction of pointer expressions. The predicate abstraction

component is extended to handle expressions containing pointers and arrays.

This is supported by a “logical memory model” in which memory is represented

as a set of disjoint arrays. Classes are added added to translate between C

expressions and CVCL expressions according to the new model.

3.4 Java Interface for a Command-Line Theorem-

Prover

This section describes the design and implementation of an interface for a command-line

theorem-prover. The interface communicates between YASM and an external theorem-

prover process. It translates between YASM’s internal expression language and the input

language of the theorem-prover and forwards theorem-prover operations to the external

process. The section begins with a background on the theorem-prover and the inter-

face, followed by a description of the implementation details, and finishes with a brief

discussion.

3.4.1 Background

CVC Lite (CVCL). A theorem-prover which is used by YASM to compute WP strength-

enings. Specifically, CVCL is used to check the validity of an implication ψ ⇒ φ where ψ

and φ are quantifier-free formulas with integers and arrays. CVCL has a stack-based in-

terface: each level of the stack contains one or more formulas called assumptions. This set

of formulas Γ is called a logical context. To issue a query of formula φ is to check the valid-

ity of
∧

Γ ⇒ φ. If the implication is valid, CVCL returns the subset of Γ which was used

in the proof of validity. For example, if Γ = {x > 0, y > 0, z < 0} and φ = x+y > 0, then

Chapter 3. Supporting Buffer Overflow Analysis in YASM 60

querying φ under context Γ is to check the validity of x > 0∧ y > 0∧ z < 0 ⇒ x+ y > 0,

which is valid. CVCL returns {x > 0, y > 0} since z < 0 is not used in the proof of va-

lidity. The syntax for formulas accepted and output by CVCL is called the Presentation

Input Language (PIL).

CVCL Interface. To efficiently compute a strengthening, YASM manipulates the

logical context using a stack-based backtracking strategy in order to avoid redundant

queries. As such, YASM defines an interface, ITheoremProver, for a stack-based theorem-

prover with the following functions. YASM defines a class called Expr to represent

abstract syntax trees (ASTs) and boolean expressions such as WPs and cubes. The

ITheoremProver interface is summarized below.

Manipulating the stack:

• Function push () increases the stack level by one, adding an empty level at the

top.

• Function pop () decreases the stack level by one, removing the top level.

• Function stackLevel () returns the current level.

Modifying the current stack level:

• Function declare (Expr n, Expr t) declares identifier n to be of type t.

• Function assertFormula (Expr f) adds formula f as an assumption.

Querying:

• Function query (Expr f) checks the validity of f in the current context.

• Function getAssumptionsUsed () returns the assumptions used in the previous

(valid) query.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 61

CLCVCL
TheoremProver

CVCLExprPrinter

CVCLProcess

CVCL

Result, assumptions

Op

Command Output

Expr PIL

Op

CVCLMessage

Figure 3.3: CVCL interface class layout.

3.4.2 Implementation

The two main issues in implementing the ITheoremProver interface on top of CVCL are

1. Communicating with the CVCL process

2. Translating formulas from Expr to PIL and vice versa.

Figure 3.3 shows the classes which implement the interface and the flow of data among

them; rectangles denote classes and the edges are labeled with the type of data which is

passed between classes.

CVCLProcess. This class initializes and manages a CVCL process and provides an

interface for communicating with it. Calls to the interface are passed to the process as

text. Output from the process is encapsulated in a CVCLMessage object with attributes

for the elements of the output. The four types of CVCLMessage are summarized below:

• VoidMessage. Empty output with no attributes. Returned by push, pop, and

declare.

• AssertListMessage. Contains a list of formulas as strings. Returned by

getAssumptionsUsed.

• ValidityMessage. Contains a boolean which is true iff the previous query was

valid. Returned by query.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 62

• WhereMessage. Contains a list of formulas as strings and an integer representing

the current stack level. Returned by where.

Command where is similar to getAssumptionsUsed, but it returns all assumptions in

the current logical context, as well as the current stack level.

CVCLProcess raises an exception if the process produces unexpected output. It also

prevents certain sequences of commands from being issued if they are invalid, since they

would cause the process to abort or generate nonsense output. Specifically, it uses three

variables to keep track of the query state:

• boolean validQueryState. True iff the previous query, if any, was valid.

• boolean invalidQueryState. True iff the previous query, if any, was invalid and

the current scope level is greater than invalidQueryStackLevel.

• int invalidQueryStackLevel. The stack level of the previous invalid query; −1

if no invalid query has been made.

An exception is raised if any of the following commands is called in an invalid state:

• where, assertFormula, push, and getAssumptionsUsed, if invalidQueryState is

true, since the context should not be examined or augmented if the query is invalid

in the current context; in other words, the only legal operation after an invalid

query is to reduce the context (by popping the stack).

• getAssumptionsUsed, if validQueryState is not true, since YASM only uses as-

sumptions used to prove valid queries.

CLCVCLTheoremProver. This class implements the ITheoremProver interface

on an underlying CVCL process by

1. Translating Expr formulas to PIL

Chapter 3. Supporting Buffer Overflow Analysis in YASM 63

2. Translating CVCL’s text output to Expr

The first step is handled by CVCLExprPrinter, which traverses an Expr AST and emits

PIL text as appropriate. As for the second step, the only problematic output of CVCL

is the assumption list produced by getAssumptionsUsed. Translating these assumptions

to Expr form is problematic since CVCL may print an assertion in a form that is logically

equivalent, but syntactically different, from the original input. For example, a formula

may have been asserted as x > 0 but is printed as x ≥ 1.

However, there are three useful observations about the assumption format which

enable us to avoid parsing the output of getAssumptionsUsed. First, the formulas

returned by getAssumptionsUsed for a valid query are always a subset of the asserted

formulas. Second, where returns all assumptions in the same order in which they were

asserted, but possibly in a syntactically different form. Third, the assumptions returned

by getAssumptionsUsed are a subset of those returned by where and, moreover, are

syntactically equivalent. Thus, to recover the assumptions used to prove a valid query,

we call where and dumpAssumptions and, for each assumption returned by the latter,

we find its position in the output of where. We use this as an index into our list of Expr

assumptions to recover the corresponding Expr.

3.4.3 Discussion

The CVCL interface required about three weeks for two students to implement. The

majority of the time was spent debugging the part of CVCLProcess which parses the

output from CVCL, which has several tricky corner cases. The output also changed

subtly across releases of CVCL. Thus, deciding whether to implement a command-line

theorem-prover interface significantly depends on how stable and consistent the output

is. Class CLCVCLTheoremProver was straightforward to implement once we figured out

how to map CVCL’s assumption lists to the internal Expr list; our approach should be

applicable to any theorem-prover with output that can be reliably parsed. Finally, class

Chapter 3. Supporting Buffer Overflow Analysis in YASM 64

CVCLExprPrinter was also easy to implement since both the Expr and PIL languages

are simple and the mapping between them is clear. This should be the case with other

theorem-provers, especially since our Expr language is limited to arithmetic expressions

over integers and arrays.

3.5 Ximple Front-End

This section describes the design and implementation of a front-end for YASM which

parses an XML representation of C (Ximple) and constructs a predicate program. It

begins with a background on the Ximple file format and the data structures used to store

intermediate representations of the input program in YASM. It then briefly describes the

implementation of the front-end and concludes with a discussion.

3.5.1 Background

Ximple. Ximple is a type of XML document for representing C programs. It is based

on an internal representation of GCC called Gimple [4]. Arie Gurfinkel has implemented

a plugin for GCC which produces Ximple output for a C program. It produces two files:

one defining datatypes and global declarations and another defining function bodies and

local declarations. Figure 3.4 shows the Ximple document for a small C program. The

major parts of a Ximple document are summarized below:

• Type declarations. All types are indicated with a typeDecl element; the tuid

and name attributes specify a unique identifier and name for the type, respectively.

A typeDecl for a built-in type, i.e., long, int, short, or char, contains a self-

referring typeRef. Whereas a typeDecl for a user-defined typed, i.e., a typedef,

contains a typeRef referring to the base type. In the example, my int is a typedef

for int, so the corresponding typeDecl contains a typeRef with the tuid for int,

namely, 8.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 65

1 typedef int my int ;
2 my int g l oba l ;
3 int fun (int n) {
4 int i ;
5 i f (i < 5)
6 i = i + 1 ;
7 return i ;
8 }

(a)

1 <typeDecl tu id=”8” name=” in t ” uid=”0”>

2 <typeRef name=” in t ” uid=”0” tu id=”8”/>

3 </typeDecl>
4 <typeDecl tu id=”9” name=”my int” uid=”1633”>

5 <typeRef tu id=”8”/>

6 </typeDecl>
7 <g l oba l s >

8 <varDecl name=” g loba l ” uid=”1637”>

9 <type>

10 <typeRef tu id=”9”/>

11 </type>

12 <i n i t >

13 < i n t c s t value=”0”/>

14 </i n i t >

15 </varDecl>
16 </g l oba l s >

(b)

