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Abstract

Synthesis of behaviour models from software develop-
ment artifacts such as scenario-based descriptions or re-
quirements specifications not only helps significantly reduce
the effort of model construction, but also provides a bridge
between approaches geared toward requirements analysis
and those geared towards reasoning about system design at
the architectural level. However, the models favoured by
existing synthesis approaches are not sufficiently expressive
to describe both universal constraints provided by require-
ments and existential statements provided by scenarios. In
this paper, we propose a novel synthesis technique that con-
structs behaviour models in the form of Modal Transition
Systems (MTS) from a combination of safety properties and
scenarios. MTSs distinguish required, possible and pro-
scribed behaviour, and their elaboration not only guaran-
tees the preservation of the properties and scenarios used
for synthesis but also supports further elicitation of new re-
quirements.

1 Introduction

Event-based behavioural models such as Labelled Tran-
sition Systems (LTSs) are convenient formalisms for mod-
elling and reasoning about system behaviour at the archi-
tectural level. They describe a system as a set of inter-
acting components where each component is modelled as
a state machine, and interactions between components oc-
cur through shared events. These models provide a basis
for a wide range of automated analysis techniques, such as
model-checking and simulation.

One of the serious limitations of behaviour modelling
and analysis is the complexity of building the models in the
first place. Behavioural model construction remains a diffi-
cult, labour-intensive task that requires considerable exper-
tise. To address this, a wide range of techniques for sup-
porting (semi-)automated synthesis of behavioural models
have been investigated. In particular, synthesis from declar-
ative requirements specifications (e.g., [11, 13, 21, 16, 8])
or from scenarios and use cases (e.g., [10, 20, 9, 3]), has

been studied extensively.

Synthesis from declarative specifications such as goal
models describing the requirements of a system has a num-
ber of advantages. Firstly, automatic synthesis delivers
executable models early in the requirements process, en-
abling a wide range of validation techniques such as ani-
mations, simulations, and scenario-based techniques. Sec-
ondly, it provides a bridge between two modelling worlds:
one well suited for requirements analysis, the another that
is well suited for architectural and high-level design anal-
ysis. Properties can be thought of as statements that prune
the space of acceptable behaviours of the system to be. A
behaviour model synthesized from properties should char-
acterize all possible behaviours that do not violate the prop-
erties. Such a model provides anupper boundon all the
behaviours that the system will actually provide, once im-
plemented.

Synthesis from scenario-based specifications such as
Message Sequence Charts (MSCs) [7] has a number of ad-
vantages that complement those of property synthesis. In
their simplest, and widely used form, scenarios are exis-
tential statements: they provide examples of the intended
system behaviour; in other words, sequences of interac-
tions that the system is expected to exhibit. By synthesiz-
ing behaviour models from scenarios, it is possible to sup-
port early analysis, validation, and incremental elaboration
of behaviour models. A behaviour model synthesized from
scenarios should provide alower boundfrom which to iden-
tify the behaviours that the system will provide but that have
not been explicitly captured by the scenarios.

In this paper, we argue that classical state machine mod-
els such as LTSs are insufficiently expressive to support
synthesis fromboth properties and scenarios. We extend
existing LTS synthesis algorithms to produce Modal Tran-
sition Systems (MTSs) [12] and demonstrate that elabora-
tion from MTSs not only preserves the original properties
and scenarios, but also supports elicitation of new proper-
ties and scenarios. In addition to the approach itself, specific
contributions of the paper are: (i) a technique for automat-
ically generating MTSs from safety properties expressed in
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Fluent Linear Temporal Logic (FLTL); (ii ) a technique for
extending LTS synthesis from scenario approaches to sup-
port construction of MTS models; (iii ) a demonstration that
composition of MTSs is amerge[19], and therefore it pre-
serves the original properties and scenarios and completes
the approach for combined synthesis of behaviour models
from all these artifacts. It also characterizes all MTSs (and
LTSs) that preserve these artifacts and consequently repre-
sents the starting point for further elaboration of system be-
haviour. (iv) a report on a case study that demonstrates that
analysis of synthesized MTSs can help find new meaningful
properties and scenarios to be used to further the require-
ments elaboration process.

The rest of the paper is organized as follows. We be-
gin with a motivating example in Section 2, followed by the
necessary background in Section 3 and discussion of FLTL
in Section 4. Sections 5 and 6 present algorithms for synthe-
sizing MTSs from safety properties and scenarios, respec-
tively. In Section 7, we use the merge operator to put such
partial behavioural descriptions together. In Section 8, we
apply results of this paper, illustrating construction of apar-
tial model and its elaboration, identifying new scenarios and
properties. We discuss our work and compare it to related
approaches in Section 9, and conclude in Section 10.

2 Motivating Example

In this section, we provide a motivating example, ex-
plaining the concepts of scenarios, properties, LTSs and
synthesis informally.

Consider a simple web-based email system. Fig. 1 pro-
vides some examples of the intended system behaviour
using a standard message sequence chart notation [7].
The scenariosc describes a repetition (the outerrep box)
of a choice (the inneralt box) between two sequences
of actions: (1) a User requests authentication from the
Server which then sends a number of messages; after that,
the User logs out and receives a logout message. (2)
an Admin disables the User during user activities, effec-
tively expelling the latter from the system. An exam-
ple of a sequence of events required bysc is sc1 =
authenticate, sendMsg, disable, logoutMsg. . . .

