
Model Checking with Multi-Valued Temporal Logics

Marsha Chechik Steve Easterbrook Benet Devereux
Department of Computer Science

University of Toronto
6, King’s College Rd, Toronto, Canada M5S 3H5
fchechik,sme,benetg@cs.toronto.edu

Abstract

Multi-valued logics support the explicit modeling of un-
certainty and disagreement by allowing additional truth
values in the logic. Such logics can be used for verifi-
cation of dynamic properties of systems where complete,
agreed upon models of the system are not available. This
paper presents a symbolic model checker for multi-valued
temporal logics. The model checker works for any multi-
valued logic whose truth values form a quasi-boolean lat-
tice. Our models are generalized Kripke structures, where
both atomic propositions and transitions between states
may take any of the truth values of a given multi-valued
logic. Properties to be model checked are expressed in CTL,
generalized with a multi-valued semantics. The design of
the model checker is based on the use of MDDs, a multi-
valued extension of Binary Decision Diagrams.

1. Introduction

In the past few years, model checking [10] has become
established as one of the most effective automated tech-
niques for analyzing correctness of software and hardware
designs. A model checker checks a finite-state system
against a correctness property expressed in a propositional
temporal logic such as LTL or CTL. These logics can ex-
press safety (e.g. “No two processes can be in the crit-
ical section at the same time”) and liveness (e.g. “Ev-
ery job sent to the printer will eventually print”) proper-
ties. Model-checking has been effectively applied to rea-
soning about correctness of hardware, communication pro-
tocols, software requirements, etc. A number of industrial
model checkers have been developed, including SPIN [16],
SMV [18], and Mur� [11].

Despite their variety, existing model-checkers are typi-
cally limited to reasoning in classical logic. However, there
are a number of problems for which classical logic is insuf-
ficient. One of these is reasoning under uncertainty. This

can occur either when complete information is not known
or cannot be obtained (e.g., during requirements analysis),
or when this information has been removed (abstraction).
Classical model-checkers typically deal with uncertainty by
creating extra states, one for each value of the unknown
variable and each feasible combination of values of known
variables. However, this approach adds significant extra
complexity to the analysis.

Classical reasoning is also insufficient for models that
contain inconsistency. Models may be inconsistent because
they combine conflicting points of view, or because they
contain components developed by different people [13].
Conventional reasoning systems cannot cope with inconsis-
tency because the presence of a single contradiction results
in trivialization — anything follows from A ^ :A. Hence,
faced with an inconsistent description and the need to per-
form automated reasoning, we must either discard informa-
tion until consistency is achieved again, or adopt a non-
classical logic [17].

Multi-valued logics provide a solution to both reason-
ing under uncertainty and under inconsistency. For exam-
ple, we can use “unknown” and “no agreement” as logic
values. In fact, model-checkers based on three-valued and
four-valued logics have already been studied. For exam-
ple, [5] used a three-valued logic for interpreting results of
model-checking with abstract interpretation, whereas [15]
used four-valued logics for reasoning about abstractions of
detailed gate or switch-level designs of circuits.

For reasoning about dynamic properties of systems, we
need to extend existing modal logics to the multi-valued
case. Fitting [14] explores two different approaches for do-
ing this: the first extends the interpretation of atomic for-
mulae in each world to be multi-valued; the second also
allows multi-valued accessibility relations between worlds.
The latter approach is more general, and can readily be ap-
plied to the temporal logics used in model checking [9].

We use different multi-valued logics to support differ-
ent types of analysis. For example, to model information
from multiple sources, we may wish to keep track of the ori-

gin of each piece of information, or just the majority vote,
etc. Thus, rather than restricting ourselves to any particu-
lar multi-valued logic, our approach is to extend classical
symbolic model-checking to arbitrary multi-valued logics,
as long as conjunction, disjunction and negation of the log-
ical values are well defined. The model, together with the
description of the desired multi-valued logic and the set of
correctness properties, expressed in CTL, become input to
our model-checker, �chek. �chek returns the truth value(s)
that each property has in the initial state(s).