1 <funct i onDec l name=” fun” uid=”1650”>

2 <r e su l tDe c l uid=”1651”>

3 <type>

4 <typeRef tu id=”8” name=” in t ” uid=”0”/>

5 </type>

6 </re su l tDec l >

7 <argLi st >

8 <parmDecl name=”n” uid=”1648”>

9 <type>

10 <typeRef tu id=”8” name=” in t ” uid=”0”/>

11 </type>

12 </parmDecl>
13 </argLi st >

14 <l o c a l s >

15 <varDecl name=” i ” uid=”1811”>

16 <type>

17 <typeRef tu id=”8” name=” in t ” uid=”0”/>

18 </type>

19 </varDecl>
20 </ l o c a l s >

(c)

21 <body>

22 <bb id=”0”>

23 <stmtList>

24 <condExpr>
25 <l t>

26 <var name=” i ” uid=”1811”>

27 < i n t c s t value=”5”/>

28 </l t>

29 <goto>

30 <l abe lD ec l labelUID=”26” uid=”1757 ”/>

31 </goto>

32 <goto>

33 <l abe lD ec l labelUID=”23” uid=”1751 ”/>

34 </goto>

35 </condExpr>
36 </stmtList>

37 <succL i s t>

38 <edge dst=”1” trueValue=” true ” />

39 <edge dst=”2” f a l s eVa lue=” true ” />

40 </succL i s t>

41 </bb>

42 <bb id=”1”>

43 <stmtList>

44 <l abelExpr>

45 <l abe lDe c l labelUID=”26” uid=”1757”/>

46 </labelExpr>

47 <modifyExpr>

48 <var name=” i ” uid=”1811”>

49 <plus>

50 <var name=” i ” uid=”1811”>

51 < i n t c s t value=”1”/>

52 </plus>

53 </modifyExpr>

54 </stmtList>

55 <succL i s t>

56 <edge dst=”2” trueValue=” true ” />

57 </succL i s t>

58 </bb>

59 <bb id=”2”>

60 <stmtList>

61 <l abelExpr>

62 <l abe lDe c l labelUID=”23” uid=”1751”/>

63 </labelExpr>

64 <return>

65 <modifyExpr>

66 <r e s u l t uid=”1651”/>

67 <var name=” i ” uid=”1811”>

68 </modifyExpr>

69 </return>

70 </stmtList>

71 <succL i s t>

72 </succL i s t>

73 </bb>

74 </body>

75 </funct ionDecl >

(d)

Figure 3.4: A simple program (a), its Ximple datatypes and global declarations (b),
Ximple function bodies and local declarations (c), continued (d).

• Identifiers. Every identifier has a unique uid. The identifiers in the example are the

names for types, variables, functions, function parameters, and the (anonymous)

return variable for the fun function.

• Basic blocks. A function body is a list of basic blocks. Each basic block (bb) con-

tains a list of statements (stmtList) and a list of control-flow successors (succList).

A basic block has a single entry point, the first statement, and a single exit point,

the last statement; only the last statement may be a branch. Ximple has two el-

Chapter 3. Supporting Buffer Overflow Analysis in YASM 66

ements for denoting a branch: a two-way branch, condExpr, corresponding to an

if statement in C, and a multi-way branch, switchExpr (not shown in the figure),

corresponding to a switch. Notice that the condExpr is the last (and only) state-

ment in basic block 0. The successor list for basic block 0 indicates the basic blocks

for the true and false targets of the branch. The successor list is redundant with

the goto elements in the condExpr.

CProgram. This class is a representation of a C program. Its main parts are

summarized below:

• CFG table. A map from function uids to their corresponding control-flow graphs

(CFGraph).

• CFGraph. Contains an array of BasicBlocks basic blocks for a given function

indexed by id. Also provides a map from program labels to their corresponding

basic blocks.

• BasicBlock. Contains a list of Exprs, one for each statement in the associated

basic block, in syntactic order. Contains a list of control-flow predecessors and

successors and pointers to the syntactic predecessor and successor blocks.

• CSymbolTable. Contains a map from tuids to types and a map from uids to

variable declarations.

Predicate Program Implementation (PProgram). The structure of the PProgram

constructed for a small program (Figure 3.5(a)) is shown in Figure 3.5(b). Each node

in Figure 3.5(b) is label of a PStmt. The nodes in parentheses denote classes other

than PStmt. Unless a line is labeled, a solid line denotes a syntactic pointer (the next

attribute) and a dashed line denotes a control-flow pointer (the dest attribute). La-

beled lines denote other types of attributes, e.g., the line labeled functionDefs denotes

Chapter 3. Supporting Buffer Overflow Analysis in YASM 67

1 int main (void) {
2 /∗ . . . ∗/
3 fun () ;
4 /∗ . . . ∗/
5 return 0 ;
6 }
7
8 int fun (void) {
9 /∗ . . . ∗/

10 return 0 ;
11 }

(a)

(b)

Figure 3.5: A simple program (a) and its PProgram structure (b).

the functionDefs attribute of the PProgram class. The various classes comprising a

PProgram are summarized below.

Unlike the formal definition of a predicate program in Section 3.2, the implementation

does not contain an explicit control-flow graph. Instead, it is composed of a collection of

statements (PStmts) with the following attributes:

• next: a pointer to the syntactic successor

• dests: a list of control-flow successors; written dest if there is only one successor

• source: a pointer to the corresponding statement in the CProgram

Chapter 3. Supporting Buffer Overflow Analysis in YASM 68

• label: the label of the corresponding statement in the CProgram, if any

• parent: a pointer to the enclosing function

Control-flow graph edges are denoted by the dests attribute. The syntactic ordering of

statements is denoted by the next attribute. The types of PStmts are summarized below.

• AsmtPStmt: a single assignment p := ch(a, b).

• PrllAsmtPStmt: a parallel assignment as a list of AsmtPStmts.

• SkipPStmt: a skip with dest = next.

• GotoPStmt: a skip with an arbitrary dest.

• ConditionalBranchPStmt: a two-way branch guarded by cond with GotoPStmts

trueGoto and falseGoto for the true and false branches, respectively.

• SwitchBranchPStmt: an n-way switch branch with a list of n conditions condi with

a GotoPStmt goto
i

for each branch; there is one distinguished default condition

conddefault and goto gotodefault .

As in a C program, statements in a PProgram are grouped into functions. The

PFunctionDef class represents a function and has the following attributes:

• head: A pointer to the first statement in the body of the function. The body of

a function is a graph of PStmts whose edges are denoted by the next and dest

attributes.

• entry: A pointer to the entry point of the function.

• sel: A pointer to the return selector: a multi-way branch pointing at each call site

of the function.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 69

• returnIndexVar: A variable denoting the index of a call site. All call sites for a

given function are assigned a unique index.

• returnValueVar: A variable denoting the value returned by a non-void function.

The following is a summary of the classes representing function call and return:

• FunctionCallPStmt: A transition from a function call site to the function en-

try point. Composed of a FunctionCallPrologue and a FunctionCallEpilogue.

Includes two attributes:

– callIndex: the call site index.

– returnVar: for a function call on the right-hand-side of an assignment, e.g., y

= f(x), returnVar is a variable storing the return value of the call (y in the

example)

• FunctionCallPrologue: A parallel assignment representing the assignment of ac-

tual parameters to formal parameters and of callIndex to the callee’s returnIndexVar

• FunctionCallEpilogue: A parallel assignment representing the assignment of the

callee’s returnValueVar to returnVar

• ReturnPStmt: A parallel assignment representing the assignment of a returned

value, if any, to the enclosing function’s returnValueVar. Transitions to the return

selector of the function.

• ReturnSelectorPStmt: A multi-way branch targeting the FunctionCallEpilogue

for each call site, guarded by returnIndexVar.

Finally, the PProgram class represents the entire predicate program. It provides three

views of the program:

Chapter 3. Supporting Buffer Overflow Analysis in YASM 70

GCC CXMLParser

CNullExpr
AbstractorPProgram

Source files
Ximple

CProgram

Figure 3.6: Ximple front-end architecture.

• functionDefs: A map from function name to PFunctionDef. Used, for example,

to resolve the target of a function call and to find the main function.

• statementList: A list of all statements in the program. Used, for example, to

iterate over each statement and compute a predicate abstraction.

• labelledStatementMap: A map from labels to the corresponding statements in

the program. Used, for example, to find the target of a goto, or to resolve a label

specified in the property being checked.

3.5.2 Implementation

Figure 3.6 shows the design of the Ximple front-end. First, a modified GCC compiler

takes source and header files and produces a Ximple document. The next two components

in the chain are summarized below.

CXMLParser. The Ximple document is passed to a SAX parser [6] which produces

a corresponding CProgram object. As it parses the Ximple elements, it populates three

tables corresponding to the three parts of a CProgram: a CFG table, a type table, and a

declaration table. It constructs an AST for each Ximple subtree.

CNullExprAbstractor. The CProgram is transformed into a corresponding PProgram

object. This class iterates over each function in the CFG table of the CProgram and con-

structs a corresponding PFunctionDef from the AST of the function.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 71

3.5.3 Discussion

The Ximple front-end, not including the GCC modifications, took a single student about

three weeks to implement. The majority of the implementation effort was spent in map-

ping the CProgram structure to the PProgram structure, which has several anachronisms

due to it originally being designed around shortcomings of the ANTLR-based parser.

The main advantage of using the Ximple representation is that it reduces the arbitrarily

complex syntax of the C language to a relatively small set of XML tags with a simple

structure. Using GCC as the first component of the front-end also takes care of pre-

processing and (source-code) linking, which is a first step towards enabling analysis of

large-scale programs in YASM.