The Webmail system is required to enforce legal and pri-
vate access to the emails it stores. These requirements are
formalized in FLTL [4] in Fig. 2 as propertiesp1 andp2.
Legal access requires the User beRegisteredif it is to be
LoggedIn. Private access requires that the User beLoggedIn
if it is to receive e-mail from the Server (sendMsg). Regis-
teredandLoggedInare fluents that change value according
to the occurrence of events. A User isRegisteredonce he
has beenenabledand not yetdisabled. A User isLoggedIn
once he has beenauthenticated and not yet done alogout
nor beendisabled. An additional requirement,p3, speci-
fies that users should be sent an acknowledgment on logout.
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Figure 1. Webmail scenario specification sc.

Registered= 〈enable, disable〉 initially TRUE
LoggedIn= 〈authenticate, {logout, disable}〉 initially FALSE

(Legal access) p1 = G(LoggedIn⇒ Registered)
(Private access) p2 = G(sendMsg⇒ LoggedIn)

(Logouts are ack’d) p3 = G(logout⇒ X logoutMsg)

Figure 2. Webmail system properties.

Formalization ofp3 states that iflogoutoccurs, then the next
(X) event to occur islogoutMsg.

We now consider synthesis of LTS models from the sce-
narios and properties of the Webmail system.

Property P = p1 ∧ p2 ∧ p3 can be used to syn-
thesize, via an adaptation of the method in [4], an
LTS model L(P ) shown in Fig. 3. This model de-
scribesall possible behaviours over the eventsActweb =
{enable, disable, authenticate, logout, sendMsg, logoutMsg}
that do not violateP . If P represents a subset of the actual
system requirements, then the modelL(P ) can be thought
of as providing anupper boundon the actual intended
behaviour of the system, and the elaboration process is
aimed at removing behaviour fromL(P ).

The problem withL(P ), and with synthesis of LTSs in
general, is that the model blurs the distinction between be-
haviours thatmayoccur as they will not violateP , and be-
haviours thatmustoccur in order to avoid a violation ofP .
For instance, it does not convey that removing a self-loop on
logoutMsgfrom state0 does not violateP , whereas remov-
ing a transition on the same event between states4 and0
does. Consequently, elaboration by arbitrary removal of be-
haviour can be incorrect. Furthermore, the problem of lack
of distinction betweenrequired and possiblebehaviour is
aggravated when the scenario description in Fig. 1 is consid-
ered as well. Fromsc we know that removing the transition
on authenticatefrom 0 to 1 would be incorrect as it would
impedesc1 from occurring; however,L(P ) does not, and
cannot be extended to, reflect this. In summary, the prob-
lem is that by interpreting the LTSL(P ) as an upper bound
to the actual intended system behaviour, the distinction of
what behaviour is required is lost. Such is the case of the
transition onauthenticatebetween states0 and4 and the

2



Figure 3. LTS synthesized from property P .
self-loop onlogoutMscbetween in state1.

Synthesis of LTS models from scenarios presents the
dual problem. A scenario description specifies only some of
the required traces of the system. For example, Fig. 1 says
nothing about the possibility of the Admin disabling a User
while the latter is not logged into the system (e.g.,sc2 =
disable, enable, disable, enable, . . .) or the possibility of the
User receiving messages after he has been disabled (e.g.,
sc3 = authenticate, disable, sendMsg, logoutMsg, . . .).
Such behaviours, although not explicitly required, could
still be possible.

Synthesis from scenarios aims to build models that pre-
cisely capture the traces described by the scenarios. For
example, Fig. 4 depicts the LTSL(sc) synthesized from the
Webmail scenariosc using the algorithm described in [20].
Since scenario descriptions are partial, it is expected that the
final LTS for the Webmail system will include all traces of
L(sc) as well as others. Hence,L(sc) can be thought of as
providing alower boundof the intended system behaviour.
The problem is, however, that not all LTS models that in-
clude the traces ofL(sc) are reasonable. For instance, the
final LTS may include the tracesc2 but notsc3 since the lat-
ter violates the requirementsP of the system. LTSs cannot
capture such restrictions.

To summarize, a major limitation of synthesis ap-
proaches is that the models being synthesized are assumed
to be complete descriptions of the system behaviour with re-
spect to a fixed alphabet of actions. Given the partial nature
of the synthesis inputs (i.e., properties and scenarios), this
forces the models to be interpreted as either lower or upper
bounds of the intended system behaviour. Traditional be-
haviour models such as LTSs cannot capture in one model
the middle ground, i.e., the behaviour that does not violate
safety properties yet has not been required by scenarios, and
this hinders validation, analysis and elaboration of system
behaviour models.

In this paper, we show how the limitations of exist-
ing synthesis techniques can be overcome by synthesizing
more expressive behaviour models, namely, Modal Tran-
sition Systems (MTSs) [12], which are capable of distin-
guishing possible from required behaviour.

3 Background

In this section, we review the notion of and operations
over transition systems, fix the notation and review merging

Figure 4. LTS synthesized from scenario sc.

of MTSs. For the ease of presentation, we assume that all
transition systems have the same alphabet and do not use
non-observable (τ ) actions. For a treatment of models with
different alphabets, please refer to [1].

Definition 1 (Labelled Transition System)Let States be a
universal set of states, andAct be a universal set of observ-
able action labels. AnLTS is a tupleL = (S, A, ∆, s0),
whereS ⊆ States is a finite set of states,A ⊆ Act is a set
of labels,∆ ⊆ (S × A × S) is a transition relation, and
s0 ∈ S is the initial state.