The paper is organized as follows. Section 2 defines the
quasi-boolean logics we use in this work, and shows how
we specify each logic as a lattice. Section 3 introduces CTL
model checking. Section 4 describes our multi-valued gen-
eralization of CTL model checking. Section 5 outlines the
implementation of our model checker. We conclude the pa-
per with a summary of results in section 6.

2. Quasi-Boolean Logics

Our approach to modeling makes use of an entire family
of multi-valued logics. Since our goal is model-checking as
opposed to theorem proving, we do not need to give a com-
plete axiomatization for each logic. Rather, we simply give
a semantics by defining conjunction, disjunction and nega-
tion on the truth values of the logic, and restrict ourselves
to those logics where these operations are well-defined, and
where conjunction and disjunction are idempotent, commu-
tative, etc. Such properties are guaranteed by ensuring that
the truth values of the logic form a finite, quasi-boolean lat-
tice. In this section we give a brief introduction to quasi-
boolean lattices.

Definition 1. A lattice is a partial order (L, v) for which
a unique greatest lower bound and least upper bound, de-
noted a u b and a t b, respectively, exist for each pair of
elements (a, b).
a u b and a t b are referred to as meet and join, respec-

tively. a v b means that “b is at least as true as a”. The
following properties hold of lattices:

a t a = a

a u a = a (idempotence)

a t b = b t a

a u b = b u a (commutativity)

a t (b t c) = (a t b) t c

a u (b u c) = (a u b) u c (associativity)

Definition 2. A lattice is complete if it includes a meet and
a join for for every subset of its elements. Every complete
lattice has a top (>) and a bottom (?).

? = uL (? characterization)

> = tL (> characterization)

We only use lattices that have a finite number of elements.
Every finite lattice is complete.

Definition 3. A finite lattice (L, v) is quasi-boolean [2]
(also called De Morgan [12]) if there exists a unary op-
erator : defined for it, with the following properties (a; b
are elements of L):

:(a u b) = :a t :b (De Morgan)

:(a t b) = :a u :b

a v b , :a w :b (: antimonotonic)

::a = a (: involution)

Thus, :a is a quasi-complement of a.

The family of multi-valued logics we use are exactly
those logics whose truth values form a quasi-boolean lat-
tice. Meet and join in the lattice of truth values define con-
junction and disjunction respectively, and we assume that
an appropriate negation operation is defined that has the
properties required by Definition 3. The identification of a
suitable negation operator is greatly simplified by the obser-
vation that quasi-boolean lattices are symmetric about their
horizontal axes:

Definition 4. A lattice (L, v) is horizontally-symmetric if
there exists a bijective function H : L ! L such that for
every pair a; b 2 L,

a v b , H(a) w H(b) (order� embedding)

H(H(a)) = a (H involution)

Theorem 1. [9] Horizontal symmetry is a necessary and
sufficient condition for a lattice to be quasi-boolean with
:a = H(a) for each element of the lattice.

The negation of each element is then defined as its image
through horizontal symmetry1. Finally, we define an opera-
tor ! as follows:

a! b � :a t b (de�nition of !)

3. CTL Model-Checking

CTL model-checking is an automatic technique for ver-
ifying properties expressed in a propositional branching-
time temporal logic called Computational Tree Logic
(CTL) [10]. The system is defined by a Kripke structure,
and properties are evaluated on a tree of infinite computa-
tions produced by the model of the system. The standard
notation M; s j= P indicates that a formula P holds in a
state s of a model M . If a formula holds in the initial state,
it is considered to hold in the model.

A Kripke structure consists of a set of states S, a transi-
tion relationR � S�S, an initial state s02S, a set of atomic
propositions A, and a labeling function L : S ! P(A).
R must be total, i.e, 8s 2 S; 9t 2 S : (s; t) 2 R. If a
state sn has no successors, we add a self-loop to it, so that
(sn; sn)2R. For each s2S, the labeling function provides
a list of atomic propositions which are True in this state.

1Note that we can still choose how to negate any elements that fall on
the axis of symmetry.