3.6 Predicate Abstraction of Pointer Expressions

This section describes the design and implementation of several components which enable

predicate abstraction of C expressions containing pointers. It begins with a background

on the semantics of pointer expressions as defined by the C language and OldYASM fol-

lowed by a generalized definition of WP which correctly handles pointers. It then defines

the “logical memory model” which improves upon OldYASM’s semantics of pointer ex-

pressions. This is followed by an overview of the implementation of the new components.

The section concludes with an illustration of the revised predicate abstraction process

and a discussion.

3.6.1 Background

The presentation of pointer expression semantics below roughly follows that of Chaki et

al [18].

C semantics. In C, memory is organized as a finite array of words—a word is

typically four bytes. Each word has an address which is its index in the array. For each

Chapter 3. Supporting Buffer Overflow Analysis in YASM 72

variable declaration, C allocates one or more contiguous words and associates the variable

with the index of the first word. Assume the only datatype is integer. Let V be the set

of program variables, M : N → Z map an address to an integer, and B : V → N map

a variable to an address. C distinguishes between lvals and rvals: lvals are expressions

which can appear on the left hand side of an assignment statement, and rvals are those

which can appear on the right. The grammar for C expressions is below, where lvals are

defined by LV and rvals by RV :

LV := V | ∗ RV

RV := Z | LV | &LV | RV op RV

The semantics of rvals are defined by the evaluation function eval :

eval(rv) =

rv if rv ∈ Z

M(B(rv)) if rv ∈ V

M(eval(rv′)) if rv = ∗rv′

M(rv′′) if rv = &rv′ and eval(rv′) = M(rv′′)

eval(rv1) op eval(rv2) if rv = rv1 op rv2

The semantics of an assignment lv := rv are defined in terms of the pre and post state

of the memory, M and M ′ respectively. If lv ∈ V , then

M ′(n) =

eval(rv) if n = B(lv)

M(n) otherwise

and if lv = ∗rv′ for some rval rv′, then

M ′(n) =

eval(rv) if n = eval(rv′)

M(n) otherwise.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 73

Arrays. The meaning of an array expression, e.g., a[5], is obtained by first translating

to the equivalent pointer expression, e.g., ∗(a + 5). An array variable, e.g., a which is

declared int a[6], has a special meaning as an rval:

eval(rv) = B(rv) if rv ∈ V and rv is an array variable.

It is illegal for an array variable to appear without a subscript on the left hand side of

an assignment.

OldYASM semantics. OldYASM assumes all program variables are integers and

lacks the notion of an address. Memory is modeled as a map M : V → Z. The supported

syntax of C expressions is as follows:

LV := V

RV := Z | LV | RV op RV

The semantics of rvals are

eval(rv) =

rv if rv ∈ Z

M(rv) if rv ∈ V

eval(rv1) op eval(rv2) if rv = rv1 op rv2

and the semantics of an assignment lv := rv are

M ′(v) =

eval(rv) if v = lv

M(v) otherwise.

Notice the lack of support for pointer operators. As a workaround, OldYASM rewrites

the C expression &x (address of x) as a variable addr x and *x (dereference x) as a variable

ptr x, which yields unsound results. For example, the model interprets the assignment *x

= 5 as ptr x = 5, i.e., an update to the fictitious variable ptr x. Consider the program

Chapter 3. Supporting Buffer Overflow Analysis in YASM 74

1 int i , ∗ i p ;
2 i = 5 ;
3 ip = &i ;
4 i f (∗ i p != 5)
5 ERROR: ;

(a)

1 int i , p t r ip , add r i ;
2 i = 5 ;
3 ip = addr i ;
4 i f (p t r i p != 5)
5 ERROR: ;

(b)

Figure 3.7: A simple pointer program (a) and its representation in OldYASM (b).

in Figure 3.7(a) in which the line labeled ERROR is unreachable. OldYASM rewrites the

program as shown in Figure 3.7(b), in which ERROR may be reachable since ptr ip may

be non-deterministically initialized to 5.

General WP. In the presence of pointers, the simple definition of WP is incorrect.

To see why, consider the formula

wp(∗p := 1, (i > 0)) = (i > 0)[1/ ∗ p] = (i > 0)

with declarations int i, *p. Intuitively, this says that the assignment to ∗p cannot

affect i. This definition of WP fails to capture the case where *p and i are aliases (p ==

&i), so an assignment to *p does in fact modify i.

To rectify this, we use the generalized WP defined in [13], adapted from Morris’ gen-

eral axiom of assignment [40]. First, define mutable to be one of the following expressions:

• A non-array variable, e.g., i or p with int i, *p.

• An element of an array, e.g., a[1] with int a[].

• A dereference of a pointer, e.g., *p with int *p.

A mutable roughly corresponds to an lval in C: an expression which can appear on

the LHS of an assignment. Next, define the conditional substitution for a predicate p,

assignment x := e, and mutable y in p as

p[x, e, y] = (&x = &y ∧ p[e/y]) ∨ (&x 6= &y ∧ p).

Chapter 3. Supporting Buffer Overflow Analysis in YASM 75

The first disjunct captures the case where x and y are aliased, so y obtains the value

e after the assignment. The second disjunct captures the case where x and y are not

aliased, so the assignment to x leaves y unchanged. Now we define the general WP, where

y1, . . . , yn are the mutables appearing in p, as

wp(x := e, p) = p[x, e, y1][x, e, y2] · · · [x, e, y3].

For the original example, we have

wp(∗p := 1, i > 0)

= (i > 0)[∗p, 1, i]

= (& ∗ p = &i ∧ (i > 0)[1/i]) ∨ (& ∗ p 6= &i ∧ (i > 0))

= (p = &i ∧ true) ∨ (p 6= &i ∧ (i > 0)).

Intuitively, this says that if p points to i, the assignment makes (i > 0) true; otherwise,

the value of (i > 0) depends on its value before the assignment.

3.6.2 Logical Memory Model

This model is derived from that of Chaki et al. [18] with additional input from Arie

Gurfinkel and Tom Hart. It organizes memory as a set of disjoint arrays, called objects,

and associates each program variable with a unique object. This model supports the full

syntax of lvals and rvals. Basic definitions are as follows:

• An object is an array of cells.

• An address is a tuple (object , offset), where offset is a natural number.

• A value is an integer or an address.

The logical memory model (LMM) consists of the following parts, where V is the set

of program variables:

Chapter 3. Supporting Buffer Overflow Analysis in YASM 76

• A set of objects Obj = {obj v|v ∈ V }.

• A set of addresses Addr = Obj × Z.

• A set of values Val = Addr ∪ Z.

• A referencing function ref : Addr → Val .

• An object map obj : V → Obj . The map is subject to the constraint ∀u, v ∈ V :

obj (u) = obj (v) ⇒ u = v. That is, every variable is associated with a unique

object.

Intuitively, this model represents a variable as a unique name of an object, as indicated

by the map obj . Define an additional function base(v : V) = (obj (v), 0), which returns

the first, or “base”, address of the object pointed to by the given variable. The semantics

of rvals are as follows:

eval(rv) =

rv if rv ∈ Z

ref (base(rv)) if rv ∈ V and rv is of type int or int*

base(rv) if rv ∈ V and rv is of type int[]

rv′′ if rv = &rv′ and eval(rv′) = ref (rv′′)

ref (eval(rv′)) if rv = ∗rv′

eval(rv1) op eval(rv2) if rv = rv1 op rv2 if eval(rv1), eval(rv2) ∈ Z

The type of eval(rv) for rv ∈ V depends on the type of rv: if rv is of type int* or int[],

eval(rv) is of type Addr ; if rv is of type int, eval(rv) is of type Z.

The semantics of arithmetic and comparison operations on addresses are as follows:

• eval((obj , off) + rv) = (obj , off + eval(rv)) and similarly for subtraction. Address

arithmetic only changes the offset of an address; there is no operation to change

the object of an address.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 77

• eval((obj 1, off 1) < (obj 2, off 2)) = (obj 1 = obj 2 ∧ off 1 < off 2) and similarly for

equality. Notice that the comparison holds iff the two addresses refer to the same

object.

Finally, the semantics of an assignment lv := rv are defined in terms of the pre and

post state of the referencing function ref ′. If lv ∈ V then

ref ′((o, f)) =

eval(rv) if o = obj (lv)

ref ((o, f)) otherwise

and if lv = ∗rv′ for some rval rv′ then

ref ′((o, f)) =

eval(rv) if (o, f) = eval(rv′)

ref ((o, f)) otherwise

As before, the meaning of an array expression is obtained by first translating to the

equivalent pointer expression.

3.6.3 Implementation

This subsection describes the implementation of the components which together enable

predicate abstraction of pointer expressions. Figure 3.8 shows the architecture of the new

components. The system takes as input a statement s and a predicate p, both of which

may contain pointer expressions, and first computes the generalized WP, φ = wp(s, p),

using MorrisWPComputer. Then, YASM constructs a strengthening of φ by issuing queries

and stack operations to check the validity of c ⇒ φ where c is a cube. The classes

CTheoremProver and CToAddrModel translate between C expressions and their equivalent

expressions in CVCL’s input language according to the logical memory model and symbol

table. Each class is described in more detail below.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 78

Figure 3.8: Extended predicate abstraction architecture.