LTSs model interaction of a (sub-)system with its environ-
ment. An example LTS is shown in Fig. 3. We use a con-
vention that the initial state is labeled as0. Otherwise, the
numbers on states are for reference only and have no se-
mantics. Transitions labelled with several actions is short
for an individual transition on each action.

Modal Transition Systems (MTSs) [12], which allow for
explicit modelling of what isnot known, extend LTSs with
an additional set of transitions that model interactions with
the environment that the system cannot be guaranteed to
provide, and equally cannot be guaranteed to prohibit.

Definition 2 (Modal Transition System)An MTS M is
a structure (S, Act, ∆r, ∆p, s0), where ∆r ⊆ ∆p,
(S, Act, ∆r, s0) is an LTS representingrequiredtransitions
of the system and(S, Act, ∆p, s0) is an LTS representing
possible(but not necessarily required) transitions.

Every LTS(S, Act, ∆, s0) can be embedded into an MTS
(S, Act, ∆, ∆, s0). An MTS (or LTS) isdeterministicwhen
no state has more than one outgoing transition on the same
action. We refer to transitions in∆p \ ∆r asmaybetransi-
tions. Maybe transitions are denoted with a question mark
following the label. We refer to the MTS (LTS) with a sin-
gle state and an empty transition relation as theemptyMTS
(LTS). An example MTS is shown in Fig. 8(b).

An MTS M = (S, Act, ∆r, ∆p, s0) has a required

transition oǹ (denotedM
`

−→r M ′) if M ′ = (S, Act, ∆r,
∆p, s′0) and(s0, `, s

′
0) ∈ ∆r. Similarly, M has a maybe

transition oǹ (denotedM
`

−→m M ′) if (s0, `, s
′
0) ∈ ∆p −

∆r. M
`

−→p M ′ means(s0, `, s
′
0) ∈ ∆p.

Definition 3 (Traces)A traceπ = a0,a1,. . ., whereai ∈
Act is a true tracein M if there exists an infinite sequence
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{Mi} such thatM0 = M andMi
ai−→r Mi+1 for all i ∈ N.

A traceπ is a maybe tracein M if π is not a true trace, but
there exists an infinite sequence{Mi} such thatM0 = M

andMi
ai−→p Mi+1 for all i ∈ N. A traceπ is a possible

tracein M if π is a maybe or true trace inM . Finally, a
traceπ is a false tracein M if it is not a possible trace.

We denote the set of true, maybe, possible, and false traces
over a given MTSM by TRUETR(M ), MAYBETR(M ),
POSTR(M ), and FALSETR(M ), respectively. For an LTS
P = (S, L, ∆, s0) we denote by TR(P ) the set of true traces
of its embedding into MTS, i.e. TRUETR((S, L, ∆, ∆, s0)).

To capture the notion of elaboration of a partial descrip-
tion into a more comprehensive one, we userefinement, and
say that MTSs areequivalent(≡) if they refine each other.

Definition 4 (Refinement)Let ℘M be the universe of all
MTSs. An MTSN is a refinementof an MTSM , written
M � N , if (M, N) is contained in some refinement relation
R ⊆ ℘M × ℘M for which the following holds∀` ∈ Act:

1. (M
`

−→r M
′) =⇒ (∃N ′ ·N

`
−→r N

′ ∧ (M ′, N ′) ∈ R)

2. (N
`

−→p N
′) =⇒ (∃M ′ ·M

`
−→p M

′ ∧ (M ′, N ′) ∈ R)

LTSs that refine an MTSM are complete descriptions of
the system behaviour and thus are calledimplementations
of M . So, an MTSM can be thought of as a model that
represents the set of LTSs that implement it, denotedI(M).

In this paper, we assume that all MTSs (and therefore
LTSs) areinfinite-trace:

Definition 5 (Infinite-Trace)An MTSM = (SM , Act,
∆r

M , ∆p
M , s0M ) is infinite-traceif for all s ∈ SM , there

existsa ∈ Act ands′ ∈ SM such thatMs
a

−→p Ms′ .

In other words, an MTSM is infinite-trace if every state
has at least one outgoing transition. All other MTSs are
called finite-trace. Since we intend to synthesize models
from temporal logic formulas which are evaluated on infi-
nite traces, from now on, we write “MTS” (“LTS”) to mean
an infinite-trace MTS (LTS), unless stated otherwise.

Parallel composition[12] captures the notion of MTSs
that run asynchronously but synchronize on shared actions.

Definition 6 (Parallel Composition)LetM andN be MTSs
whereM = (SM , Act, ∆r

M , ∆p
M , s0M ), N = (SN , Act,

∆r
N , ∆p

N , s0N ). Thenparallel composition(‖) is a symmet-
ric operator andM‖N is the MTS(SM × SN , Act, ∆r,
∆p, (s0M ,s0N )), where∆r and∆p are the smallest rela-
tions that satisfy the rules in Fig. 5.

Merging MTSs [19] is the process of combining what
is known from each partial behaviour description; in other
words, it is the construction of an MTS that includes all the
required and all the prohibited behaviours from each MTS,
and is as least refined as possible. Formally, merging MTSs
is the process of finding their minimal common refinement.

MM
M

`
−→mM ′, N

`
−→mN ′

M‖N
`

−→mM ′‖N ′

TT
M

`
−→rM ′, N

`
−→rN ′

M‖N
`

−→rM ′‖N ′

MT
M

`
−→mM ′, N

`
−→rN ′

M‖N
`

−→mM ′‖N ′

Figure 5. Rules for parallel composition.

MT
M

`
−→mM ′, N

`
−→rN ′

M+crN
`

−→rM ′+crN ′

Figure 6. One of the rules for the +cr operator.

