
χChek: A Model Checker for Multi-Valued Reasoning

Steve Easterbrook, Marsha Chechik, Benet Devereux, Arie Gurfinkel, Albert Lai,
Victor Petrovykh, Anya Tafliovich and Christopher Thompson-Walsh

Department of Computer Science
University of Toronto

Toronto, Canada M5S 3H5
xchek@cs.toronto.edu

Abstract

This paper describes our multi-valued symbolic model-
checkerχChek. Multi-valued model-checking generalizes
classical model-checking and is useful for analyzing mod-
els where there is uncertainty (e.g. missing information) or
inconsistency (e.g. disagreement between different views).
Multi-valued logics support the explicit modeling of uncer-
tainty and disagreement by providing additional truth val-
ues in the logic.χChek works for any member of a large
class of multi-valued logics. Our modeling language is
based on a generalization of Kripke structures, where both
atomic propositions and transitions between states may take
any of the truth values of a given multi-valued logic. Prop-
erties are expressed inχCTL, our multi-valued extension of
the temporal logic CTL. This paper gives a brief summary
of the model checker and describes some applications.

1. Introduction

This paper describes our multi-valued symbolic model-
checkerχChek.χChek [6] is a generalization of an existing
symbolic model-checking algorithm for a multi-valued ex-
tension of the temporal logic CTL.

A classical model-checker takes a model,M , of a sys-
tem (expressed as a finite state machine), and a temporal
correctness property,ϕ, (expressed as a formula in a suit-
able temporal logic), and determines whether the model sat-
isfies the property, i.e., it returns the value of the relation
M |= ϕ. Multi-valued model-checking is a generalization
of classical model-checking for reasoning with values other
than just TRUE and FALSE. Multi-valued logics are useful
in software engineering because they support explicit mod-
eling of uncertainty, disagreement, and relative desirability
or priority.

The advantages of automated reasoning with multiple
values have been recognized by a number of researchers.

For example, a 3-valued logic has been used for interpret-
ing results of static analysis with abstraction [7, 13], and
for analyzing partial models [1, 2]. In the latter case, the
intermediate value of the logic is used to denote missing in-
formation, and checking the models allows the analyst to
determine whether the desired properties are preserved in
all refinements of this system.

A 4-valued logic has been used to model disagreements
that arise when we compose two models drawn from differ-
ent sources [9]. The four values of the logic represent the
four possible ways of combining the two classical values
of the source models. By checking a model in which dis-
agreements are explicitly represented, the analyst can rea-
son about how such disagreements affect various temporal
properties and thus support potential negotiation.

Our model checker generalizes these approaches — it
works for a large class of multi-valued logics, including
classical (two-valued) logic. The class of logics we use
are those whose logical values form a finite distributive lat-
tice, and where there is a suitably defined negation operator
that preserves De Morgan laws and involution (¬¬a = a).
Such lattices are calledquasi-boolean, and the resulting
structures are calledquasi-boolean algebras[12]. Classical
logic, as well as the 3- and 4-valued logics described in the
literature, are examples of quasi-boolean algebras. In [4],
we describe the properties of these logics, showing that the
logical operators have the expected properties (associativity,
commutativity, idempotence, etc). However, some classical
laws are lost, such as the law of excluded middle, and the
law of non-contradiction. For tractability, we restrict our-
selves to logics with a finite number of values.

Some example logics are shown in Figure 1. Figure 1(a)
is classical 2-valued logic. Figure 1(b) is a 3-valued logic
suitable for representing partial models. Figure 1(c) is the
4-valued logic describe above. Note that its lattice is the
product of two 2-valued lattices. Figure 1(d) is the product
of two 3-valued lattices, and is suitable for composing two
partial models where there may be both disagreementand

1



F

M

T
T

F

(a) (c)

TT

FF

TF FT

(b)

TM

FF

MT

MM

TT

FT

MF

TF

FM
(d)

Figure 1. Some example lattices.

missing information.
In the next section we present a short example, to show

how multi-valued logics can be used in modeling. Section
3 briefly describes the implementation ofχChek. Section 4
outlines a number of different applications.

2. Example

We illustrate the use ofχChek on a simple example of
a thermostat controller. The thermostat is described using
two aspects: Heater and Air Conditioner (AC). The Heater
aspect is responsible for activating the heat when the tem-
perature drops below desired, and the AC aspect is respon-
sible for activating the air conditioning. We first model each
of the aspects individually, and then merge them to produce
a model of the thermostat.