MorrisWPComputer. Computes the general WP for a given statement and predicate.

Note that the general WP contains at most 2n disjuncts for a predicate with n mutables,

one for each possible combination of aliases between the LHS of the assignment and

the mutables. The implementation includes an optimization which prunes a disjunct

(&x = &y ∧ ·) if the types of x and y are different, in which case they cannot possibly

be aliases.

CTheoremProver. Implements the ITheoremProver interface. Stack and query oper-

ations are passed to CLCVCLTheoremProver in a straightforward manner; CToAddrModel

is used to rewrite C expressions into CVCL expressions conforming to the LMM before

passing them to the theorem-prover. Returns the result of the previous query and, if the

query was valid, the list of assumptions used in its proof.

CToAddrModel. Rewrites a C expression according to the LMM and the given symbol

table. Objects are represented as integers; the object map, obj , is implemented as a map

which associates each variable in the symbol table with a unique positive integer.

The PIL (CVCL’s presentation input language) syntax we use in rewriting C expres-

sions is as follows:

• Declaration: a symbol a is declared as type t as a:t. The built-in types which we

used are below.

• Integer: INT.

• Array: ARRAY ti OF tv where ti is the index type and tv is the element type.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 79

• Function: td -> tr, where td and tr are the domain and range types, respectively.

• Tuple: [t1,t2,...], where ti is a type. The first element of a tuple u is expressed

as u.0, the second as u.1, and so on.

To implement the LMM on top of CVCL’s built-in theories of integers and arrays,

CVCL is initialized as follows:

1. Declare an address type: ADDR:[INT,INT].

2. Declare scalar-ref functions mapping the object and offset parts of an ADDR to a

value. For example, INT REF : ADDR -> INT maps an ADDR to an integer value.

3. Declare array-ref functions mapping the object part of an ADDR to an ARRAY. For

example, INT ARRAY REF : ADDR -> ARRAY INT OF INT maps an ADDR to an array

with integer indices and integer elements.

Using these CVCL declarations, CToAddrModel recursively rewrites a C expression to a

CVCL expression. Rewriting of the base cases is summarized below. Assume the follow-

ing declarations: int i, *p, *q, a[] and the following address map: (i, 1), (p, 2), (a, 3), (q, 4).

The base cases are rewritten as follows:

• &i: [1,0].

• i: INT REF([1,0]).

• p: ADDR REF([2,0]).

• *p: INT REF(ADDR REF([2,0])).

• a: INT ARRAY REF([3,0]).

• a[3]: (INT ARRAY REF([3,0]))[3].

• &a[3]: [[3,0].0, ([3,0].1) + 3], which reduces to [3,3].

Chapter 3. Supporting Buffer Overflow Analysis in YASM 80

1 void main (void) {
2 int ∗x , y ;
3 y = 0 ;
4 x = &y ;
5 i f (∗x > 0)
6 { ERROR: ; }
7 }

Figure 3.9: Simple pointer program.

Whether the scalar- or array-ref function is used is determined by the type of the argu-

ment, which is provided by the symbol table. An exception is thrown if a given expression

has a type violation; e.g., *i yields an exception since i is not a pointer. Pointer arith-

metic and comparison are rewritten following the LMM:

• p + 3: [ADDR REF([2,0]).0, (ADDR REF([2,0]).1) + 3]. Similarly for subtrac-

tion.

• p < q: ((ADDR REF([2,0]).0) = (ADDR REF([4,0]).0)) AND ((ADDR REF([2,0]).1)

< (ADDR REF([4,0]).1)). Similarly for equality.

All other operators, e.g., integer arithmetic and comparison, and operands, e.g., integer

literals, are left as-is.

3.6.4 Illustration

Now we show how the extension translates a query over C expressions to an equivalent

CVCL query, according to the LMM. Consider the program shown in Figure 3.9 and

suppose we are checking for the reachability of the line labeled ERROR. After one CE-

GAR iteration, predicate generation produces the predicate ∗x > 0 to track the branch

condition of the if statement. To obtain the next predicate abstraction requires first

computing the WP of this new predicate over each of the program statements. The in-

teresting case is wp(x = &y, ∗x > 0). The mutables appearing in ∗x > 0 are x and ∗x.

The computation of the generalized WP is shown in Figure 3.10.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 81

wp(x = &y, ∗x > 0)

= (∗x > 0)[x,&y, x][x,&y, ∗x]

= ((&x = &x ∧ (∗x > 0)[&y/x]) ∨ (&x 6= &x ∧ (∗x > 0)))[x,&y, ∗x] Identity &x = &x

= ((∗x > 0)[&y/x])[x,&y, ∗x]

= (∗&y > 0)[x,&y, ∗x] Identity *&y = y

= (y > 0)[x,&y, ∗x]

= (&x = & ∗ x ∧ (y > 0)[&y, ∗x]) ∨ (&x 6= & ∗ x ∧ (y > 0)) x is of type *int

= &x 6= & ∗ x ∧ (y > 0)

= y > 0

Figure 3.10: Example generalized WP computation.

Notice the use of type information provided by the symbol table to determine that

&x 6= &∗x: x is of type *int whereas ∗x is of type int, so the addresses of these two ex-

pressions cannot be equal under the LMM. Our current predicate set is simply {∗x > 0}

and, since y > 0 is not in this set, YASM now attempts to compute a strengthening

of y > 0. Suppose the address map generated by CToAddrModel is {(x, 1), (y, 2)} and

that the first query checked by CTheoremProver is ∗x > 0 ⇒ y > 0. CToAddrModel

translates the query as follows: INT REF(ADDR REF([1, 0])) > 0 ⇒ INT REF([2, 0]) > 0.

CLCVCLTheoremProver returns invalid, intuitively because there are no constraints be-

tween [1,0] and [2,0], and similarly for ¬(∗x > 0) ⇒ y > 0. Proceeding in this fashion,

statement x = &y is abstracted as (∗x > 0) := ∗, i.e., in this abstraction, the value of

(∗x > 0) is unknown after the statement x = &y. In a subsequent CEGAR iteration,

YASM adds predicate y > 0 to the set by recomputing the WP as shown above. YASM

them abstracts x = &y using the new predicate set {∗x > 0, y > 0}, obtaining the ab-

straction (∗x > 0) := choice(y > 0,¬(y > 0)), (y > 0) := choice(y > 0,¬(y > 0)), which

is precise enough to determine the (un)reachability of ERROR.

Chapter 3. Supporting Buffer Overflow Analysis in YASM 82

3.6.5 Discussion

Differences from the C memory model. An important distinction between the

C memory model and the LMM is that C treats memory as a single array of cells.

So, whereas objects are disjoint in the LMM, objects are laid out contiguously in C.

Therefore, it is possible in C to access cells of one object by accessing another object

with a sufficiently large offset. However, since pointer arithmetic in the LMM cannot

change the object to which a pointer refers, YASM may incorrectly analyze programs

which use memory in this manner.

C also permits other unstructured uses of memory. In particular, C permits type

casting in which memory declared as one type can be evaluated as a different type. A

common example of this is casting an array of 4 chars to an int. This often occurs when

data is copied “off the wire”, e.g., from a network socket, byte-by-byte into an array and

then subsequently used as more specific datatypes. Our implementation of the LMM

currently does not support type casting, specifically because CVCL itself does not allow

for an array of bytes to be treated as a (mathematical) integer. It may be possible to

overcome this limitation if we model integers as 32-bit words instead of mathematical

integers.

Limitations and future work. Our implementation of MorrisWPComputer uses a

basic optimization to prune disjuncts where two mutables do not have the same type.

It may be beneficial to use alias analysis to further prune disjuncts where two mutables

are known to be unaliased at a particular program statement. In general, any external

information, e.g., as provided by a dataflow analysis, could be useful in reducing the WP

before computing a strengthening. For example, [34] uses octagon invariants, specifying

arithmetic constraints over program variables, to reduce WP expressions.

The CTheoremProver implementation currently lacks support for language features

such as structs, unions, and bitwise operations. CVCL provides support for these con-

structs, so it is possible to extend YASM to support them as well. The first steps are to

Chapter 3. Supporting Buffer Overflow Analysis in YASM 83

extend the Expr language to cover these constructs and to specify axioms and rewriting

rules for operators such as field selection, in the case of structs and unions.

3.7 Related Work

Memory models in SMCs

Slam and Blast. Slam [14] and Blast [16] are two CEGAR SMCs for C which use a

memory model similar to the LMM with an important exception that is not documented.

Specifically, whereas YASM models an address as a pair (object, offset), these SMCs

identify an address with an object. Pointer arithmetic, which in YASM modifies the

offset component of an address, has no effect in the Slam/Blast model. Likewise, array

indexes are discarded, so all array offsets, e.g., a[1], a[2], and a[3], are interpreted as

the first element of the array, i.e., a[0]. Since all information about pointer offsets is

discarded, these SMCs are unsuitable for checking buffer overflows.

Copper. Copper [18] is a CEGAR SMC for C which defines a memory model similar

to the LMM used in YASM. It defines two additional functions specifically for buffer

overflow detection. Function alloc : Obj → Z maps an object to its allocated size, i.e.,

the number of cells in the underlying array. Function size : Obj → Z maps an object

to the number of cells occupied from the beginning of the array up to and including the

first occurence of the “null” character, i.e., size returns the length of the null-terminated

string occupying a given object.