Definition 7 (Minimal Common Refinement)Let Q, M ,
and N be MTSs.Q is a common refinement (CR)of M

andN if M � Q andN � Q. Q is a minimal common
refinement(MCR) ofM andN if Q is a CR ofM andN

and there is no MTSQ′ 6≡ Q such thatQ′ is a CR ofM and
N , andQ′ � Q.

Given two MTSsM andN that are deterministic andcon-
sistent(i.e., there exists an MTS that is a common refine-
ment of both),M +cr N is their unique minimal common
refinement.

Definition 8 (The+cr Operator [1])Let M = (SM , Act,
∆r

M , ∆p
M , s0M ) and N = (SN , Act, ∆r

N , ∆p
N , s0N ) be

MTS. Then+cr is a symmetric operator andM +cr N is
the MTS(SM × SN , Act,∆r, ∆p, (s0M , s0N )), where∆r

and∆p are the smallest relations satisfying the MT rule in
Fig. 6, and the TT and MM rules of Fig. 5.

The+cr differs from parallel composition only when syn-
chronizing a maybe with a required transition. The com-
position of these produces a required transition instead of
a maybe which parallel composition would have produced
(see Fig. 5). The intuition is that knowledge is being added,
so when a transition is required in one of the models, it is
required in the merge.

Theorem 1 (+cr Builds the MCR [1])If M andN are de-
terministic MTSs, thenM +cr N builds their MCR.

4 3-valued FLTL

In our work, we assume that properties are specified
using Fluent Linear Temporal Logic (FLTL) [4]. Linear
temporal logics are widely used to describe behaviour re-
quirements [4, 23, 8]. The motivation for choosing FLTL
is that it provides a uniform framework for specifying and
model-checking state-based temporal properties in event-
based models [4].

In this section, we briefly describe a 3-valued variant of
Fluent Linear Temporal Logic (FLTL) [4] and show that
FLTL properties are preserved in all implementations of a
given MTS.

FLTL [4] is a logic for reasoning about fluents. A flu-
ent Fl is defined by a pair of setsIFl , the set of initiat-
ing actions, andTFl , the set of terminating actions:Fl =
〈IFl , TFl〉 whereIFl , TFl ⊆ ActandIFl ∩ TFl = ∅. A fluent
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π |= Fl , π0 |= Fl π |= ¬φ , ¬(π |= φ)

π |= Xφ , π1 |= φ π |= Gφ , ∀i ≥ 0 · πi |= φ

π |= φ ∧ ψ , (π |= φ) ∧ (π |= ψ)

Figure 7. Semantics of satisfaction operator.

may be initiallytrue or falseas indicated by theInitiallyFl

attribute. Every actiona ∈ Act induces a fluent, namely,
a = 〈a, Act \ {a}〉. Given the set of fluentsΦ, Fl ∈ Φ is
an FTL formula, and other FTL formulas are defined induc-
tively using the standard boolean connectives and temporal
operatorsX (next), U (strong until),F (eventually), and
G (always). For example, consider the propertyp3 for the
Webmail system described in Fig. 2. It uses fluentslogout
andlogoutMsgderived from the actions with the same name
and defined in the standard way.

Let Π be the set of infinite traces overAct. For π ∈ Π,
we writeπi for the suffix ofπ starting atai. πi satisfies a
fluentFl, denotedπ |= Fl, if and only if one of the following
conditions holds:
• InitiallyFl ∧ (∀j ∈ N · 0 ≤ j ≤ i⇒ aj /∈ TFl)
• ∃j ∈ N · (j ≤ i ∧ aj ∈ If ) ∧ (∀k ∈ N · j < k ≤ i⇒ ak /∈ TFl)

In other words, a fluent holds at a time instant if and only
if it holds initially, or some initiating action has occurred,
and in both cases, no terminating action has yet occurred.
Fig. 7 shows the satisfaction operator|= for some FLTL
operators [4]. In classical semantics, a formulaφ ∈ FLTL
holds in an LTSL (denotedL |= φ) if ∀π ∈ Π · π |= φ.

The 3-valued semantics of FLTL over an MTSM re-
turns the value of each formulaφ ∈ FLTL in M . φ is true
in M (denotedM |= φ) if every trace in TRUETR(M) sat-
isfiesφ, andfalsein M (denotedM 6|= φ) if there is a trace
in TRUETR(M) that refutesφ. Otherwise,φ evaluates to
maybein M if and only if no traces in TRUETR(M) refute
φ, and there is at least one trace in POSTR(M) that satisfies
φ and one that refutesφ. WhenM is an LTS, this semantics
reduces to classical.

The most important property of this variant of FLTL is
that refinement preservestrue andfalseproperties:

Theorem 2 (Preservation of FLTL)LetM andN be MTSs
s.t. M � N . Then,∀φ ∈ FLTL, M |= φ ⇒ N |= φ and
M 6|= φ ⇒ N 6|= φ.

Therefore, if a property evaluates totrue in M , it is true
in all implementations ofM , and if a property evaluates to
falsein M , it is falsein all implementations ofM . Further-
more, if a property evaluates tomaybein M , it is true in
some implementations ofM andfalsein others.

Finally, an FLTL formulaφ is satisfiableif and only if
there exists an LTSL such thatL |= φ; otherwise,φ is
unsatisfiable. For example, no LTS satisfiesa ∧ ¬a.