The Heater aspect, shown in Figure 2(a), consists of
a switch to turn the thermostat on and off (Running), a
temperature indicator (Below), and a variable indicating
whether the heater is on (Heat). Notice that in the states
OFF andIDLE1, the current temperature is unknown. This
could be modeled by splitting these states, assigningBelow
a value T in one copy and F in another. Instead, we model
this using a 3-valued logic, assigningBelow the value M.
The AC aspect, shown in Figure 2(b), is similar. The
resulting models are generalized Kripke structures, called
χKripke structures, where both transitions and state vari-
ables are assigned values from a multi-valued logic.

We merge the two aspects to construct a single model
of the thermostat, shown in Figure 2(c). The composi-
tion that was chosen for this example is similar to paral-
lel asynchronous composition with a special treatment of
shared states. First, we identify the statesOFF andIDLE1
as shared, thus requiring that they can only be merged with
themselves. Second, we add an environmental constraint
thatAbove∧Below is nottrue, making the state(Heat, AC)
unreachable in the composition.

For a logic of composition, we choose the logic3x3,
shown in Figure 1(d). Values of state variables in a merged
state are computed as follows: a value of a shared variable
is a tuple formed from values of this variable in the orig-
inal aspects. For example, the value ofRunning in state
(OFF, OFF) is (F,F), which we write as FF. A value of a vari-
able that is local to one aspect is a tuple where all elements

Property Result
E[¬Below U (¬Below ∧ Heat)] FF

AG(Heat→ ¬Air) TT
AG(Heat=TT → EXEX(Running=FF) TT

Table 1. Verification results.

are equal to the value this variable has in the “host” aspect.
For example, the value ofBelow in state(IDLE2, AC) is MM
becauseBelow has value M in the Heater aspect and is not
present in the AC aspect. A transition between two states
(s1, t1) and (s2, t2) is also multi-valued, and defined as
(R1(s1, s2), R2(t1, t2)), whereRi(x, y) is the value of the
transition between statesx andy in systemi. For example,
the transition between(IDLE2, IDLE2) and(IDLE1, IDLE1)
is FT because the transition betweenIDLE2 andIDLE1 in
the Heater aspect is F and in the AC aspect is T. This value
denotes disagreement between the two aspects on the value
of the transition. We annotate transitions with their values,
but omit FF transitions to avoid clutter. The resulting com-
position is shown in Figure 2(c).

For this example, we identify the following three prop-
erties: (1) Is the heat ever turned on before the temperature
falls below desired? (2) Is heat on only if air conditioning
is off? (3) When the system is heating, can it reach theOFF
state in two steps? The formalization of these properties in
χCTL is given in Table 1.

We useχChek to verify the properties, with the results
shown in Table 1. The first property can be verified directly
on the Heater aspect, the second can only be verified on
the combined model, and the third can be verified on ei-
ther aspect. Thus, the result TT for the third property is
interpreted to mean that the property is T in either of the
aspects. However, since the combined system still contains
disagreements, it is possible that the two aspects agree on
the value of the property but disagree on thereasonwhy it
holds. χChek helps us discover this by generating a wit-
ness, shown in Figure 2(d). As in the classical case, such
witnesses can be trees [10]. This witness shows that the
property is satisfied in the Heater aspect because the sys-
tem can move toOFF directly fromHEAT, and then remain
in the OFF state indefinitely. On the other hand, the AC
aspect requires the system to transition toIDLE1, and only
then proceed toOFF. Moreover, since our counter-example
generator is guaranteed to produce a single common execu-
tion if one exists [10], it is clear that the disagreement does
affect this property, and further analysis may be needed to
determine whether this is a problem.

3. Implementation

χChek is implemented in Java, and provides support for
both model-checking with fairness and the generation of
counter-examples (or witnesses). The tool consists of three

2



Running = FF
Above = MM
Below = MM
Air = FF
Heat = FF

(OFF, OFF)
Running = TT
Above = MM
Below = MM
Air = FF
Heat = FF

(IDLE  ,IDLE )1 1

Running = FF
Above = MM
Below = MM
Air = FF
Heat = FF

(OFF, OFF)
Running = FF
Above = MM
Below = MM
Air = FF
Heat = FF

(OFF, OFF)

(HEAT,IDLE )2
Running = TT
Above = FF
Below = TT
Air = FF
Heat = TT

TF FT

TT TT

OFF
Running = F
Below = M
Heat = F

TT

2(IDLE  , AC)
Running = TT
Above = TT
Below = FF
Air = TT
Heat = FF

TT TT

TT

TT FT

(HEAT,IDLE )2
Running = TT
Above = FF
Below = TT
Air = FF
Heat = TT

T T

HEAT
Running = T
Below = T
Heat = T

T

T

T T

Below = M
Heat = F Heat = F

IDLE1 IDLE 2
Running = T

Below = F
Running = TT

T

T

T

T

T

Running = FF
Above = MM
Below = MM
Air = FF
Heat = FF

(OFF, OFF)
Running = TT
Above = MM
Below = MM
Air = FF
Heat = FF Heat = FF

Air = FF
Below = FF
Above = FF
Running = TT

(IDLE  ,IDLE )22(IDLE  ,IDLE )1 1

FT

TF

TT FT

TT

TT
TF

TF

TT

TT

TT
TT

TT

TT

TTIDLE1 IDLE 2
Running = T

Running = T

Running = TT

T

T

OFF
Running = F
Above = M
Air = F

Above = M
Air = F Air = F

Above = F

Air = T
Above = T

AC

T

T

T
T

T

T

T

(a)