These functions are used in Copper’s transformation rules to check for buffer over-

flows in the string functions of the standard C library. For example, the function call

strcpy(p,q) is translated as

assume(size(obj (p)) = size(obj (q)) − (q − base(obj (q))) + (p− base(obj (p)))).

Intuitively, this models the behaviour of strcpy as copying the substring pointed to by

Chapter 3. Supporting Buffer Overflow Analysis in YASM 84

q into the array offset pointed by p. Additional rules are defined for the string functions

strncpy, strcat, and strncat.

Copper also defines transformation rules for the dynamic memory allocation functions,

malloc and free. For example, the statement

p = malloc(15)

is translated as

assume(alloc(obj (p))) = 15.

This is used in conjunction with instrumentation to check the safety of string operations.

For example, an assertion is inserted after the strcpy call above:

assert(size(obj (p))) ≤ alloc(obj (p))

which asserts that the (string-)length of p does not exceed its allocated size.

The advantage of using high-level semantics of standard library functions is that it

enables Copper to avoid the potentially expensive analysis of the bodies of these functions.

However, notice that the interpretation of strcpy shown above ignores the value of the

string copied from q to p. If a property depends on these values, Copper may produce

unsound results. This may explain Copper’s poor performance on the Zitser suite [53],

as documented in [18], since many of the testcases depend on the values of specific string

elements.

Intermediate representations for C

CIL. CIL (C Intermediate Language) [41] produces a canonical representation of a C

program using a small subset of the C language. For example, all loop statements are

transformed into while loops; statements with multiple side-effects, e.g., x = y++, are

transformed into single side-effect statements, e.g., x = y; y = y + 1; declaration and

Chapter 3. Supporting Buffer Overflow Analysis in YASM 85

1 void main (void)
2 {
3 char buf [2] ;
4 char ∗ buf ext ;
5 char ∗des t ;
6 char input [1 0] ;
7 char ∗ s r c ;
8
9 buf ext = &(buf [1]) ;

10 des t = &(buf [0]) ;
11 s r c = &(input [0]) ;
12 while (1) {
13 i f (des t > buf ext)
14 ERROR: ;
15 ∗des t = ∗ s r c ;
16
17 i f (∗ s r c == 0)
18 goto END;
19
20 des t = des t + 1 ;
21 s r c = s r c + 1 ;
22 }
23 END: ;
24 }

Figure 3.11: A string copy loop.

initialization statements are separated, e.g. int i = 5; becomes int i; i = 5;. CIL

also provides AST and CFG views of a given program. As such, CIL simplifies subsequent

program analysis because it reduces the number of forms to be handled. Unfortunately,

we were unable to make full use of CIL since its programmatic interface is only available

in Ocaml.

GCC-XML. GCC-XML [3], developed by Brad King, is an extension for the GCC

compiler which produces an XML “description” of a C++ program. It differs from the

Ximple representation in that GCC-XML discards function bodies and only produces

information about declarations, i.e., variable and function declarations. The GCC-XML

code may be a useful guide for extending Ximple to handle C++ constructs such as

classes and templates.

3.8 Conclusion

Current Status. YASM can successfully check the reachability of the ERROR statement

in the program shown in Figure 3.11. However, at larger buffer sizes the strengthening

Chapter 3. Supporting Buffer Overflow Analysis in YASM 86

computation (apparently) does not terminate, due to a bug in the theorem-prover compo-

nent. It is unclear whether the bug is in CVCL or in our interface. In the future we plan

to run YASM on the Verisec benchmark in order to uncover bugs in our implementation

and to identify opportunities for optimization.

Future Work. Beyond debugging YASM and evaluating it on our benchmark suite,

there are many possibilities for future development. As mentioned above, using the

Ximple interface enables YASM to analyze large-scale programs. Since large programs

tend to be organized into relatively small functions, the Ximple representation could

enable compositional analysis by not only storing the syntactic information about the

source program, but the results of previous analyses as well. For example, Ximple could

be used to store pre- and post-condition annotations for each function. From our initial

work with YASM, we found that the strengthening computation dominates the overall

cost of analysis. As such, it is likely beneficial to develop strategies for either reducing

the number or complexity of queries sent to the theorem prover. For example, SLAM [15]

uses a very simple strategy which appears to be effective for real-world programs: limit

the size of cubes to contain at most three conjuncts. It may also be beneficial to modify

the theorem-prover or the interface to exploit patterns that occur in the queries generated

by YASM. Typically the queries are of trivial complexity, e.g., x > 0∧y > 0 ⇒ x+y > 0,

and may be amenable to much simpler techniques, such as pattern matching, than full-

blown theorem-proving.

Chapter 4

Conclusion

4.1 Summary

We conducted an assessment of several publically available CEGAR SMC implementa-

tions and found that all the tools had problems parsing and interpreting real-world code

and generally performed poorly in analyzing the testcases. Based on our findings, we

constructed a benchmark containing 298 testcases derived from 22 vulnerabilities in 12

real-world programs. We evaluated the benchmark on the SMC SatAbs and found that

it produced a wide range of behaviour from the tool. The evaluation confirmed that our

testcase construction process produces a set of testcases of increasing complexity. The

evaluation also showed that SatAbs’ performance is independent of buffer size in analyz-

ing certain forms of safe testcases. We defined a complexity measure, trace length, based

on the program dependency graph and implemented a CodeSurfer plugin to compute the

measure for a given program. Our evaluation of the measure shows a correlation between

trace length and CEGAR analysis complexity.

We implemented several extensions to YASM to support the analysis of real-world

C programs containing pointers and arrays. To the front-end we added a parser for

an XML representation of C programs. The back-end was extended with an interface

87

Chapter 4. Conclusion 88

for a command-line theorem prover. Finally, the predicate abstraction component was

extended to handle pointer expressions. The extensions enable YASM to check for buffer

overflows in a program containing a string-copy loop.

4.2 Limitations

Given the results of our benchmark evaluation, it is unclear whether CEGAR is a suitable

analysis technique for buffer overflow analysis. However, it is one of the few known

techniques which is capable of verification, which is one of our analysis requirements. In

certain cases CEGAR can efficiently verify that a program is safe.

On the other hand, our insistence on this requirement may be unfounded: it is possible

that an analysis that is only capable of efficient overflow detection is sufficient to ensure

security. Our focus on SMC was biased by our work on YASM and we might have

otherwise selected a different technique to study, such as directed testing or explicit-state

model-checking, which have been shown to be effective at buffer overflow detection (but

not verification) [39, 17].

4.3 Future Plans

Our initial assessment of existing SMCs and development of the benchmark was done in

isolation, that is, without consulting the developers of the tools we were using. We are

currently working with the authors of SatAbs to debug the testcases (and their tool).

In the future, we plan to discuss the results of our assessment with the rest of the tool

developers in the hopes of expanding the applicability of the benchmark.

The majority of the work in creating the benchmark was spent on manual simplifica-

tion of the testcases. It may be possible to implement an automatic testcase construction

procedure using a technique for systematically modifying program syntax, similar to that

of Kratkiewicz [35]. This would provide a clearer, less labour-intensive, and more easily

Chapter 4. Conclusion 89

replicable construction process.

It is clear from the results of the benchmark and our work on YASM that buffer-size-

dependence is the most significant limitation to CEGAR analysis of buffer overflows. A

promising approach to overcoming this limitation is efficient CEGAR-based analysis of

loops, such as [36, 37]. The existing techniques for loop analysis are only able to handle

toy programs, so this is an open area for research.

Bibliography

[1] “ANTLR Parser Generator”. http://www.antlr.org/.

[2] “Counting Source Lines of Code (SLOC)”. http://www.dwheeler.com/sloc/.

[3] “GCC-XML”. http://www.gccxml.org/.

[4] “GNU, the GNU Compiler Collection”. http://gcc.gnu.org/.

[5] “Java Native Interface”. http://java.sun.com/j2se/1.4.2/docs/guide/jni/.

[6] “SAX: Simple API for XML”. http://saxproject.org/.

[7] “SWIG: Simplified Wrapper and Interface Generator”. http://www.swig.org/.

[8] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools,

Chapter 10. Addison Wesley, 1988.

[9] N. Amla, R. P. Kurshan, K. L. McMillan, and R. Medel. “Experimental Analysis

of Different Techniques for Bounded Model Checking”. In Proceedings of 9th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’03), pages 34–48, 2003.

[10] D. Atiya, N. Catao, and G. Lüettgen. “Towards a Benchmark for Model Checkers of

Asynchronous Concurrent Systems”. In Fifth International Workshop on Automated

Verification of Critical Systems: AVOCs, 2005.

90

Bibliography 91

[11] G. Balakrishnan, R. Gruian, T. W. Reps, and T. Teitelbaum. “CodeSurfer/x86-

A Platform for Analyzing x86 Executables”. In Proceedings of 14th International

Conference on Compiler Construction (CC’05), pages 250–254, 2005.

[12] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. On-

drusek, S. K. Rajamani, and A. Ustuner. “Thorough Static Analysis of Device

Drivers”. In Proceedings of EuroSys’06, pages 73–85. ACM Press, 2006.