CTL is defined as follows:
1. Every atomic proposition a 2 A is a CTL formula.
2. If ' and are CTL formulae, then so are :', ' ^
 , ' _ , EX', AX', EF', AF', EG', AG',
E['U], A['U].

The logic connectives :, ^ and _ have the usual meanings.
The temporal quantifiers have two components: A and E
quantify over paths, while X , F , U and G indicate “next
state”, “eventually (future)”, “until”, and “always (glob-
ally)”, respectively. Hence, AX' is true in state s if ' is
true in the next state on all paths from s. E['U] is true
in state s if there exists a path from s on which ' is true at
every step until becomes true. Formally,

M; s0 j= a i� a 2 L(s0)

M; s0 j= :' i� M; s0 6j= '

M; s0 j= ' ^ i� M; s0 j= ' ^ M; s0 j=

M; s0 j= ' _ i� M; s0 j= ' _ M; s0 j=

M; s0 j= EX' i� 9t2S; (s0; t)2R ^ M; t j= '

M; s0 j= AX' i� 8t2S; (s0; t)2R!M; t j= '

M; s0 j= E['U] i� 9 some path s0; s1; :::; s:t:

9i; i � 0 ^ M; si j= ^

8j; 0 � j < i!M; sj j= '

M; s0 j= A['U] i� for every path s0; s1; :::;

9i; i � 0 ^ M; si j= ^

8j; 0 � j < i!M; sj j= ':

where the remaining operators are defined as follows:
AF (') � A[>U'] EF (') � E[>U']

AG(') � :EF (:') EG(') � :AF (:')

Definitions of AF and EF indicate that we are using a
“strong until”, that is, E['U] andA['U] are true only if
 eventually occurs.

4. Multi-Valued Model Checking Semantics

In this section we give the semantics used in our multi-
valued CTL model checker [9].

4.1. Defining the Model

A state machine M is a multi-valued Kripke (�Kripke)
structure if M = (S; S0; R; I; A; L), where:
� L is a quasi-boolean logic given as a lattice (L, v).
� A is a (finite) set of atomic propositions
� S is a (finite) set of states. States are not explicitly

labeled – each state is uniquely identified by its vari-
able/value mapping. Thus, two states cannot have the
same mapping.

� S0 � S is the non-empty set of initial states.
� Each transition (s; t) in M has a logical value in L.

Thus, R : S � S ! L is a total function assigning
a truth value from the logic L to each possible tran-
sition between states, including self-loops. Note that
a �Kripke structure is a completely connected graph.
Furthermore, each state must have at least one non-
false transition coming out of it.

:AX' = EX(:') (: “next”)
A[?U'] = E[?U'] = ' (? “until”)
A['U] = _ (' ^AXA['U]

^EXA['U]) (AU �xpoint)

E['U] = _ (' ^EXE['U]) (EU �xpoint)

Figure 1. Properties of CTL operators.

� I : S � A ! L is a total function that maps a state s
and an atomic proposition (variable) a to a truth value
` of the logic. For simplicity we assume that all our
variables are of the same type, ranging over the values
of the logic. For a given variable a, we will write I as
Ia : S ! L.

For symbolic model checking, we compute partitions of the
state space w.r.t. a variable a using I�1

a : L ! 2
S . A

partition has the following properties:

8a 2 A;8`i; `j 2 L :

i 6= j ! (I�1
a (`i) \ I

�1
a (`j) = ;) (disjointness)

8a 2 A;8s 2 S; 9` 2 L : s 2 I�1
a (`) (cover)

4.2. Multi-Valued CTL

Here we give semantics of CTL operators on a �Kripke
structure M over a quasi-boolean logic L. We will refer
to this language as multi-valued CTL, or �CTL. L is de-
scribed by a finite, quasi-boolean lattice (L;v), and thus the
conjunction u, disjunction t and negation : operations are
available. In extending the CTL operators, we want to en-
sure that the expected CTL properties, given in Figure 1, are
preserved. Note that the AU fixpoint includes an additional
conjunct, EXA[fUg]. This preserves a “strong until” se-
mantics for states that have no outgoing> transitions [4].