5 Synthesis from Properties

In this section, we describe and prove correct an algo-
rithm for synthesizing an MTS for a safety property given

(a) (b)

Figure 8. (a) the property LTS for p3; (b) the
MTS M(p3).

as an FLTL formula. Safety properties are those that specify
that “nothing bad can happen” and that can be falsified by a
finite sequence of events. The algorithm is an extension of
an existing algorithm for synthesizing LTSs [4].

5.1 LTS Synthesis

The technique for model-checking an FLTL propertyφ

over an LTSL involves constructing a Büchi automaton
B(¬φ) that recognizes all infinite traces over the alphabet
Act that violateφ and checking that the synchronous prod-
uct of B(¬φ) with L is empty [4].B(¬φ) is completedby
adding a sink state, and, for every state, adding a transition
to the sink state on all actions that are not enabled in that
state. Thus,B(¬φ) has an execution for every infinite trace
overAct.

When φ is a safety property,B(¬φ) has only one ac-
cepting state with only self-loop transitions, because safety
properties are violated by a finite sequence of actions, and a
violation cannot be remedied. Thus,B(¬φ) can be viewed
as aproperty LTS for φ, i.e., an LTS with an error state
which corresponds to the accepting state ofB(¬φ). All
traces that reach the error state correspond to undesired be-
haviours, i.e., no infinite trace with a finite suffix that leads
to the error state satisfiesφ. For example, the property LTS
for p3 of the Webmail system is shown in Fig. 8(a), where
the error state is denoted by−1. In this LTS, the tracelo-
gout, authenticateis illegal (it leads to state−1), so no infi-
nite trace starting withlogout, authenticatesatisfiesp3. For
details on constructing a property LTS, see [4].

The synthesis algorithm for LTSs, developed in [13], ex-
tends [4] by firstly removing all transitions not correspond-
ing to an infinite trace and then by removing all states that
are unreachable from the initial state (which always in-
cludes the error state). The resulting model is a LTS that
captures all infinite traces on the system alphabet that sat-
isfy φ. We denote byL(φ) the LTS generated by this pro-
cedure (e.g.,L(p3) is the LTS in Fig. 8(a) with state−1 re-
moved). By construction,L(φ) is deterministicand infinite-
trace. Note that for an unsatisfiable propertyφ, L(φ) is the
empty LTS.

5.2 MTS Synthesis

In order to overcome the limitations described in Sec-
tion 2, we extend the synthesis procedure for LTSs to syn-
thesize an MTS from a safety propertyφ, expressed in
FLTL. The algorithm is calledMTSprop:
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Figure 9. The MTS for property P .

1. letL = L(φ) (constructed as described in Section 5.1);

2. returnM(φ), whereM(φ) is the MTS obtained fromL by
converting all outgoing transitions for eachs ∈ SL to maybe
transitions, whenevers has more than one outgoing transi-
tion.

For a satisfiable safety propertyφ, L(φ) contains all infinite
traces that satisfyφ and no traces that refuteφ. When a state
in L(φ) has more than one outgoing transition, there is more
than one way to satisfyφ at that point in the trace. Thus,
not all such transitions are necessary to satisfyφ, but any
LTS that satisfiesφ must contain at least one of them. Such
choices should be modelled with maybe instead of required
behaviour, as in step2 of MTSprop. Also, if a state has only
one outgoing transition, then because any implementation
must be infinite-trace, this transition must be present in all
implementations, and therefore should be required.

For example,M(p3) is shown in Fig. 8(b). The only re-
quired behaviour in this system is from state1 to state0 on
actionlogoutMsg, because this is the only event required by
this property. A possible refinement ofM(p3) is M(P ) de-
picted in Fig. 9 (i.e.M(p3) � M(P ) via the refinement
relation{(0, 0), (0, 1), (0, 2), (1, 3), (1, 4)}). Following the
discussion of Section 2, note thatM(P ) distinguishes re-
quired from maybelogoutMsgtransitions whileL(P ) of
Fig. 3 does not.

The MTSM(φ) constructed byMTSprop is not only cor-
rect, but also characterizes all MTS models that satisfyφ

with the 3-valued interpretation of FLTL.

Theorem 3 (Characterization ofφ) If φ is a satisfiable
safety property, then∀M ∈ ℘M · M |= φ ⇔ M(φ) � M .
In particular, for all LTSsL, L |= φ ⇔ L ∈ I(M(φ)).

The practical implication of this theorem is that the synthe-
sis procedure effectively constructs an MTS from whichall
possible system models that satisfy the given properties can
be reached through the elaboration of the maybe behaviour.
For example, recall from Section 2 that the LTS model,
L(P ), of the Webmail system cannot be refined to model
that the tracesc2 is required. In contrast, the MTSM(P )
supports this refinement by replacing the maybe transitions

0
authenticate
−→m 1, 1

sendMsg
−→m 1, 1

disable
−→m 2, 2

logoutMsg
−→m 2, with the

required transitions.

6 Synthesis from Scenarios

In this section, we describe an algorithm for synthesizing
MTS models from scenario-based specifications. A number
of alternative scenario notations, semantics and synthesis
techniques exist [20, 10, 9], each with its own advantages
and disadvantages. However, the discussion and results pre-
sented in this section are not specific to any particular ex-
isting approach, and the MTS synthesis algorithm we pro-
vide can be used in conjunction with many of the existing
LTS synthesis approaches. The only requirement is that the
semantics for the scenario-based description be existential,
i.e., that scenarios describe behaviour that the system is ex-
pected to exhibit, as opposed to universal properties that all
system traces are expected to satisfy. To ground our presen-
tation and provide concrete examples, we use a syntactic
subset of the Message Sequence Charts from the ITU stan-
dard [7] and the synthesis algorithm presented in [20].