[13] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. “Automatic Predicate

Abstraction of C Programs”. In Proceedings of the ACM SIGPLAN 2001 Conference

on Programming language design and implementation (PLDI ’01), pages 203–213,

New York, NY, USA, 2001. ACM Press.

[14] T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for

Model Checking C Programs”. In Proceedings of 7th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01),

volume 2031 of LNCS, pages 268–283, April 2001.

[15] T. Ball and S. Rajamani. “The SLAM Toolkit”. In Proceedings of 13th International

Conference on Computer-Aided Verification (CAV’01), volume 2102 of LNCS, pages

260–264, July 2001.

[16] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. “Checking Memory Safety

with Blast”. In Proceedings of Formal Aspects in Software Engineering (FASE’05),

pages 2–18. Springer, 2005.

[17] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. “EXE:

Automatically Generating Inputs of Death”. In Proceedings of 13th ACM Conference

on Computer and Communications Security (CCS’06), pages 322–335. ACM Press,

2006.

Bibliography 92

[18] S. Chaki and S. Hissam. “Certifying the Absence of Buffer Overflows”. Technical

Report CMU/SEI-2006-TN-030, SEI, CMU, September 2006.

[19] M. Chechik, B. Devereux, and A. Gurfinkel. “χChek: A Multi-Valued Model-

Checker”. In Proceedings of 14th International Conference on Computer-Aided Ver-

ification (CAV’02), volume 2404 of LNCS, pages 505–509, Copenhagen, Denmark,

July 2002. Springer.

[20] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[21] E. Clarke and D. Kroening. “ANSI-C Bounded Model Checker”. User manual,

Carnegie Mellon University, August 2006.

[22] E. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-C Programs”.

In Proceedings of 10th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS’04), volume 2988 of LNCS, pages

168–176. Springer, March 2004.

[23] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. “Predicate Abstraction of

ANSI–C Programs using SAT”. Formal Methods in System Design (FMSD), 25:105–

127, September–November 2004.

[24] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. “SATABS: SAT-Based Pred-

icate Abstraction for ANSI-C”. In Tools and Algorithms for the Construction and

Analysis of Systems (TACAS 2005), volume 3440 of LNCS, pages 570–574. Springer

Verlag, 2005.

[25] CVE — Common Vulnerabilities and Exposures. http://cve.mitre.org/.

[26] M. B. Dwyer, S. Person, and S. G. Elbaum. “Controlling Factors in Evaluating Path-

sensitive Error Detection Techniques”. In Proceedings of SIGSOFT Conference on

Foundations of Software Engineering (FSE’06), pages 92–104, 2006.

Bibliography 93

[27] D. Evans and D. Larochelle. “Improving Security Using Extensible Lightweight

Static Analysis”. IEEE Software, 19(1):42–51, 2002.

[28] P. Godefroid. “Software Model Checking: The VeriSoft Approach”. Technical Re-

port ITD-03-44189G, Bell Labs, March 2003.

[29] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, and S. K. Rajamani.

“SYNERGY: A New Algorithm for Property Checking”. In Proceedings of SIGSOFT

Conference on Foundations of Software Engineering (FSE’06), pages 117–127. ACM

Press, 2006.

[30] A. Gurfinkel and M. Chechik. “Why Waste a Perfectly Good Abstraction?”. In

Proceedings of 12th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems (TACAS’06), volume 212-226 of LNCS, page 3920,

Vienna, Austria, April 2006. Springer.

[31] A. Gurfinkel, O. Wei, and M. Chechik. “Yasm: A Software Model-Checker for

Verification and Refutation”. In Proceedings of 18th International Conference on

Computer-Aided Verification (CAV’06), volume 170-174 of LNCS, page 4144, Seat-

tle, WA, August 2006. Springer.

[32] K. Havelund and T. Pressburger. “Model Checking Java Programs Using Java

Pathfinder”. International Journal on Software Tools for Technology Transfer, 1999.

[33] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. “Lazy Abstraction”. In Pro-

ceedings of 29th Symposium on Principles of Programming Languages (POPL’02),

pages 58–70. ACM, January 2002.

[34] H. Jain, F. Ivancic, A. Gupta, I. Shlyakhter, and C. Wang. “Using Statically

Computed Invariants Inside the Predicate Abstraction and Refinement Loop”.

In Proceedings of 18th International Conference on Computer-Aided Verification

(CAV’06), pages 137–151. Springer, 2006.

Bibliography 94

[35] K. Kratkiewicz and R. Lippmann. “Using a Diagnostic Corpus of C Programs to

Evaluate Buffer Overflow Detection by Static Analysis Tools”. In Proceedings of

2005 Workshop on the Evaluation of Software Defect Detection Tools (BUGS’05),

June 2005. http://www.cs.umd.edu/∼pugh/BugWorkshop05/.

[36] D. Kroening, A. Groce, and E. Clarke. “Counterexample Guided Abstraction Re-

finement via Program Execution”. In Proceedings of Int. Conf. on Formal Eng.

Methods, pages 224–238, November 2004.

[37] D. Kroening and G. Weissenbacher. “Counterexamples with Loops for Predicate

Abstraction”. In Proceedings of 18th International Conference on Computer-Aided

Verification (CAV’06), volume 4144 of LNCS, pages 152–165. Springer Verlag, 2006.

[38] R. Lemos. “Browsers Feel the Fuzz”. www.securityfocus.com/news/11387, April

2006.

[39] R. Majumdar and R.-G. Xu. “Directed Test Generation Using Symbolic Gram-

mars”. In Proceedings of Joint 15th European Software Engineering Conference and

ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/SIGSOFT FSE’07), pages 553–556, 2007.

[40] J. M. Morris. “A General Axiom of Assignment”. Theoretical Foundations of Pro-

gramming Methodology, pages 25–34, 1982.

[41] G. Necula, S. McPeak, S. Rahul, and W. Weimer. “CIL: Intermediate Language

and Tools for Analsysis and Transformation of C Programs”. In Proceedings of 11th

International Conference on Compiler Construction (CC’02), volume 2304 of LNCS,

pages 213–228, Grenoble, France, April 2002. Springer.

[42] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. “CCured: Type-

Safe Retrofitting of Legacy Software”. ACM TOPLAS, 27(3):477–526, 2005.

Bibliography 95

[43] A. One. “Smashing the Stack for Fun and Profit”, 1995.

http://insecure.org/stf/smashstack.html.

[44] R. Pelanek. “Model Classifications and Automated Verification”. In Formal Methods

for Industrial Critical Systems (FMICS’07), pages 15–30, 2007.

[45] K. Sen, D. Marinov, and G. Agha. “CUTE: a Concolic Unit Testing Engine for C”.

In Proceedings of the 13th joint meeting of the European Software Engineering Con-

ference and ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE’05), pages 263–272. ACM Press, 2005.

[46] S. E. Sim, R. C. Holt, and S. M. Easterbrook. “On Using a Benchmark to Evalu-

ate C++ Extractors”. In Proceedings of 10th International Workshop on Program

Comprehension (IWPC’02), pages 114–126. IEEE Computer Society, 2002.

[47] F. Tip. “A Survey of Program Slicing Techniques”. Journal of Programming Lan-

guages, 3(3), 1995.

[48] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. “ITS4: A Static Vulnerability

Scanner for C and C++ Code”. In Proceedings of 16th Annual Computer Security

Applications Conference (ACSAC’00), pages 257–, 2000.

[49] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. “A First Step Towards Auto-

mated Detection of Buffer Overrun Vulnerabilities”. In Proceedings of the Network

and Distributed System Security Symposium (NDSS’00), pages 3–17, February 2000.

[50] J. Whaley and M. S. Lam. “Cloning-Based Context-Sensitive Pointer Alias Analysis

Using Binary Decision Diagrams”. In Proceedings of the ACM SIGPLAN 2004

Conference on Programming language design and implementation (PLDI’04), pages

131–144. ACM, 2004.

Bibliography 96

[51] J. Wilander and M. Kamkar. “A Comparison of Publicly Available Tools for Static

Intrusion Prevention”. In Proceedings of 7th Nordic Workshop on Secure IT Systems,

pages 68–84, November 2002.

[52] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. “The SPLASH-2

Programs: Characterization and Methodological Considerations”. In Proceedings

of the 22nd Annual International Symposium on Computer Architecture (ISCA’95),

pages 24–36, 1995.

[53] M. Zitser, R. Lippmann, and T. Leek. “Testing Static Analysis Tools Using Ex-

ploitable Buffer Overflows from Open Source Code”. In Proceedings of SIGSOFT

Conference on Foundations of Software Engineering (FSE’04), pages 97–106. ACM

Press, 2004.

Appendix A

Benchmark evaluation data

The results of the benchmark evaluation are presented in the table on the following pages.

The results have been filtered, as discussed in Section 2.7, to only include claims which

were checked successfully at all buffer sizes. Each row of the table shows the result for a

single testcase. For example, the first row shows the results for vulnerability CVE-2004-

0940 from Apache, referred to as “Apache 1”, in the testcase iter1 prefixLong arr. The

next six columns show the measurements and performance results for the safe variant of

the testcase, while the following six columns are for the unsafe variant. LOC shows the

number of lines of code in the testcase, as computed by sloc [2]. Trace is the average

maximum trace length computed by the CodeSurfer plugin. The next four columns show

the average number of predicates generated by SatAbs to check all relevant claims in the

testcase at buffer sizes one through four. Tests which SatAbs failed to check successfully

are denoted by a dash.