We first extend the domain of the interpretation function
I to any CTL formula ', using P'(s) to denote the truth
value that formula ' takes in state s. If s 2 S is a state,
a 2 A is a variable, and ' and are CTL formulae:

Pa(s) � I(s; a) P'^ (s) � P'(s) ^ P (s)

P:'(s) � :P'(s) P'_ (s) � P'(s) _ P (s)

We proceed by definingEX . In standard CTL, this oper-
ator is defined using the existential quantification over next
states. We define quantification for our multi-valued logics
using conjunction and disjunction for universal and existen-
tial quantification, respectively. This treatment of quantifi-
cation is standard [1, 19]. EX is defined by:

PEX'(s) �
W
t2S(R(s; t) ^ P'(t))

The definitions of AU , EU and AX are given using the
properties in Figure 1:

PAX'(s) � :PEX:'(s)

=
V
t2S(R(s; t)! P'(t))

PE['U](s) � P (s) _ (P'(s) ^ PEXE['U](s))

PA['U](s) � P (s) _ (P'(s) ^ PAXA['U](s)

^PEXA['U](s))

The remaining CTL operators,AF ('), EF ('), AG('),
EG(') are the abbreviations for A[>U'], E[>U'],
:EF (:'), :AF (:'), respectively.

5. Symbolic Model-Checker

In this section we describe the design of our symbolic
multi-valued model checker, �chek. �chek takes as input
a model M taking its variable and transition values from a
lattice L, and a �CTL formula '. It produces as output a
total mapping from L to the set S of states, indicating in
which states ' takes each value `. This is simply P �1

' , the
inverse of the valuation function defined in section 4.2; and
thus, the task of the model checker is to compute P' given
the transition function R.

Since states are assignments of values to the variables,
an arbitrary ordering imposed on A allows us to consider a
state as a vector in Ln, where n = jAj. Hence P' and R
are functions of type Ln ! L and L2n ! L respectively.
Such functions are represented within the model checker
by multi-valued decision diagrams (MDDs), a multi-valued
extension of the binary decision diagrams (BDDs) [3].

5.1. MDDs

MDDs [21] have been extensively studied, mostly in the
field of circuit design. The logics used in that literature are
given by total orders (such as the integers modulo n) rather
than quasi-boolean lattices, but this is a minor difference.
Also, as far as we know, they have not been used in formal
verification before. For brevity, we illustrate MDDs with an
example rather than giving a complete theoretical treatment.

Definition 5. [21] Given a finite domainD, the generalized
Shannon expansion of a function f : Dn ! D, with respect
to the first variable in the ordering, is

f(a0; a1; : : : ; an�1)!

f0(a1; : : : ; an�1); : : : ; fjDj�1(a1; : : : ; an�1)

where fi = f [a0=di], the function obtained by substituting
the literal di 2 D for a0 in f . These functions are called
cofactors.

Definition 6. Assuming a finite set D, and an ordered set
of variables A, multi-valued decision diagram (MDD) is a
tuple (V;E; var; child; image; value) where

� V = Vt[Vn is a set of nodes, where Vt and Vn indicate
a set of terminal and non-terminal nodes, respectively;

� E � V � V is a set of directed edges;
� var : Vn ! A is a variable labeling function.
� child : Vn ! D ! V is an indexed successor function

for nonterminal nodes;
� image : V ! 2

D is a total function that maps a node
to a set of values reachable from it;

� value : Vt ! D is a total function that maps each
terminal node to a logical value.

Although D may be any finite set, for our purposes we are
interested only in lattices; so instead of D we will refer to
elements of the finite lattice (L;v) modeling a logic.

For example, consider the function f = x1 ^ x2, with
`0 = F; `1 = M; `2 = T. The MDD built from this expres-
sion, and its lattice, are shown in Figure 2. The diagram is
constructed by Shannon expansion, first with respect to x1,
and then (for each cofactor of f) with respect to x2. The
dashed arrows indicate f and its cofactors, and also the co-
factors of the cofactors.