6.1 LTS Synthesis

The semantics of a scenario-based specificationσ can be
thought of as a set of traces, i.e., sequences of messages that
system components exchange, referred to as TR(σ).

The requirements for LTS synthesis from a scenario-
based specification can vary depending on the assumptions
that are made. However, a basic requirement is that the syn-
thesized LTS must be capable of exhibiting the set of traces
that are described by the scenarios.

Definition 9 (Consistency of LTS Synthesis from Scenar-
ios)An LTSL(σ) is consistentwith a scenario specification
σ if and only ifTR(σ) ⊆ TR(L(σ)).

For example, the synthesis algorithm described in [20] con-
structs a deterministic LTS model for each component ap-
pearing in the scenarios. Each LTS is capable of exhibiting
exactly the sequence of message exchanges that occur by
following the vertical line of the component modelled by
this LTS. For example, the LTS for the Server component
synthesized from scenariosc in Fig. 1 is shown in Fig. 4.
Finally, once LTSs for all components have been synthe-
sized, an LTS for the entire system is obtained by compos-
ing them in parallel. In the Webmail example, the System
LTS is equivalent to that of the Server component.

6.2 MTS Synthesis

We now provide a synthesis algorithmMTSscen that
constructs an MTSM(σ) from a scenario specificationσ. A
precondition for this algorithm is the existence of a synthe-
sis algorithm that constructs an LTSL(σ) that is consistent
with a scenario specificationσ.

1. letM(σ) = L(σ);

2. add a new statesink to M(σ) and looping transitions
sink

a
−→m sink for every labela ∈ Act;

6



Figure 10. MTS M(sc).

3. for every states inM(σ) such that there is no outgoing tran-
sitions

a
−→r, adds

a
−→m sink toM(σ);

4. returnM(σ).

MTSscen extendsL(σ) by turning all traces not explic-
itly described byσ into maybe traces. It does so by adding a
sink state to which all events disallowed byL(σ) lead. For
instance,L(sc) of Fig. 1 is converted intoM(sc) of Fig. 10,
where state2 is the sink state.

It is easy to show that the MTS synthesized from a sce-
nario specificationσ is refined by the LTS synthesized from
σ, i.e.,M(σ) � L(σ), and that its required traces subsume
the traces specified byσ:

Theorem 4 (Correctness ofMTSscen) If σ is a scenario
specification andL(σ) is consistent withσ, thenTR(σ) ⊆
TRUETR(M(σ)).

More importantly, we can show thatM(σ) character-
izes all models that require at least the traces of TR(L(σ)).
Clearly, the degree to which the synthesized MTS character-
izes the models that are consistent withσ depends on the un-
derlying LTS synthesis algorithm. However, if the LTS syn-
thesis algorithm guarantees that TR(σ) = TR(L(σ)), then
refiningM(σ) guarantees preservation of the scenarios, and
everymodel that preserves the scenarios can be reached by
refiningM(σ).

Theorem 5 (Characterization ofσ) If σ is a scenario spec-
ification andTR(σ) = TR(L(σ)), then∀M ∈ ℘M , M(σ) �
M if and only ifM is consistent withσ.

Returning to the Webmail system, the MTS of Fig. 10 char-
acterizes all LTS models that are capable of exhibiting at
least the scenariosc. All other system behaviours are pos-
sible. The addition of safety properties would result in the
removal of some of the possible transitions of the MTS, to
capture the fact that such behaviours are not allowed, as we
show in Section 7.

7 Synthesis From Properties and Scenarios

In this section, we discuss how to synthesize behaviour
models both from safety properties and from scenarios. The
synthesis process consists of merging together a model syn-
thesized from safety properties, described in Section 5, and
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Figure 11. MTS Mboth.
sc5 enable?, . . .
sc6 authenticate, logout, enable?, . . .
sc7 disable?, enable?, authenticate?, . . .
sc8 disable?, logoutMsg, . . .
sc9 logout?, . . .
sc10 disable?, disable?, . . .

Figure 12. Maybe traces of Mboth +cr M(p4).

a model synthesized from scenarios, described in Section 6.
Key to this process is Theorem 1: model merging preserves
the required and the proscribed behaviour of the MTSs be-
ing composed. Consequently, the behaviour proscribed by
properties and the behaviour required by scenarios will be
preserved. Intuitively, both the upper and the lower bounds
of the intended system behaviour are preserved by merge;
furthermore, both bounds are captured in the same merged
MTS model. Note that Theorem 1 is applicable since the
synthesis procedures described in Sections 5 and 6 result in
deterministic models that have the same alphabet.

For our Webmail system example, the MTSMboth =
M(P )+crM(sc) is depicted in Fig. 11. This MTS captures
the information provided by both scenarios and properties.
Further, it can be used to reason about maybe behaviour,
that is, behaviour that does not violate safety properties but
has not been explored in the scenario specification. Con-
sider the maybe tracesc4 = authenticate, logout, authenti-
cate?, . . . of Mboth. This behaviour is not included in the
Webmail scenario specificationsc but does not violate the
system propertyP either. Scenariosc4 may prompt a miss-
ing precondition for theauthenticateaction: “A user can
only be authenticated if he is not already logged in” (for-
malized asp4 = G (X authenticate⇒ !LoggedIn)).

By construction, the result of merging deterministic
MTSs is deterministic, and thus we can apply Theorem 1
to build the minimal common refinement ofMboth and
M(p4). Furthermore, this reasoning can be used to itera-
tively merge in new MTSs synthesized from elicited sce-
narios and properties.