(b)
(c) (d)

Figure 2. Models of the thermostat. (a) Heater aspect; (b) AC aspect; (c) a combined model over logic
3x3; (d) witness for a temporal logic property.

components: (1) the model-checking engine itself (χChek);
(2) a counter-example generator (KEG); (3) a web-based
front-end for interactive exploration and visualization of
counter-examples (KegVis).

χChek receives aχKripke structure (a multi-valued gen-
eralization of a Kripke structure)K and aχCTL formulaϕ,
and produces a value ofϕ at every state ofK. The modular
implementation ofχChek allows it to support a wide vari-
ety of specification languages forχKripke structures. Cur-
rently, these structures can be specified either explicitly, as
directed graphs in XML, or as compositions of modules ex-
pressed in an SMV-like notation. The later enablesχChek
to verify SMV models as well as abstractions and merges of
these models.

The analysis is performed using different decision dia-
grams: MDDs and MBTDDs implemented as a custom de-
cision diagram package [5], as well as BDDs and ADDs us-
ing the standard CUDD library. The complexity of model-
checking of aχCTL formulaϕ, under the assumption that
all operations on decision diagrams take constant time, is
O(|S| × |ϕ|), whereS is the state space of the model [10].

Please see [4, 8] for a more detailed description of the
architecture ofχChek. The tool itself can be downloaded
from http://www.cs.toronto.edu/fm .

4. Applications

Multi-valued model-checking has a number of potential
applications in software engineering, for analyzing models
that contain uncertainty, disagreement, or relative priority,
and for general model exploration.

The intermediate values of the logic can represent in-
complete information (or uncertainty). Such applications

typically use a 3-valued logic, with the values T, F and M
(“Maybe”). A 3-valued model can be interpreted as a com-
pact representation for a set ofcompletions[2], where a
completion is generated by replacing each M value in the
model by either T or F. If a property is T (respectively, F)
in a partial model, then it is T (F) in all completions. If
a property is M in a partial model, then it takes different
values in different completions; the missing information af-
fects the property. Thus, we can useχChek to determine
if a property holds, even though the model is incomplete.
We can also use this approach to reduce the size of classical
model-checking problems by creating (partial) abstractions
of models that have large state-spaces. It is possible to gen-
eralize this approach to logics with more than 3 values, to
distinguish levels of uncertainty for the incomplete infor-
mation, but we have not yet explored such applications.

The intermediate values of the logic can represent dis-
agreement. Such applications typically use quasi-boolean
algebras defined over product lattices. A model based on
a product lattice can be interpreted as a compact represen-
tation for a set of models (orviews), where the views may
disagree on the values of some transitions or propositions.
For example, a 4-valued model based on the lattice of Fig-
ure 1(c) can be formed by merging information from two
separate 2-valued views. Where the views disagree on the
value of a transition or proposition, it will take the value TF
or FT. If a property is TT (respectively, FF) in each indi-
vidual view, then it will be TT (FF) in the merged model. If
a property is FT or TF in the merged model, then the dis-
agreement affects the property. Multi-valued model check-
ing over such models is particularly useful if the views are
partial, representing, for example, different modules, fea-
tures or slices of a larger system. In this case,χChek can

3



check properties that cannot be expressed in the individual
views, because the properties combine vocabulary of sev-
eral views or refer to interactions between different views.
We are exploring this approach for the feature interaction
problem in telephony [9], and as a tool to support stake-
holder negotiations in requirements engineering by tracing
from specific disagreements to the properties they affect.

The intermediate values of the logic can represent rela-
tive desirability (or criticality). Such applications typically
use chain lattices (total orders). A model based on a chain
lattice can be interpreted as a compact representation for a
set of partiallayers, where each successive layer specifies
values for transitions left unspecified by previous layers.
For example, a model based on a 4-valued chain lattice can
be used to represent a system with two levels of criticality.
Transitions labeled T and F represent core functionality—
transitions that must (or must not) occur. Transitions la-
beled with the intermediate values represent optional func-
tionality. If a property is T (respectively, F) in this model,
then it is true (false) in just the core layer, irrespective of be-
haviors at the optional layer. We are exploring this approach
for reasoning about requirements prioritization and surviv-
able systems.χChek allows us to check which properties
are supported by which layer, without having to maintain
separate models of the individual layers.