MF T

x1

x2 x2 f2

f2,2

f1,1 f2,1f1,2 ,,

M

T

F

b)a)

T

F

F M

FTMM

f 0

f

T

f1
, f , f1,0 2,0

Figure 2. (a) A three-valued lattice. (b) The
MDD for f = x1 ^ x2 in this lattice.

Note that in general we do not distinguish between a sin-
gle node in an MDD and the subgraph rooted there, refer-
ring to both indiscriminately as u. Let ~s = (s0; : : : ; sn�1).
The function computed by an MDD is denoted f u : Ln !
L, and is defined recursively as follows:

if u2Vt; f
u
(~s) = value(u) (terminal constants)

if u2Vn; f
u
(~s) =f childs

i
(u)

(s0; :::; si�1; si+1; :::; sn�1)

where ai = var(u); ~s 2 Ln (cofactor expansion)

Efficiency of decision diagrams, binary or multi-valued,
comes from the properties of reducedness and orderedness.
Orderedness is also required for termination of many algo-
rithms on the diagrams. We perform various logical opera-
tions on the functions represented by MDDs: equality, con-
junction, disjunction, negation, and existential quantifica-
tion. MDDs have the same useful property as BDDs: given
a variable ordering, there is precisely one MDD representa-
tion of a function. This allows for constant-time checking
of function equality.

Theorem 2. Canonicity [21] For any finite lattice (or fi-
nite set) L, any nonnegative integer n, and any function
f : Ln ! L, there is exactly one reduced ordered MDD
u such that fu = f(a0; : : : ; an�1).

In the boolean case, BDDs allow for constant-time ex-
istential quantification, since any node which is not a con-
stant ? is satisfiable. In order to implement multi-valued
quantification efficiently, we introduce the image attribute
of MDD nodes, which stores the possible outputs of func-
tions. The following properties hold for image:

u 2 Vt) image(u) = fvalue(u)g

u 2 Vn) image(u) =
S
`2L image(child`(u))

Definition 7. A function f is `-satisfiable if some input
yields ` as an output, or, equivalently, f�1

(`) 6= ;:

(fu)�1
(`) 6= ; , ` 2 image(u)

(9~s 2 Ln : fu(~s)) = (
W
~s2Ln f

u
(~s)) = (

W
`2image(u) `)

The second property is called existential quantification.
To demonstrate how existential quantification works, we

refer to the example in Figure 2, and compute 9x2 : x1^x2.
There are two nodes labeled with x2 to be dealt with. By in-
spection we see that image(f1) = fF;Mg and image(f2) =

fF;M;Tg. So f1 is replaced with the terminal nodeF_M =

M, and f2 with the terminal node F_M_T = T.
Algorithms for manipulating BDDs are extensible to the

multi-valued case, provided they do not use optimizations
that depend on a two-valued boolean logic (e.g. com-
plemented edges [20]). The differences are discussed
in [6]. The public methods required for model checking
are: Build, to construct an MDD based on a function table;
Apply, to compute ^;_ and : of MDDs; Quantify, to ex-
istentially quantify over the primed variables; and AllSat

to retrieve the computed partition P �1
' (L). Build ensures

orderedness of MDDs while they are being constructed, and
Apply preserves it. An additional function, Prime, primes
all of the variables in an MDD. Table 1 shows the running
times of MDD operations used by the model checker in
terms of the size of the MDD.

5.2. The Model Checker

The model checking algorithm is given in Figure 3. The
function EX(P') computes PEX' symbolically; QUntil

carries out the fixed-point computation of bothAU andEU .
AX' is computed as :EX:'. EG, AG, EF , andAF are
not shown in this Figure, but could be added as cases and
defined in terms of calls to EX, QUntil, and Apply.