Consider the maybe traces ofMboth+crM(p4) shown in
Fig. 12. These traces are not included in the Webmail sce-
nario specificationsc and do not violate the system proper-
ties P or p4. We now hypothesize the decisions that may
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Figure 13. Extended Webmail scenarios (sc′).

be made when validating these scenarios with a stakeholder
to illustrate how explicit modeling of possible but not re-
quired behaviour can help elicit requirements and reason
about system behaviour. We omit formalization of proper-
tiesp5 to p8 due to space restrictions.

Scenariossc5 andsc6 may elicit a precondition (p5) for
actionenable: “A user can only be enabled if he was cur-
rently disabled”, whilesc7 may be identified as a required
behaviour, i.e., the system should be capable of allowing
users to be disabled before they get authenticated and gain
access to the system. In this case, a new scenario could be
elicited and added to the existing scenario specificationsc,
yieldingsc′ (Fig. 13). . Note that having an operational mo-
del allows us to elicit such scenarios by walking the model
and guarantees that the new scenarios will satisfy existing
safety properties. In our example, the scenario is obtained
from the merged MTS by walking through states0, 7, 5, 6,
. . ..

On the other hand, scenariosc8 may prompt a more com-
plex property requiringlogoutMsgto be sent only if the user
logs out or is disabled while being logged in (p6), whereas
sc9 andsc10 may prompt missing preconditions for actions
disable(p7) andauthenticate(p8), respectively.

If a new MTS is synthesized from the existing and the
newly elicited properties (p1 − p8) and the new scenario
specificationsc′, the resulting MTS has no transitions that
are possible but not required, so it is an LTS. Thus, the given
scenarios and properties cover the complete behaviour of
the system up to the alphabetActweb. In practice, it may not
be necessary or even desirable to refine the MTS to a single
LTS, and instead, certain aspects of behaviour may be left
open to decisions further down the development process.

In summary, we have shown how to synthesize models
from safety properties and scenarios by using the merge
operation on MTSs. In addition, we have illustrated how
a merged model that captures both scenarios and require-

R S T U V W X

U Y Z [ X \ Z S ] U Z X

R S T U V W X

W ^ _ ^ Y Z

T X \ R ` T _

W ^ _ ^ Y Z ` T _
R S T U V W X

U Y Z [ X \ Z S ] U Z X

W ^ _ ^ Y Z ` T _

X \ U V W X

a b c d e f

Figure 14. Final model for Webmail: MP +cr

M(p4) +cr M(p5 ∧ . . . ∧ p8) +cr M(sc′).

ments may support behaviour model elaboration and sce-
nario and requirements elicitation.

8 Case Study: the Mine Pump

In this section, we briefly report on a mine pump case
study to which we applied the synthesis techniques de-
scribed in this paper. In this system, a pump controller is
used to prevent the water in a mine sump from passing some
threshold and hence flooding the mine. To avoid the risk of
explosion, the pump may only be active when there is no
methane gas present in the mine. The pump controller mon-
itors the water and methane levels by communicating with
two sensors, and controls the pump in order to guarantee
safety of the pump system.

The case study presents a number of challenges when
compared to the running example used throughout the pa-
per. Firstly, the mine pump system requires a timed model
in order to capture the urgency of actions such as switching
the pump off when there is methane present to avoid an ex-
plosion. Consequently, properties must make use of an ex-
plicit tick event, signalling the successive ticks of a global
clock to which components with timed requirements syn-
chronize. Secondly, in the running example the only com-
ponent with non-trivial behaviour is the Server; there are
no constraints on the behaviour of the User and the Admin.
In contrast, the case study requires eliciting assumptionson
the environment such as how the water and methane level
change. Finally,the initial requirements, described infor-
mally above, are sufficiently weak, so a number of signifi-
cant decisions (in terms of the problem domain) need to be
made in order to elaborate the synthesized MTS.

The first MTS was synthesized from a formalization of
the two key safety properties of the mine pump system: pre-
vent flooding and prevent an explosion. Subsequently, the
resulting MTS was used to validate scenarios and properties
and to explore maybe behaviours. Such exploration led to
elicitation of new scenarios and properties and synthesis of
a more refined MTS. This process continued until the syn-
thesis yielded an implementation – an LTS.

Validation and exploration of the synthesized models
was performed by combining three different techniques:in-
spection(however, due to the number of states and tran-
sitions, this was only practical for small portions of the
MTS), animation, which exploits the executable nature of
behaviour models, andmodel checking, using a modified
version of LTSA (see Section 9). Model checking can be
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used for elaboration as follows. When formulas constructed
to query the synthesized model evaluate to maybe, they cor-
respond to cases where the property may not hold in all re-
finements of the MTS. Further, the analysis yields a coun-
terexample – a maybe trace which provides an opportunity
for prompting elaboration and can be presented to stake-
holders for validation. For instance, a property “The pump
is on only if the water is above the high water level mark”
evaluates to maybe in the model synthesized in the first iter-
ation of the case study. A counterexample for this property
highlights the fact that the pump controller may turn the
pump on even when the mine sump is completely drained.
This counterexample raised a number of questions about the
policy for operating the pump, for example: should it only
be turned on when the water is high? and once on, should it
stay on until the mine has been drained?

Other interesting issues that were raised during the elab-
oration process were regarding assumptions on the be-
haviour of the pump controller environment. For exam-
ple, having modeled discrete water levels, we are faced with
making assumptions on how fast the water level can change.
Is the sensor fast enough to catch all discrete water levels as
it rises? For instance, can the sensor fail to detect water lev-
els 4, 5, and 6 when the water rises from level 3 to 8? And
if the high water mark is at level 5, how would this affect
the operation of the pump controller?