97

A
p
p
e
n
d
ix

A
.

B
e
n
c
h
m
a
r
k

e
v
a
l
u
a
t
io

n
d
a
t
a

98

Safe Unsafe
Buffer size Buffer size

Program Vulnerability Testcase LOC Trace 1 2 3 4 LOC Trace 1 2 3 4

Apache 1 CVE-2004-0940 iter1 prefixLong arr 83 25.25 40.25 45.75 49.5 53.25 77 25 52.67 59.67 62.33 68.33
Apache 1 CVE-2004-0940 iter1 prefixShort arr 46 24.25 29.75 35.25 39 42.75 40 22.67 39.33 43.67 49.33 52
Apache 2 CVE-2006-3747 simp1 27 8 5 5 5 5 27 8 4 10 18 27
Apache 2 CVE-2006-3747 simp2 33 17 59 59 59 59 33 17 73 96 115 134
Apache 2 CVE-2006-3747 simp3 42 24 71 71 71 71 42 24 89 113 132 151
Apache 2 CVE-2006-3747 strncmp 32 37 37 37 37 32 36 42 50 59
Apache 2 CVE-2006-3747 full 45 24 107 107 107 107 45 24 — — — —
Apache 2 CVE-2006-3747 full ptr 44 24 130 130 130 130 44 24 — — — —
Bind 1 CA-1999-14 sig-both 48 27 13 13 13 78 48 27 — — — —
Bind 1 CA-1999-14 sig-expand 45 25 13 13 13 78 45 25 — — — —
Bind 2 CVE-2001-0011 small 56 0.67 11 11 11 11 56 1 9 11 16 24
Bind 2 CVE-2001-0011 med 90 0.67 14 14 14 14 90 1 12 14 19 27
Bind 2 CVE-2001-0011 big 191 1.33 41 41 41 41 191 2 39 41 46 54
Edbrowse CVE-2006-6909 no strcmp 49 5 — — — — 49 7.5 55 57 62 73
Edbrowse CVE-2006-6909 strchr 19 5 — — — — 19 7.5 30 32 37 48
LibGD CVE-2007-0455 gd no entities 87 4 41 62 80 95 86 4 14 28 40 48
LibGD CVE-2007-0455 gd simp 71 4 21 31 41 51 70 4 19 29 39 49
LibGD CVE-2007-0455 gd full 151 4 — — — — 150 4 14 20 37 73
MADWiFi CVE-2006-6332 no sprintf 32 10 28 28 59 59 31 8 — — — —
MADWiFi CVE-2006-6332 interproc 44 10 28 59 59 92 43 8 — — — —
NetBSD CVE-2006-6652 glob1-bounds 8 1 2 2 2 2 8 1 2 2 2 2
NetBSD CVE-2006-6652 glob2-int 57 20.25 2 2 2 2 57 20.25 — — — —
NetBSD CVE-2006-6652 glob2-anyMeta int 34 11 26 47 64 84 34 11 11 19 30 42
NetBSD CVE-2006-6652 glob2-noAnyMeta int 31 8 22 41 56 74 31 8 9 16 26 37
NetBSD CVE-2006-6652 glob2-loop 16 5 38 61 80 99 16 5 26 47 70 89
NetBSD CVE-2006-6652 glob3-int 75 19.33 2 2 2 2 75 19.33 4 11 15 19
OpenSER CVE-2006-6749 cases1 stripNone arr 32 6.67 20 19 19 19 29 6 10 19 19 37
OpenSER CVE-2006-6749 cases1 stripSpacesStart arr 33 8 22 20 20 20 30 7.33 11 28 45 45
OpenSER CVE-2006-6749 cases1 stripSpacesEnd arr 33 8.67 28 27 27 27 30 8 16 27 48 48
OpenSER CVE-2006-6749 cases1 stripSpacesBoth arr 34 10 30 28 28 28 31 9.33 — — — —
OpenSER CVE-2006-6749 cases1 stripFullStart arr 34 10 26 22 22 22 31 9.33 13 26 55 55
OpenSER CVE-2006-6749 cases1 stripFullEnd arr 34 11.33 36 35 35 35 31 10.67 22 35 64 64
OpenSER CVE-2006-6749 cases1 stripFullBoth arr 36 14.67 42 38 38 38 33 14 — — — —
OpenSER CVE-2006-6749 cases2 stripNone arr 33 6.67 25 24 24 24 30 6 13 24 24 54
OpenSER CVE-2006-6749 cases2 stripSpacesStart arr 34 8 27 25 25 25 31 7.33 14 33 52 61
OpenSER CVE-2006-6749 cases2 stripSpacesEnd arr 34 8.67 33 32 32 32 31 8 19 32 55 55
OpenSER CVE-2006-6749 cases2 stripSpacesBoth arr 35 10 35 33 33 33 32 9.33 — — — —
OpenSER CVE-2006-6749 cases2 stripFullStart arr 35 10 31 27 27 27 32 9.33 16 43 62 62
OpenSER CVE-2006-6749 cases2 stripFullEnd arr 35 11.33 41 40 40 40 32 10.67 25 40 71 71
OpenSER CVE-2006-6749 cases2 stripFullBoth arr 37 14.67 47 43 43 43 34 14 — — — —

A
p
p
e
n
d
ix

A
.

B
e
n
c
h
m
a
r
k

e
v
a
l
u
a
t
io

n
d
a
t
a

99

Safe Unsafe
Buffer size Buffer size

Program Vulnerability Testcase LOC Trace 1 2 3 4 LOC Trace 1 2 3 4

OpenSER CVE-2006-6749 cases3 stripNone arr 35 8.67 27 31 26 26 32 8 21 31 31 57
OpenSER CVE-2006-6749 cases3 stripSpacesStart arr 36 10 39 39 39 39 33 9.33 22 43 41 60
OpenSER CVE-2006-6749 cases3 stripSpacesEnd arr 36 10.67 40 32 39 39 33 10 19 32 32 92
OpenSER CVE-2006-6749 cases3 stripSpacesBoth arr 37 12 39 39 39 39 34 11.33 34 47 54 99
OpenSER CVE-2006-6749 cases3 stripFullStart arr 37 12 39 35 35 39 34 11.33 23 58 70 70
OpenSER CVE-2006-6749 cases3 stripFullEnd arr 37 13.33 39 38 43 38 34 12.67 25 70 84 84
OpenSER CVE-2006-6749 cases3 stripFullBoth arr 39 16.67 61 64 64 60 36 16 — — — —
Sendmail 1 CVE-1999-0047 arr one char no test 22 6.5 5 6 6 6 20 4.5 4 8 10 12
Sendmail 1 CVE-1999-0047 arr one char med test 33 11.75 9 9 9 9 33 11 9 13 15 17
Sendmail 1 CVE-1999-0047 arr one char heavy test 35 23 13 13 13 13 35 23 15 19 21 23
Sendmail 1 CVE-1999-0047 ptr one char no test 21 6.5 10 19 19 19 19 4.5 2 2 2 2
Sendmail 1 CVE-1999-0047 ptr one char med test 30 14.25 18.67 22.33 22.33 22.33 30 13.25 — — — —
Sendmail 1 CVE-1999-0047 ptr one char heavy test 32 24.5 24.67 28.33 28.33 28.33 32 24.5 — — — —
Sendmail 1 CVE-1999-0047 arr two chars no test 29 12.33 6 7.67 8.33 8.33 25 8.33 — — — —
Sendmail 1 CVE-1999-0047 arr two chars med test 49 22.29 11.17 11.5 12.33 11.5 49 21.29 7 12.5 16 19.5
Sendmail 1 CVE-1999-0047 arr two chars heavy test 54 32 17.83 18.17 18.17 18.17 54 31.14 12 22.5 26 29.5
Sendmail 1 CVE-1999-0047 ptr two chars no test 27 12.33 11 14 19.5 30.5 23 8.33 2 2 2 2
Sendmail 1 CVE-1999-0047 ptr two chars med test 43 22.29 19 22.5 25.75 25.75 43 21.14 — — — —
Sendmail 1 CVE-1999-0047 ptr two chars heavy test 48 30.5 24 28.33 32.67 32.67 48 30.5 — — — —
Sendmail 1 CVE-1999-0047 arr three chars no test 36 18 7 8.33 9 10 30 12.25 — — — —
Sendmail 1 CVE-1999-0047 arr three chars med test 67 26.9 11.29 11.86 12.57 11.86 67 25.5 15 12 20 23
Sendmail 1 CVE-1999-0047 arr three chars heavy test 75 46.4 19.29 21.14 21.14 20.14 75 45 31 28 36 39
Sendmail 1 CVE-1999-0047 ptr three chars no test 33 18 12 14.67 18 27 27 12.25 2 2 2 2
Sendmail 1 CVE-1999-0047 ptr three chars med test 58 27.7 19 22.6 27.4 27.4 58 26.4 — — — —
Sendmail 1 CVE-1999-0047 ptr three chars heavy test 66 40.22 29 33.25 37 37 66 40.89 — — — —
Sendmail 2 CVE-2002-1337 close-angle ptr no test 29 8 11 25 44 57 29 8 8 22 33 44
Sendmail 2 CVE-2002-1337 close-angle ptr one test 39 11 12 28 50 65 39 11 9 25 39 52
WU-ftpd CVE-1999-0368 curpath-simple 26 0.67 — — — — 26 1 17 21 25 29
WU-ftpd CVE-1999-0368 namebuf-iter ints simp 61 0 26 26 26 26 62 9.75 — — — —
WU-ftpd CVE-1999-0368 namebuf-iter ints 82 0 77 77 77 77 82 4.5 — — — —
WU-ftpd CVE-1999-0368 linkpath-strcpy strcat 43 0 46.5 52.5 57.5 62.5 37 0.17 29 34.5 39 43.5
WU-ftpd CVE-1999-0368 namebuf-strcpy strcat 30 0 75 94 113 126 30 0 52 59 71 78

Appendix B

Codesurfer plugin source code

The source code of the CodeSurfer plugin, written in the STk dialect of Scheme, is in-

cluded below. As described in Section 2.4.4, given an SDG (automatically computed

by Codesurfer for a given program) the plugin computes the maximum trace length for

each statement labeled “VULN” and outputs the average maximum length. The main

statement is at the bottom; each major function is preceded by a comment (denoted by

the “;” character) containing a brief description.