The running time of �chek is dominated by the fixpoint
computation of QUntil. The proof of termination of this
algorithm is based on each step of QUntil being a mono-
tonic lattice operator (for the proof, see [9]). The total num-
ber of steps is bounded above by jLjn � h (h is the height
of the lattice L), and the time of each step is dominated
by the time to compute the EXTerm and AXTerm, which
is O(jLj2n); so the worst-case running time for �chek is
O(jLj3n � h), where h is the height of the lattice. Exper-
imental results [6] suggest that in the average case, each
step’s running time is O(jLj2n�2

), for an average termina-
tion time of O(jLj3n�2 � h � jpj), where jpj is the size of
the �CTL formula.

At first glance, MDDs appear to perform significantly
worse than BDDs (O(jLjn) versusO(2n) in the worst case).

function EX(P')

return Quantify(Apply(^; R; Prime(P')); n)

function QUntil(quanti�er; P'; P)

QU0 = P
repeat

if (quantifier is A)
AXTermi+1 := Apply(:; EX(Apply(:; QUi)))

EXTermi+1 := EX(QUi))

else
AXTermi+1 := P'
EXTermi+1 := EX(Apply(:; QUi)))

QUi+1 := Apply(_; P ; (Apply(^; P';

Apply(^;EXTermi+1;AXTermi+1))))

until QUi+1 = QUi
return QUn

procedure MC(p;M)

Case
p2A: return Build(p)

p=:': return Apply(:, MC(';M))
p=' ^ : return Apply(^, MC(';M), MC(;M))
p=' _ : return Apply(_, MC(';M), MC(;M));
p=EX': return EX(MC(';M))

p=AX': return Apply(:; EX(Apply(:; MC(M;'))))

p=E['U]: return QUntil(E; MC(';M); MC(;M))

p=A['U]: return QUntil(A; MC(';M); MC(;M))

Figure 3. The multi-valued symbolic model
checking algorithm.

However, our multi-valued logics compactly represent in-
completeness in a model. For example, suppose we have a
model with n states and wish to differentiate between p of
those states (p� n) by introducing an extra variable a. In
classical model checking this uncertainty can only be han-
dled by duplicating each of n� p states (one for each value
of a). In fact, most of these states are likely to be reachable;
thus, the size of the state space nearly doubles. In the multi-
valued case, the reachable state-space will increase at most
by p states. Thus, we expect that often our model checker
would perform as well as the classical one, and on some
problems even better. Further, our use of multi-valued log-
ics allow us to elegantly model “unknown” transitions and
inconsistencies.

6. Conclusion and Future Work

Multi-valued logics can be useful for describing mod-
els that contain incomplete information or inconsistency.
In this paper we presented an extension of classical CTL
model checking to reasoning about arbitrary quasi-boolean
logics. We also described an implementation of a symbolic

MDD Method Running Time Notes
MakeUnique(var; child) O(1) Hash-table lookup.
Build(f) O(jLjn) O(size of the function table to convert to MDD).
Apply(op; u1; u2) O(ju1jju2j) Implemented using dynamic programming. The worst-case is

pairwise conjunction of every node in u1 with every node in u2.
Quantify(u; i) O(juj) Depth-first traversal of the graph.
Prime(u) O(juj) Same as above.

Table 1. MDD methods used for model checking, and their running times.

multi-valued model checker �chek.
We plan to extend the work presented here in a number

of directions to ensure that �chek can be effectively applied
to reasoning about non-trivial systems. For example, in this
paper we concentrated our attention on a purely symbolic
model checker. The union, intersection, and quantification
were computed using MDD operations. Alternatively, one
can build a table-driven model checker, where such opera-
tions are table lookups, with similar running times. How-
ever, lattice-theoretic results can be used to significantly
optimize the table-driven model checker [7]. We are also
working on generalizing our symbolic algorithm to verifi-
cation of properties expressed in CTL*, and on automata-
theoretic multi-valued model-checking [8].

Acknowledgements: We thank members of the University
of Toronto formal methods reading group, and in particu-
lar Ric Hehner, Albert Lai, Arie Gurfinkel, Victor Petrovykh
and Christopher Thompson-Walsh. Financial support was
provided by NSERC and CITO.