Elements of our quasi-boolean algebras need not be in-
terpreted as logical values. Consider thequery-checking
problem [3] for which the inputs are a (classical) model
and a temporal logic query (TLQ). A TLQ is a temporal
logic formula with placeholders for some subformulas, e.g.,
AG?. A query-checker finds the strongest set of assign-
ments of propositional formulas for each placeholder, such
that replacing each placeholder with any assignment cho-
sen from its set gives a temporal logic formula that holds
in the model. Thus, query-checking is a form of model
exploration—it can be used to discover invariants, guards,
and postconditions of (sets of) transitions in the model.
The query checking problem can be formulated as a multi-
valued model checking problem onupset lattices, where
the elements of the lattices are sets of propositional formu-
las ordered by set inclusion. The reduction of the query-
checking problem to multi-valued model-checking problem
is described in [11].

Acknowledgements

We thank the members of the University of Toronto for-
mal methods reading group for numerous interesting and
useful discussions aboutχChek. Financial support was
provided by NSERC and CITO.

References

[1] G. Bruns and P. Godefroid. “Model Checking Partial State
Spaces with 3-Valued Temporal Logics”. InProc. 11th
Int. Conf. on Computer-Aided Verification (CAV’99), vol-
ume 1633 ofLNCS, pages 274–287, Trento, Italy, 1999.
Springer.

[2] G. Bruns and P. Godefroid. “Generalized Model Checking:
Reasoning about Partial State Spaces”. In C. Palamidessi,
editor,Proc. 11th Int. Conf. on Concurrency Theory (CON-
CUR’00), volume 1877 ofLNCS, pages 168–182, University
Park, PA, USA, Aug 2000. Springer.

[3] W. Chan. “Temporal-Logic Queries”. In E. Emerson and
A. Sistla, editors,Proc. 12th Conf. on Computer Aided Ver-
ification (CAV’00), volume 1855 ofLNCS, pages 450–463,
Chicago, IL, USA, July 2000. Springer.

[4] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel.
“Multi-Valued Symbolic Model-Checking”.ACM Trans. on
Software Engineering and Methodology, Jan 2003. (Ac-
cepted for publication).

[5] M. Chechik, B. Devereux, S. Easterbrook, A. Lai, and
V. Petrovykh. “Efficient Multiple-Valued Model-Checking
Using Lattice Representations”. In K. Larsen and
M. Nielsen, editors,Proc. 12th Int. Conf. on Concurrency
Theory (CONCUR’01), volume 2154 ofLNCS, pages 451–
465, Aalborg, Denmark, Aug 2001. Springer.

[6] M. Chechik, B. Devereux, and A. Gurfinkel. “χChek: A
Multi-Valued Model-Checker”. InProc. 14th Int. Conf. on
Computer-Aided Verification (CAV’02), LNCS, pages 505–
509, Copenhagen, Denmark, July 2002. Springer.

[7] M. Chechik and W. Ding. “Lightweight Reasoning about
Program Correctness”.Information Systems Frontiers, 4(4),
Nov 2002.

[8] M. Chechik, A. Gurfinkel, B. Devereux, A. Lai, and S. East-
erbrook. “Symbolic Data Structures for Multi-Valued
Model-Checking”. CSRG Tech Report 446, University of
Toronto, Jan 2002.

[9] S. Easterbrook and M. Chechik. “A Framework for Multi-
Valued Reasoning over Inconsistent Viewpoints”. InProc.
Int. Conf. on Software Engineering (ICSE’01), pages 411–
420, Toronto, Canada, May 2001. IEEE CS Press.

[10] A. Gurfinkel. “Multi-Valued Symbolic Model-Checking:
Fairness, Counter-Examples, Running Time”. Master’s the-
sis, U. of Toronto, Dept. of Computer Science, Oct 2002.

[11] A. Gurfinkel, B. Devereux, and M. Chechik. “Model Ex-
ploration with Temporal Logic Query Checking”. InProc.
SIGSOFT Conf. on Foundations of Software Engineering
(FSE’02), pages 139–148, Charleston, SC, Nov 2002. ACM
Press.

[12] H. Rasiowa.An Algebraic Approach to Non-Classical Log-
ics. Studies in Logic and the Foundations of Mathematics.
Amsterdam: North-Holland, 1978.

[13] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Anal-
ysis via 3-Valued Logic”. InProc. 26th Annual ACM Symp.
on Principles of Programming Languages, pages 105–118,
New York, NY, 1999. ACM.

4