1 (de f i n e (pdg−vertex−>pdg−vertex−set v)
2 (l et ((vset (pdg−vertex−set−create)))
3 (pdg−vertex−set−put ! vset v)
4 vset))
5
6 ; Returns the po s s i b l y empty l a b e l o f pdg−vertex v e r t e x .
7 (de f i n e (pdg−vertex− label ver tex)
8 (l et ((str−out ””))
9 (pdg−vertex−set−traverse

10 (cfg−edge−set−>pdg−vertex−set (pdg−vertex−cfg−predecessors ver tex))
11 (lambda (v)
12 (i f (and (eq? (pdg−vertex−kind v) ’ l a b e l) (pdg−vertex−characters v))
13 (set ! str−out (pdg−vertex−characters v)))))
14 str−out))
15
16 (de f i n e (print−pdg−vertex ver tex)
17 (begin
18 (format #t ”˜a ” (pdg−vertex−characters ver tex))
19 (format #t ” <˜a>” (pdg−vertex− label ver tex))))
20
21 (de f i n e (print−pdg−vertex−set vset)
22 (pdg−vertex−set−traverse
23 vset
24 (lambda (v)
25 (print−pdg−vertex v)
26 (d i s p l ay ” ”))))

100

Appendix B. Codesurfer plugin source code 101

27
28 (de f i n e (pr int−pdg−vertex− l i s t l)
29 (for−each
30 (lambda (pv)
31 (print−pdg−vertex pv)
32 (d i s p l ay ” , ”))
33 l))
34
35 (de f i n e (csucc vset)
36 (s− succes sor s vset ’ (c on t r o l ())))
37
38 (de f i n e (cpred vset)
39 (s−predeces sor s vset ’ (c on t r o l ())))
40
41 (de f i n e (dsucc vset)
42 (s− succes sor s vset ’ (data ())))
43
44 (de f i n e (dpred vset)
45 (s−predeces sor s vset ’ (data ())))
46
47 ; Returns con t ro l and data predecessors o f a l l v e r t i c e s in v se t .
48 (de f i n e (cdpred vset)
49 (pdg−vertex−set−union
50 (dpred vset)
51 (cpred vset)))
52
53 ; Returns the r e s u l t o f app ly ing fn to each pdg−vertex in pvset , f i l t e r i n g out
54 ; v e r t i c e s in pvse t and non−expression v e r t i c e s . Function fn i s pdg−vertex−set
55 ; −> pdg−vertex−set .
56 (de f i n e (img fn pvset)
57 (l et ((pvset−out (pdg−vertex−set−create)))
58 (pdg−vertex−set−traverse
59 (fn pvset)
60 (lambda (pv)
61 (i f
62 (and

63 (l et ((kind (pdg−vertex−kind pv)))
64 (or

65 (eq? kind ’ exp r e s s i on)
66 (eq? kind ’ contro l−po int)
67 (eq? kind ’ jump)
68 (eq? kind ’ formal−out)
69 (eq? kind ’ formal− in)
70 (eq? kind ’ actual−out)
71 (eq? kind ’ actual− in)))
72 (not (pdg−vertex−set−member? pvset pv)))
73 (begin
74 (pdg−vertex−set−put ! pvset−out pv)
75))))
76 pvset−out))
77
78 (de f i n e (cfg−edge−set−>pdg−vertex−set c e s e t)
79 (l et ((pvset (pdg−vertex−set−create)))
80 (cfg−edge−set−traverse c e s e t
81 (lambda (pv e l)
82 (pdg−vertex−set−put ! pvset pv)))
83 pvset))
84
85 (de f i n e (pdg−vertex−set−cfg−predecessors pvset− in)
86 (l et ((pvset−out (pdg−vertex−set−create)))
87 (pdg−vertex−set−traverse pvset− in
88 (lambda (pv)
89 (set ! pvset−out
90 (pdg−vertex−set−union pvset−out
91 (cfg−edge−set−>pdg−vertex−set
92 (pdg−vertex−cfg−predecessors pv))))
93))
94 pvset−out))

Appendix B. Codesurfer plugin source code 102

95
96 (de f i n e (actua l− i n s ca l l s i t e−pv)
97 (l et ((out−set (pdg−vertex−set−create)))
98 (pdg−vertex−set−traverse
99 (csucc (pdg−vertex−>pdg−vertex−set ca l l s i t e−pv))

100 (lambda (v)
101 (i f (eq? (pdg−vertex−kind v) ’ actual− in)
102 (pdg−vertex−set−put ! out−set v))))
103 out−set))
104
105 ; Returns the po s s i b l y empty pdg−vertex−set o f a l l pdg−ver t i ce s wi th l a b e l
106 ; conta in ing l a b e l as a sub s t r i n g .
107 (de f i n e (l abe l l ed−pdg−ver t i ce s l a b e l)
108 (l et ((out−set (pdg−vertex−set−create)))
109 (for−each
110 (lambda (pdg)
111 (pdg−vertex−set−traverse
112 (pdg−vert i ces pdg)
113 (lambda (v)
114 (i f (s t r i ng− f i nd? l a b e l (pdg−vertex− label v))
115 (i f (eq? (pdg−vertex−kind v) ’ c a l l− s i t e)
116 (set ! out−set (pdg−vertex−set−union out−set (actua l− i n s v)))
117 (pdg−vertex−set−put ! out−set v))))))
118 (sdg−pdgs))
119 out−set))
120
121 (de f i n e (l i s t−p r e f i x l n)
122 (i f (or (eq? n 0) (null ? l))
123 ’ ()
124 (cons (car l) (l i s t−p r e f i x (cdr l) (− n 1)))))
125
126 ; Returns l eng t h o f l ong e s t s u f f i x o f path , using fn as the successor func t ion .
127 ; Search s tops on a branch i f a c y c l e i s de t e c t e d .
128 ; Stops i f MAX−PATHS paths have been exp lored .
129 (de f i n e (d f s fn path)
130 (i f (< num−paths MAX−PATHS)
131 (l et ∗ ((t a i l (car (reverse path)))
132 (image (img fn (pdg−vertex−>pdg−vertex−set t a i l)))
133 (f i l t e r ed− image
134 (l et ((out−set (pdg−vertex−set−create)))
135 (pdg−vertex−set−traverse
136 image
137 (lambda (v)
138 (i f (not (member v path))
139 (pdg−vertex−set−put ! out−set v))))
140 out−set))
141 (max−suffix− len 0))
142 (for−each
143 (lambda (v)
144 ; tai l−>v doesn ’ t form a cycle−−got an ex t ens ion
145 (l et ((new−path (append path (l i s t v))))
146 (set ! max−suffix− len
147 (max max−suffix− len (+ 1 (d f s fn new−path))))))
148 (l i s t− p r e f i x (pdg−vertex−set−>l i s t f i l t e r ed− image) MAX−BRANCH))
149
150 (i f (eq? max−suffix− len 0) ; reached a l e a f / c y c l e
151 (begin
152 (set ! num−paths (+ num−paths 1))
153))
154 max−suffix− len)
155 0)) ; empty path
156
157 (de f i n e (max−length l l)
158 (i f (null ? l l)
159 0
160 (max (length (car l l)) (max−length (cdr l l)))))
161
162 (de f i n e num−paths 0)

Appendix B. Codesurfer plugin source code 103

163
164 ; MAIN STATEMENT. Ca l l s d f s on each pdg v e r t e x l a b e l l e d ”VULN”. Pr in t s r e s u l t s
165 ; to s tdout .
166 (l et ((max−length−sum 0)
167 (path−sets 0))
168 (pdg−vertex−set−traverse
169 (l abe l l ed−pdg−ver t i ce s ”VULN”)
170 (lambda (v)
171 (set ! num−paths 0)
172 (set ! max−length−sum (+ max−length−sum (d f s cdpred (l i s t v))))
173 (set ! path−sets (+ path−sets 1))))
174 (format #t ”#pathsets : ˜a\n” path−sets)
175 (format #t ”#paths : ˜a\n” num−paths)
176 (format #t ”max l ength sum : ˜a\n” max−length−sum)
177 (format #t ”avg . max l ength : ˜a\n” (/ max−length−sum path−sets)))
178
179 (qu i t)