References

[1] N. Belnap. “A Useful Four-Valued Logic”. In Dunn and Ep-
stein, editors, Modern Uses of Multiple-Valued Logic, pages
30–56. Reidel, 1977.

[2] L. Bolc and P. Borowik. Many-Valued Logics. Springer-
Verlag, 1992.

[3] R. E. Bryant. “Symbolic Boolean manipulation with ordered
binary-decision diagrams”. Computing Surveys, 24(3):293–
318, September 1992.

[4] T. Bultan, R. Gerber, and C. League. “Composite Model
Checking: Verification with Type-Specific Symbolic Rep-
resentations”. ACM Transactions on Software Engineering
and Methodology, 9(1):3–50, January 2000.

[5] M. Chechik. “On Interpreting Results of Model-Checking
with Abstraction”. CSRG Technical Report 417, Univer-
sity of Toronto, Department of Computer Science, Septem-
ber 2000.

[6] M. Chechik, B. Devereux, and S. Easterbrook. “Implement-
ing a Multi-Valued Symbolic Model-Checker”. In Proceed-
ings of TACAS’01, April 2001.

[7] M. Chechik, B. Devereux, S. Easterbrook, A. Lai, and
V. Petrovykh. “Efficient Multiple-Valued Model-Checking
Using Lattice Representations”. Submitted for publication,
January 2001.

[8] M. Chechik, B. Devereux, and A. Gurfinkel. “Model-
Checking Infinite State-Space Systems with Fine-Grained
Abstractions Using SPIN”. Submitted for publication,
February 2001.

[9] M. Chechik, S. Easterbrook, and V. Petrovykh. “Model-
Checking Over Multi-Valued Logics”. In Proceedings of
FME’01, March 2001.

[10] E. Clarke, E. Emerson, and A. Sistla. “Automatic Verifi-
cation of Finite-State Concurrent Systems Using Temporal
Logic Specifications”. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

[11] D. Dill. “The Mur� Verification System”. In R. Alur and
T. Henzinger, editors, Computer-Aided Verification Com-
puter, volume 1102 of Lecture Notes in Computer Science,
pages 390–393, New York, N.Y., 1996. Springer-Verlag.

[12] J. Dunn. “A Comparative Study of Various Model-Theoretic
Treatments of Negation: A History of Formal Negation”.
In D. Gabbay and H. Wansing, editors, What is Negation.
Kluwer Academic Publishers, 1999.

[13] S. Easterbrook and M. Chechik. “A Framework for Multi-
Valued Reasoning over Inconsistent Viewpoints”. In Pro-
ceedings of International Conference on Software Engineer-
ing (ICSE’01), May 2001.

[14] M. Fitting. “Many-Valued Modal Logics”. Fundamenta In-
formaticae, 15(3-4):335–350, 1991.

[15] S. Hazelhurst. Compositional Model Checking of Partially
Ordered State Spaces. PhD thesis, Department of Computer
Science, University of British Columbia, 1996.

[16] G. Holzmann. “The Model Checker SPIN”. IEEE Transac-
tions on Software Engineering, 23(5):279–295, May 1997.

[17] A. Hunter. “Paraconsistent Logics”. In D. Gabbay and
P. Smets, editors, Handbook of Defeasible Reasoning and
Uncertain Information, volume 2. Kluwer, 1998.

[18] K. McMillan. Symbolic Model Checking. Kluwer Aca-
demic, 1993.

[19] H. Rasiowa. An Algebraic Approach to Non-Classical Log-
ics. Studies in Logic and the Foundations of Mathematics.
Amsterdam: North-Holland, 1978.

[20] F. Somenzi. “Binary Decision Diagrams”. In M. Broy and
R. Steinbrüggen, editors, Calculational System Design, vol-
ume 173 of NATO Science Series F: Computer and Systems
Sciences, pages 303–366. IOS Press, 1999.

[21] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. “Algo-
rithms for Discrete Function Manipulation”. In IEEE In-
ternational Conference on Computer-Aided Design, pages
92–95, 1990.