In summary, at each iteration, by synthesizing opera-
tional models in the form of MTSs, we were able to rea-
son about and explore behaviour that is between the bounds
of the safety properties and the scenarios elicited up to that
point. This analysis raised relevant issues and led to iden-
tifying new requirements which in turn helped produce a
more refined description of the intended system behaviour.

9 Discussion and Related Work

In this section, we discuss our results and decisions we
have made, comparing our approach to related work.
On Safety Properties. In this paper, we limit our analy-
sis just to safety properties. Instead of handling liveness
properties, we assume that if the system is required to do
something eventually, surely there is a bound on the accept-
able time in which this must occur. Thus, it suffices to use
bounded operators, such asF≤q, which means “eventually
but in less thanq time units”, for capturing requirements via
safety properties. This assumption is standard in require-
ments engineering approaches such as [22].
Alphabet Extension. In this paper, we have ignored the
issue of alphabet extension, assuming instead that all prop-
erties are defined over the same alphabet,Act. In practice,
fixing Act may not be possible, as the process of elaboration
involves discovery of new relevant actions. Hence, elabora-
tion should support augmenting the universe of known ac-
tions with new ones. The results we presented in this paper

can be easily generalized to deal with alphabet extensions.
Specifically, our previous study of merge handles different
alphabets, as reported in [19, 1]; furthermore, we have con-
ducted a version of the mine pump case study that included
alphabet refinement.
On Tool Support. We have created prototype implementa-
tions of the synthesis algorithms and the analyses described
in this paper. In particular, we have implemented the MTS
synthesis algorithm which builds on existing LTS imple-
mentations developed for the LTSA tool [15], as well as
algorithms for checking refinement and computing merge.
We have also built on the LTSA tool for model-checking:
in [1], we show that model-checking of 3-valued FLTL
properties on MTSs reduces to two classical FLTL model-
checking runs on LTS models and thus can be easily sup-
ported by LTSA. Ongoing work is aimed at building an
integrated environment for behaviour elaboration based on
MTSs.
Related Work. A number of approaches to building event-
based models from properties exist [11, 21, 16, 8, 13, 14].
For instance, [11] proposed a technique for automatically
translating a goal-oriented requirements model into a tab-
ular event-based specification in the form of SCR [6].
[21, 16] developed behaviour model synthesis techniques
to support animation and validation of property-based spec-
ifications. In [8], Formal Tropos goal models are translated
into the event-based specification language Promela for ver-
ification using the SPIN tool. All of these approaches, as
well as [13], buildone of the many possible event-based
models that satisfy the given properties. We addressed limi-
tations of such approaches in Section 2. An alternative, pre-
sented in [14], requires that the set of properties be strong
enough to allow for auniqueoperational model that satis-
fies them. Our work aims at supporting elaboration so as to
potentially achieve such a strong set of properties.

Operational models have also been built from scenario
descriptions [20, 10, 9]. These approaches benefit from
simple, intuitive notations that are widely used and well-
suited for developing first approximations of the intended
system behaviour. The operational nature of scenarios and
the describe-by-example philosophy they embody are both
an advantage, in terms of ease of use and adoption, and a
disadvantage, in terms of having a generative semantics in
which all behaviours must be explicitly described, and in
terms of the number of scenarios that may be required to
describe complex behaviours. We discussed limitations of
such approaches previously.

The work by van Lamsweerde et al. [3] is related to
ours in that it also consider scenarios and safety properties
as an input to synthesis. A learning algorithm is used to
synthesize an LTS model from examples of intended and
proscribed system behaviour. The algorithm also provides
feedback in terms of what-if questions in order to avoid
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over-generalization while learning. Safety properties are
used to prune the number of what-if questions that are pre-
sented to the user. The difference with our work, however,
is that the resulting LTS does not model the safety proper-
ties; it is simply constructed from scenarios that satisfy the
safety properties. Hence, the LTS is a lower bound on the
intended behaviour of the system and as such has the limi-
tations discussed previously in the paper.

Live Sequence Charts (LSCs) [5] augment sequence
charts with the goal of describing existential and universal
behaviour. We consider that there is substantial benefit in
keeping universal and existential behaviour separate in the
form of scenarios and properties. Synthesis approaches that
produce LSC, e.g., [17], require a more expressive synthe-
sis target (Büchi automata) but still do not support modeling
and reasoning about possible yet not required system be-
havior. Extending LSC synthesis to modal-Büchi automata
would address this.

10 Summary and Future Work

In this paper, we have presented an automated technique
for constructing behavioural models frombothsafety prop-
erties and scenario-based specifications. We have argued
that classical state machine models such as LTSs are in-
sufficiently expressive to adequately support this procedure
and presented synthesis algorithms that produce models in a
more expressive formalism, namely MTS. We have shown
how synthesis of MTS models supports behaviour model
elaboration in addition to requirements and scenario elicita-
tion. The approach we present integrates well with existing
approaches such as goal [2, 22] and scenario-based [18] re-
quirements engineering.

Key to success of the approach presented here is in
providing adequate support for model elaboration, starting
from partial models synthesized from a few scenarios and
properties. To this end, we plan to further develop and im-
plement methodologies and tools for model elaboration, to
further include visualization strategies and support for elic-
itation and application of domain assumptions and require-
ments. We also intend to conduct larger case studies to con-
tinue to validate our techniques.
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